

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

APIs for QoS configuration in Software Defined Networks

Caba, Cosmin Marius; Soler, José

Published in:
Proceedings of IEEE NetSoft 2015

Link to article, DOI:
10.1109/NETSOFT.2015.7116157

Publication date:
2015

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Caba, C. M., & Soler, J. (2015). APIs for QoS configuration in Software Defined Networks. In Proceedings of
IEEE NetSoft 2015 IEEE. https://doi.org/10.1109/NETSOFT.2015.7116157

https://doi.org/10.1109/NETSOFT.2015.7116157
https://orbit.dtu.dk/en/publications/c2cd2fb0-fc41-43ac-9d21-c70f1cc73e52
https://doi.org/10.1109/NETSOFT.2015.7116157

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

978-1-4799-7899-1/15/$31.00 ©2015 IEEE

APIs for QoS configuration in Software Defined

Networks
Cosmin Caba, José Soler

DTU Fotonik – Networks Technology & Service Platforms Group

Lyngby, Denmark

{cosm, joss}@fotonik.dtu.dk

Abstract—The OpenFlow (OF) protocol is widely used in

Software Defined Networking (SDN) to realize the

communication between the controller and forwarding devices.

OF allows great flexibility in managing traffic flows. However,

OF alone is not enough to build more complex SDN services that

require complete control and management of the data plane (e.g.

configurations of ports, queues, etc.). The current work

contributes to the SDN ecosystem with the implementation of a

plugin for the OVSDB protocol, for an existing SDN controller

(SDNC). OVSDB complements OF with management

functionality such as configuration of devices, ports, queues, etc.

An Application Programming Interface (API) for dynamic

configuration of QoS resources in the network devices is

implemented herein, by using the capabilities of OVSDB.

Further, the paper demonstrates the possibility to create network

services with coarse granularity on top of the fine granular

services exposed by the QoS configuration API at the SDNC. A

series of tests emphasize the capabilities and the performance of

the implemented QoS configuration API.

Keywords—Software Defined Networking; OpenFlow; QoS;

network management; Open vSwitch; application programming

interface

I. INTRODUCTION

Software Defined Networking (SDN) is a disruptive
paradigm which proposes decoupling the control and data
planes inside the network devices. The control plane decision
logic is located in a centralized entity termed SDN Controller
(SDNC), while the network devices become simple forwarding
elements. The communication between the SDNC and the
forwarding elements in the network is realized through a
standardized interface, the Data-Controller Plane Interface (D-
CPI), while the communication between the SDNC and the
applications is realized through the Application-Controller
Plane Interface (A-CPI) [1]. The D-CPI enables
programmability of the entire network from the SDNC.

The programmability introduced by SDN facilitates the
automation of several operations (e.g. resource provisioning,
traffic optimization, etc.), thus simplifying the management of
the network [2]. The capabilities offered by the SDNC at the
A-CPI have a direct impact on the network services and
applications built on top of it, and on the extent to which the
management functions can be automated. To this end, the A-
CPI must provide a wide range of functionality. Nevertheless,
the functionality exposed at the A-CPI depends on the
protocols implemented on the D-CPI and the features
supported by the forwarding elements.

There are several standardized protocols that have QoS
capabilities, available at the D-CPI (e.g. OpenFlow,
NETCONF) [3] [4]. However, there is no standardized API at
the A-CPI to include QoS features. This is mainly because the
applications QoS requirements vary greatly, making it difficult
to achieve a unique, standardized abstraction at the A-CPI to
satisfy all the requirements. More specifically, some
applications need a low level API for QoS control (e.g. traffic
engineering application that needs access to device specific
QoS configuration), while others need a higher level API (e.g.
multimedia applications demanding connectivity between two
endpoints).

This paper proposes an API for QoS configuration (named
QoS Config API herein) that allows applications to configure
priority queues on the ports of data plane devices. In order to
support the operations exposed by the QoS Config API, the
OVSDB protocol has been added at the D-CPI of an existing
SDNC [5]. Additionally, the QoS Config API allows flexible
configuration of priority queues on individual device ports, on
every port of a device, or on all the ports in the network at
once. Furthermore, the paper presents an application that
creates a higher level network service over the low level QoS
Config API. This emphasizes the need to have APIs with
various granularities at the A-CPI in order to support
applications with different requirements.

Since the OVSDB management protocol is defined for
Open vSwitch (OVS) software switches [6], the QoS Config
API is mainly targeted towards SDN deployments that are
based on OVS. Therefore, the QoS Config API proposed
herein allows the services and applications built on top of the
SDNC to make use of the full set of QoS features available in
OVS devices. This opens the possibility for creating innovative
services and applications that need QoS support from the data
plane, thus contributing to advancing the SDN ecosystem. The
proposed QoS Config API is demonstrated and tested, and the
results show the capabilities and the performance of the API.

