
Thin to Win? Network Performance Analysis of the
OnLive Thin Client Game System

Mark Claypool, David Finkel, Alexander Grant and Michael Solano
Computer Science and Interactive Media & Game Development

Worcester Polytechnic Institute, Worcester, MA 01609, USA

email: {claypool,dfinkel}@cs.wpi.edu

Abstract—The growth in network bitrates and server-based
processing has provided a renewed opportunity for thin client
games, where the server does heavy-weight computations, sending
only the visual game frames to the client, and the client displays
frames, sending only the user actions to the server. Understanding
the traffic characteristics of thin client games is important for
building traffic models and classifiers and planning network
infrastructures to meet future demand. This paper provides the
first detailed study of the network characteristics of OnLive,
a commercially available thin client game system. Carefully
designed experiments measure OnLive game traffic for several
game genres, analyzing the bitrates, packet sizes and inter-packet
times for both upstream and downstream game traffic, with
comparisons to traditional game clients and streaming video.
Results indicate OnLive rapidly sends large packets downstream,
similar but still significantly different than live video. OnLive less
frequently sends much smaller packets upstream, significantly

different than traditional game client traffic. The results should
be a useful beginning for building effective traffic models and
classifiers, and for preparing end-host networks to support this
upcoming generation of computer games.

I. INTRODUCTION

The computer game industry has seen tremendous growth in

recent years and is forecasted to be over a $100 billion industry

by 2015 [1], on par with the U.S. movie industry revenue

worldwide (DVD and film).1 Online games have also seen

considerable growth, catalyzed on by the growth in residen-

tial broadband Internet connections with high capacities and

low latencies that encourage game developers to incorporate

networked features into their products.

Thin clients, where the local computer is primarily an

input and output device and the remote computer does the

majority of the processing, have seen a resurgence in use

because today’s networks capacities and latencies can support

bandwidth-intensive, client-server interactions. Thin clients are

expected to grow from over 12 million units shipped in 2011

to over 25 million in 2013, and by 2014, 15% of traditional

professional desktop PCs will be replaced by virtual desktops

accessed from thin clients [1]. Using thin clients for games has

already gone commercial, with companies such as OnLive2

and GaiKai3 having expanding commercial success.

1“How Much Does Hollywood Earn?”, Information is Beautiful,
http://www.informationisbeautiful.net/2012/how-much-does-hollywood-earn/

2http://www.onlive.com/
3http://www.gaikai.com/

In order to classify network traffic and plan infrastructures,

it is important for engineers to have knowledge of the network

load caused by emerging end-host applications. For traditional

network games, traffic from a number of popular games

has been characterized to provide suitable traffic models for

testing existing or planned network designs. There have been

numerous studies of traffic models for popular PC games [2],

[3] and even game consoles [4]. There have also been studies

of traditional video, both pre-recorded [5], [6] and live [7], [8].

However, to the best of our knowledge, measurements of thin

clients across games with comparisons to traditional games

and streaming video have not been done.

Using sniffing to capture OnLive traffic, this paper inves-

tigates the network characteristics (the size and frequency of

data sent and the overall bitrate), which we call turbulence.4

This study seeks to answer the following questions (with a

brief answer as revealed by this study provided in parentheses):

1) What is the network turbulence for OnLive games? Characterizing
the data rates, packet sizes and inter-packet times for OnLive games
is a critical first step for building accurate game traffic models and
for traffic classifiers. (Answer: OnLive games have high downstream
bitrates, about 5 Mb/s with 1000 byte packets, while much more
moderate upstream bitrates, about 100 Kb/s with 150 byte packets.)

2) Does the network turbulence for different game genres (such as
first-person vs. omnipresent) differ from each other? If the answer is
no, then research efforts can study traffic on one game genre only,
saving costs. (Answer: The characteristics of game traffic are similar
for all genres, but total bitrates for downstream and upstream traffic
can vary by as much as 50%.)

3) Does the network turbulence for OnLive games differ from tradi-
tional games? If not, then mature, previously developed models for
online games can be used to analyze the impact of thin client games.
(Answer: Downstream OnLive traffic is more similar to downstream
live video, while upstream OnLive traffic is only somewhat similar
to upstream traditional game traffic.)

4) Does the network turbulence for OnLive change with different
network conditions? If not, then this suggests OnLive is not adaptive
to network conditions, making it easier to model but with more
potential to disrupt networks. (Answer: OnLive does not appear to
adapt bitrates to loss or latency, but does adapt to capacity limits.
Frame rates adapt to both capacity limits and loss, but not to latency.)

4The term “footprint” is used in the context of the memory size of software.
In networks, the size and distribution of packets over time is important, hence
our word “turbulence”.



The rest of this paper is organized as follows: Section II

provides related work on measuring performance of thin

clients; Section III describes our measurement setup and

methodology; Section IV analyzes our results in relation to the

questions posed above; Section V summarizes our conclusions

and presents possible future work.

II. RELATED WORK

Lai and Nieh [9] use a novel benchmarking technique to

evaluate the performance of several thin client platforms, and

Packard and Gettys [10] passively monitor network traffic

between X clients and servers under capacity controlled con-

ditions. Among other findings, latency is seen to dominate

capacity in limiting performance. The above studies, as well

as others (e.g., [11]) provide detailed insights into thin client

performance, but predominantly pertain to traditional applica-

tions and not necessarily thin clients and games.

Winter et al. [12] propose a thin client system designed

specifically for streaming and interactive games. Their system

streams screen images after rendering by the graphics card,

thus reducing bandwidth and increasing visual quality for

streaming video games.

Chang et al. [13] propose a methodology for studying thin-

client game systems based on the game as displayed on the

server compared to the game as displayed on the client,

quantifying frame rate and frame distortion. Similar to work

on traditional client-server games [14], the authors find that

frame rate is more critical to gameplay than frame distortion.

Our work complements previous work by providing more

detailed insights into the characteristics of thin client game

traffic, as well as evaluating several representative games.

III. METHODOLOGY

A. Application Selection

In order to ascertain if turbulence for OnLive varies with the

type of game, representative games from three different genres

were selected. Following the game classification described

in [15], games were chosen from each dominant genre: first

person avatar, third person avatar, and omnipresent. The

selection of games was limited to those available via OnLive

(about 300 titles at the time of the experiments). Games

were chosen based on perceived popularity and with a similar

release dates in an attempt to provide for relatively comparable

visual graphics quality. Table I summarizes the games selected,

with indicated classification and year of initial release. As a

measure of the system impact, the minimum system require-

ments as specified by the game manufacturers is similar for

each game, with Batman having a higher RAM requirement

than the other two games and only Rome requiring a dual core

Intel processor.

TABLE I: Games used in experiments
Game Nickname Classification Release

Unreal Tournament III UT First person avatar 2007
Batman: Arkham Asylum Batman Third person avatar 2009

Grand Ages: Rome Rome Omnipresent 2009

In order to compare OnLive downstream traffic to video,

YouTube was selected as a representative candidate of pre-

recorded streaming video, and Skype was selected as a repre-

sentative candidate for live streaming video.

B. Measurement Testbed

Fig. 1: Measurement testbed

Figure 1 depicts the measurement testbed setup for our

experiments. The OnLive MicroConsole runs the games and is

connected to an HDTV over HDMI running at 1080p. OnLive

specifies a minimum downstream bandwidth of 5 Mb/s to run

at this resolution. A desktop PC runs Skype and YouTube for

measuring streaming application performance, and Fraps5 to

record application frame rates. The Skype application connects

to a MacBook for two-way conferencing. A PC configured as

a network router runs FreeBSD and Dummynet [16] to allow

emulation of a wide variety of network conditions at the IP

level, including network capacity, loss, and latency. The PC

runs tcpdump6 to capture traffic for analysis of turbulence

after the experiments complete. The WPI campus egress to

the Internet is 500 Mb/s, while switches on the campus have

100 Mb/s and 1 Gb/s capacities.

C. Experiments

Pilot studies captured game traces for varying lengths

in order to determine how long individual sessions should

run. Based on these runs, it was determined 2.5 minutes of

gameplay was long enough for the player to have repeatedly

gone through all core game interactions, and for the network

behavior to be consistent for all applications.

1) Games: For each game, a scenario was selected to

represent core game play.

UT: A free-for-all match on the Rising Sun map was started,
containing 10 Bots, no mutators and forced respawns, with no limit
on the score or time. The player then competed for weapons, armor,
and health using them to defeat the Bots.

Batman: A challenge mode was used, where the player would
start in a small square room with 3 enemies, with more appearing

5http://www.fraps.com/
6http://www.tcpdump.org/



continuously. The player used attack combos to incapacitate as many
enemies as possible until the number of enemies was overwhelming.