The remaining of the paper is structured as follows: section
II discusses other research works in the area of QoS and SDN.
Section III describes the architecture of the implemented
system and section IV continues with details about the module
for QoS configuration. Section V presents the test setup and the
obtained results. Section VI concludes the paper.

II. RELATED WORK

 Several research works have discussed the topic of QoS in
the context of SDN. In [7], the SDN paradigm is applied to
provide bandwidth on demand for inter-datacenter networks.

NetSoft 2015 1570073073

1

The bandwidth allocation fairness among different traffic
classes and the increase in network utilization are evaluated.
The results show significant improvements in network
throughput, over traditional technologies such as MPLS-TE.
The classification of traffic in the data plane is based on
priority queueing [7].

Another area in SDN which has received significant
attention comprises the APIs exposed by the SDNCs through
the A-CPI, towards external services and applications. There is
little work describing APIs for QoS configuration similar to the
ones proposed herein. The SDNC described in [8] offers a QoS
API that is based on the capabilities of OpenFlow (OF).
However, there is no detailed description of the abstractions
provided through the API. The SDN-based QoS frameworks
described in [9] and [10] focus on high level QoS-related
policy enforcement into the data plane using OF. The policies
are targeted towards network administrators or applications.

While the QoS mechanism presented in [11] is similar to
the one proposed herein, the difference lies in the focus of the
paper. The work described in the current paper is focused more
on defining the right granularity of the APIs for QoS
configuration rather than describing the internals of the
implementation as in [11]. Moreover, section V of the current
paper discusses some of the challenges of this work such as the
state distribution among different layers of the SDN
architecture, and its impact on the performance and the
implementation complexity.

Overall, the proposed QoS Config API allows external
services to access the QoS configuration capabilities built into
the SDNC. Hence, the API proposed in this paper is not
targeted towards applications that require network resources
with specific QoS characteristics (e.g. multimedia
applications), but towards services that need access to data
plane QoS capabilities (e.g. priority queue configuration). Such
a service could, for instance, consume the QoS Config API in
order to provide a coarser granularity service (e.g. bandwidth
on demand) to higher layer applications (e.g. database
replication).

The initial version of OF (i.e. v1.0) [3] offers a limited set
of operations to control the QoS in the data plane devices.
More specifically, it offers the possibility to instruct the
forwarding devices to forward a traffic flow on a certain output
queue. However, the configuration for the queues must be
conveyed to the devices through another management protocol
such as NETCONF [4], etc. Recent versions of OF (i.e. v1.3.0)
offer more capabilities for QoS configuration. More
specifically, by using the Meter table it is possible to rate limit
traffic flows, or to mark them with a specific Differentiated
Services Code Point (DSCP) value [12].

III. ARCHITECTURE

Figure 1 illustrates the architecture of the proposed SDNC
platform. The data plane consists of OVS software switches,
which are deployed in physical servers running Linux. Several
OVS instances run in a single physical machine. The
configuration information regarding the state of each OVS
switch is fetched from a database residing in the same machine
as the OVS switches. The configuration can be remotely

installed in the database using the OVSDB protocol, allowing
external entities to control the state of each OVS switch. The
state which is of interest herein is the configuration of priority
queues on the output ports of the switches.

The proposed platform is based on Floodlight [13]. The
protocol originally supported by Floodlight on the D-CPI is OF
v1.0. For the current paper, the OVSDB protocol has been
added to Floodlight, to extend it with capabilities beyond those
offered by OF. The figure shows only the internal SDNC
modules that are relevant for the work described in this paper.
The modules depicted in grey are re-used from Floodlight
while the other two modules are newly added.

SDNC

OVS state OVS state

OF OVSDB

A-CPI (REST API)

D-CPIOF OVSDB

QoS ConfigurationStatic Flow Pusher

Data plane

QoS Config API

Topology Manager

Client state

Fig. 1. Architecture of the SDNC

The OF and OVSDB modules realize the communication on
the D-CPI using the OF and OVSDB protocols. The
implementation of the OVSDB module contains parts of the
open source module with the same name from Open Daylight
[14]. The Topology Manager module maintains a
representation of the underlying network topology and offers a
REST API for querying the state of the topology (e.g. switches,
links, etc.). The Static Flow Pusher module uses the primitives
exposed by the OF module to offer capabilities for installing
OF entries using the REST API.

The core of the work described in this paper consists of the
QoS Configuration module (QoS Config). This module
provides a set of methods for managing the state of the OVS
instances with respect to QoS. It uses the subset of the features
offered by the OVSDB module which are related to QoS (i.e.
priority queue configuration). The services provided by the
QoS Config module can be consumed as Java APIs by internal
SDNC modules or as REST APIs by external entities (i.e.
services and applications). The API is termed QoS Config API
throughout the paper.