Rome: A empty map was used where the player constructed buildings
using the technology tree, with no enemies encountered. The player
built (in order): 3 insulas, 1 pig farm, 1 wheat farm, 1 aqueduct, 1
large water fountain, 1 logging shed, 2 more insulas, 1 butcher shop,
1 farmers market, 1 grape farm, and 2 logging sheds.

The packet captures proceeded from the start until the end

of each game session, trimming each session to 2.5 minutes

of the core gameplay.

2) Skype: For the Skype testing, all non-essential applica-

tions were closed before the Skype video call was made. One

participant was on the MacBook and the other on the PC. A

short pause was given to establish the call, then the session

was set to full screen mode before starting FRAPS and the

packet capture.

3) YouTube: For the YouTube testing, a video7 of an

omnipresent game, a two-player session of StarCraft 2, was

chosen. The video could not start automatically at 1080p

in fullscreen. So, using Google Chrome, the URL link was

entered at the same time the packet capture was started, and

changed to full screen and 1080p right when it came up.

D. Parameters

All together, three games and three applications were tested

over conditions with varied capacity, loss and latency:

Game genre UT, Batman, and Rome
Application Game, live video, pre-recorded video

Capacity (down:up) 5:1 Mb/s, 10:2 Mb/s, and unrestricted
Latency (round-trip) 0, 40, and 70 milliseconds

Loss (downstream) 0%, 1%, and 1.5% loss
Iterations 3 runs for each experiment condition

IV. ANALYSIS

A. Turbulence

Our traces show OnLive uses UDP for both downstream and

upstream game traffic. Analysis includes UDP and IP headers,

unless otherwise noted.

To assess network turbulence, bitrate, packet size and inter-

packet times are analyzed.

Figure 2 depicts a comparison of the downstream bitrate

(computed every second) for OnLive for the three games under

test. In terms of bitrates, all three trendlines look similar.

Thus, in this graph, and all subsequent bitrate graphs, only

the second trial is shown. The x-axis is the measurement time

in seconds, and the y-axis is the bitrate in Kb/s. Each game

is depicted by a separate trendline. The similarity in bitrates

for UT and Batman (about 6.3 Mb/s) could be because of the

relatively similar camera angles they provide to the player,

while Rome has around half the bandwidth (about 3.8 Mb/s),

possibly because of the different camera angles afforded by

an omnipresent game. There is more variance in the bitrate

trendlines for Rome than for UT or Batman.

Figure 3 depicts a comparison of the cumulative distribution

functions (CDFs) of the downstream packet sizes for the

7http://www.youtube.com/watch?v=0NTeyF6wQUs
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Fig. 2: Downstream bitrate

three games. The x-axis is packet size and the y-axis is the

cumulative distribution. Note, for easier readability, only 1

out of every 1000 points are plotted. The trendlines all look

similar, probably due to the nature of the encoding of the

display images sent from the server to the client. The mode,

about 40% of all packets, is 1414 bytes, which is smaller than

the MTU of 1500 bytes that could be used. About 10% of

the packets are 622 bytes. The other 60% of the packets are

distributed fairly uniformly between about 100 and 1400 bytes.
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Fig. 3: Downstream packet size

Figure 4 depicts a comparison of the inter-packet time CDFs

for the three games, also plotting 1 out of every 1000 points.

The x-axis is the time between packets, in milliseconds. In

general, inter-packet times are quite small, with a median

less than half a millisecond. The maximum inter-packet times

are only tens of milliseconds. The trendlines all look similar,

particularly so for UT and Batman.

Figure 5 depicts a comparison of the upstream bitrate for

OnLive for the three games, showing the second trial (as for

the downstream traffic, the other trials were similar). The x-

axis is the measurement time in seconds (zoomed in to seconds

50-100 to more easily differentiate the trendlines), and the y-

axis is the bitrate in Kb/s with trendlines as in earlier graphs.

All three games have considerable variation in their upstream

bitrates, ranging from about 50 to 150 Kb/s. UT has a slightly

higher upstream bitrate than Batman or Rome, possibly due to

the fast-action nature of first person shooter games. Note that

the y-axis scale in Figure 2 is 40 times greater than the y-axis
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Fig. 4: Downstream inter-packet times

scale in Figure 5, since the downstream to upstream bitrate

ratios are about 50 to 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50  60  70  80  90  100

B
it
ra

te
 (

K
b

/s
)

Time (seconds)

UT
Batman

Rome

Fig. 5: Upstream bitrate

Figure 6 depicts a CDF of the upstream packet sizes for the

three games. Most upstream packets are small, about 100 bytes

of application payload after subtracting out the IP headers.

Nearly all the packets are under 250 bytes. Note, the x-axis

scale is only up to 350 bytes out of a typical 1500 byte MTU.
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Fig. 6: Upstream packet size

Figure 7 depicts a comparison of the inter-packet time CDFs

for the three games, plotting 1 out of every 200 points. The

inter-packet times are still small, most under 20 milliseconds,

but are considerably larger than the downstream inter-packet

times (the x-axis scale for Figure 7 is about 10x larger than

for Figure 4). The maximum inter-packet times upstream are
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Fig. 7: Upstream inter-packet times

slightly over 50 milliseconds. The trendlines all look similar,

despite the fact that the player interactions with each game

genre may be considerably different.

Table II provides summary statistics (mean values) for

the OnLive games, showing both upstream and downstream

turbulence. Overall, OnLive traffic is quite asymmetric, with

downstream having about 50x higher bitrates, 10x more pack-

ets per second and 6x larger packets.

TABLE II: Turbulence for OnLive (up and down, mean values)

Bitrate Packet Size Inter-packet
Game (Kb/s) (bytes) Time (msec)
UT 125 6247 146 947 9.5 1.2
Batman 100 6333 152 953 11.7 1.2

Rome 86 3817 143 914 13.4 1.6

B. Network Perturbations

Given the relative similarity in turbulence for the three

games studied, independent of genre, for subsequent exper-

iments UT is used as the representative OnLive game. Also,

due to space constraints, graphs of packet size and inter-

packet times are not shown, only bitrate. Also, as a final focus,

since downstream OnLive traffic dominates that of upstream,

primarily downstream traffic is analyzed.

Dummynet was used to restrict capacity on the link to the

game console to 5:1 Mb/s and 10:2 Mb/s. Figure 8 depicts UT

bitrates for 10 Mb/s and 5 Mb/s, with the unrestricted trendline

(top) from Figure 2 for comparison. Restricting the bitrate to

10 Mb/s (roughly, that of a typical residential broadband link

in the U.S.) on the downlink yields a bitrate of about 4200

Kb/s, with a further restriction to 5 Mb/s dropping the bitrate

to just over 2000 Kb/s. There is a slight decrease in variance

with increased capacity restrictions. In both restricted cases,

the downstream bitrate is about half the capacity restriction.

Dummynet was used to induce 1% and 1.5% packet loss on

the link to the game console, and then 40 and 70 msec of added

round-trip latency. Figure 9 depicts the corresponding UT

bitrate comparisons. There is little apparent effect on bitrate

to added latency and loss, except perhaps slightly more bitrate

variance with increased loss.
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Fig. 8: Downstream bitrate with capacity restrictions
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Fig. 9: Downstream bitrate with induced packet loss (top) or

latency (bottom)

C. Frame Rate

Since the focus of this paper is on network turbulence, only

a summary table of frame rates is shown. Table III depicts

the average frame rates recorded for UT under the tested

network conditions. Unrestricted, OnLive runs games at 60 f/s,

substantially above full-motion video rates but typical of many

traditional game clients. Scenarios of induced latencies do not

result in reduced frame rates. However, OnLive responds to

loss scenarios, both 1% and 1.5%, by playing the video out

at reduced frame rates despite the lack of observable change

in downstream network bitrates, seen previously in Figure 9.

A similar reduction in frame rate accompanies the 10 Mb/s

downstream bitrate restriction. With a 5 Mb/s downstream

bitrate restriction, OnLive reduces the frame rate even more,

down to 25 f/s. Previous work [17] has shown a marked

dropoff in player performance for reduced frame rates.

D. Streaming Comparison

This section compares OnLive turbulence to that of Skype

and YouTube, and to previously published analysis of tra-

ditional games and multiplayer virtual environments. While

studies were conducted over the range of network conditions,

only the downstream bitrates are analyzed here due to space

constraints.

Figure 10 depicts a comparison of the bitrates for YouTube,

UT and Skype. YouTube videos are pre-recorded, so unlike

in OnLive or Skype, YouTube can potentially download as

fast as the network allows. In fact, YouTube finishes the

video download in about 90 seconds, so the x-axis is scaled

shorter than for previous bitrate graphs. YouTube uses TCP,

allowing the bitrate to expand to fill available capacity, while

also having more variation due to congestion and flow control

mechanisms built into the protocol. Skype has a significantly

lower bitrate than OnLive, only about 2200 Kb/s compared

with about 6200 Kb/s for OnLive. The bitrate ratio of OnLive

to Skype, about 2.8 to 1, is on par with the ratio of their screen

resolutions (1080p vs. 720p), about 2.25 to 1. The variances

in bitrate for Skype and OnLive look similar.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  10  20  30  40  50  60  70  80  90

B
it
ra

te
 (

K
b

/s
)

Time (seconds)

YouTube
OnLive
Skype

Fig. 10: Downstream bitrate for streaming applications

E. Summary

A final summary seeks to put OnLive turbulence in the con-

text of other interactive applications. A complete comparison

for all cases, upstream and downstream, using bitrate, packet

size and inter-packet times is difficult given space constraints

and, moreover, such analysis would likely not be informative

because of the sheer number of details. Instead, median values

are summarized for bitrate, packet size and inter-packet times

primarily for downstream traffic, often the bottleneck. UT on

a PC is chosen as the representative game for comparison,

and Second Life is selected as a representation of a multi-

player virtual environment, with complete published analysis

from Beigbeder et al. [18] and Kinicki and Claypool [19],

respectively.

Table IV presents a comparison of the relevant data.

TABLE III: Frame rates for OnLive games (approximate

averages)
Scenario Frame rate
Unrestricted 60 f/s
40ms latency 60 f/s
70ms latency 60 f/s
1% loss 30 f/s
1.5% loss 30 f/s
10 Mb/s 30 f/s
5 Mb/s 25 f/s



Comparing thin client (OnLive) to traditional network

clients, downstream, thin client games have much greater

turbulence across all genres, with about 100x greater bitrates,

15x larger packets, and 60x times more frequent packets.

This is perhaps expected given that traditional game clients

receive game object updates while thin game clients receive

game frames. However, even upstream (not shown), thin client

games have significantly greater turbulence, with 2x greater

bitrates, 2x larger packets, and 5x times more frequent packets.

Thus, any switch to thin client games from traditional client

games must take into account a significant change in the

network traffic.

In general, traditional network games have relatively low

turbulence, considering bitrates, packet sizes and inter-packet

times. Virtual environments have an order of magnitude more

turbulence, reflecting the flexible, dynamic nature of the in-

teractions. Live video has still three times more turbulence,

owning to the frequent updates required to display video in

real-time. While pre-recorded video has variable turbulence

since there are fewer time constraints on clients watching the

video, pre-recorded video expands to meet available capacity.

Thin client games appear most similar in turbulence to live

video, requiring frequent transmission of large packets in order

to maintain a smooth frame rate depicting the game. This

large turbulence, coupled with the real-time nature of computer

games, suggests meeting the quality of service requirements of

thin client games is a challenge in terms of network planning

similar to that of high-quality video conferencing.

TABLE IV: Downstream turbulence for online applications

(medians)
Bitrate Pkt Size Inter-Pkt

Application (Kb/s) (bytes) (msec)

Traditional Game 67 75 45
Virtual Environment 775 1027 9
Live Video 2222 1314 0.1
Thin Client Game 6247 1203 0.7

Pre-recorded Video 43914 1514 0.1

V. CONCLUSIONS

The growth in connectivity and capacity of networks

presents the opportunity for thin clients, clients that primarily

handle input and output and not computation, to be used for

computer games. Understanding the network traffic character-

istics, the turbulence, is an important component for designing

systems to support this new kind of traffic.

This paper provides a detailed study of the network turbu-

lence of a prominent, commercial thin client game system –

OnLive. Carefully designed experiments allow for comparison

of network turbulence across game genres and streaming video

applications and a variety of network conditions. Leveraging

previous research allows comparison with traditional network

game turbulence.

Analysis shows OnLive traffic has downstream turbulence

similar to high-definition, live video, with large, frequent

packets and high bitrates. OnLive upstream traffic has far less

turbulence, but still significantly higher bitrates and packet

rates than traditional upstream game traffic. OnLive turbulence

does not respond to network perturbations much, but does

adapt to changes in downstream capacity and in the frame

rate provided to players when there is packet loss.

Future work can include testing additional games, possibly

expanding the selection in the genres chosen or selecting

other genres. Other thin client game systems can be evaluated,

such as GaiKai, recently purchased by Sony. Research to

classify and then potentially treat thin client game traffic can

build directly upon the results and analysis presented here,

with impacts assessed for actual thin client game traffic. The

measurement data can be used to build thin client game traffic

models. The traces from our experiments are available at:

http://perform.wpi.edu/downloads/#onlive
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