The Client application (Figure 1) demonstrates the
possibility to create higher level network services on top of the
QoS Config API exposed at the A-CPI. The Client may be
implemented in a stateful way, by querying the SDNC through
the REST API and keeping information about the network
resources (e.g. links, ports, etc.).

IV. QOS CONFIGURATION MODULE

The purpose of the QoS Config module is to abstract the
low level primitives for configuring QoS on the output ports of
the switches. Hence, it translates the OVS data model to a
simpler model available through the QoS Config API.

2

A. Data plane abstraction

The left side of Figure 2 illustrates the object model of an
OVS switch (also termed Node) [15]. The model is stored as
tables in the OVS database, and it is accessed by the SDNC
(thus by the QoS Config module) through OVSDB. On each
port of an OVS switch, a QoS object can be defined. The QoS
object specifies the maximum rate that can be shared among
the priority queues configured on that port. In the current
implementation, this rate is configured to be the capacity of the
outgoing link. Several priority queues can be attached on each
QoS object. As described in [15], the possible parameters for a
queue in the OVS database are: the minimum guaranteed rate,
the maximum rate, the permitted burst size, the priority of the
queue, and the DSCP value. The priority field indicates how
the available bandwidth is shared among the priority queues. If
configured, the DSCP value is inserted into all the packets
transmitted through the queue. Complex data plane QoS
mechanisms (e.g. DiffServ) can be implemented through
certain configurations of the aforementioned parameters [16].

QoS

Config

API

Switch (Node)

Port

QoS

Queue

Data plane

OVS model

1..n

0..1

0..n

OVSDB

Node

Port

Queue

Network

Client data

model

1..n

0..n

1..n

Node

Port

QoS

Network

QoS Config

model

1..n

0..n

1..n

Fig. 2. QoS abstractions realized through the QoS Config module

On the right side of Figure 2, the object model available at
the client, through the QoS Config API, is illustrated. The QoS
Config API enables management of priority queues for three
topological elements: network, node, and port. The QoS Config
module maps the data model available to the clients to the OVS
data plane model by keeping state about the topology and QoS
objects configured on each port (middle of Figure 2).

B. State distribution among different layers

The QoS Config module does not keep state about the
queues configured in the data plane devices (Figure 2). Instead,
it keeps a mapping between each port of a node and the QoS
configured on that port. Using this mapping, the QoS Config
module can access the queues in the OVS model stored in the
OVS database. The decision to keep only the state about QoS
objects in the QoS Config module is a compromise between
simplicity of the implementation and performance of the QoS
Config API.

Keeping the state about the queues in the data plane
alleviates some of the challenges related to data consistency.
The configuration of the QoS objects inside the OVS model
does not change over time. However, for a dynamic data plane
QoS mechanism, the configuration of the queues changes
frequently. If the QoS Config module would keep also the state
of the queues, then complex mechanisms would be needed to
maintain the state consistent with the OVS model, due to the
frequent changes. Nevertheless, the decision impacts the
performance of the QoS Config API since the data plane must
be queried several times to access the configuration data for the

queues. Finally, since the QoS Config module keeps only a
limited amount of state, it becomes easy to extend the QoS
Config API with new parameters that may be supported by
other data plane devices, without impacting the performance of
the API.

C. Operations available through the QoS Config API

The methods exposed by the QoS Config module (as Java
and REST APIs) are shown in Figure 3. There are three levels
of granularity for configuring priority queues: port, node, and
network (also illustrated on the right side of Figure 2). The
node and port (i.e. NodePort in Figure 3) association uniquely
identifies a port on a given node. For each type of topological
element, there are four methods defined: get, add, modify and
remove. Each method takes as arguments the identifiers of the
topological elements they refer to: a node is identified by its
Datapath Identifier (DPID), a port by its port number, and a
queue by its queue number. The add and modify methods take
as argument also a queue configuration as shown in Figure 3
(right side). The API does not enforce additional constraints
apart from those imposed by OVS [15]. The semantics of the
four types of methods are as follows:

1) Get: returns all the queues configured on an element.

2) Add: a new queue is added on all the ports contained by

the topological element the method refers to. For a port, a

single queue is added on that port. All the newly added queues

have the same configuration, which is passed as a parameter to

the method. The reply contains the numeric identifiers (i.e.

queue numbers) of the new queues.

3) Modify:all the queues with a certain number, which are

configured on a certain topological element, are modified to a

new configuration (passed as argument to the method).

4) Remove:removes the identified queues.

+getQueuesForNodePort()

+addQueueOnNodePort()

+modifyQueueOnNodePort()

+removeQueueFromNodePort()

+getQueuesOnNode()

+addQueueOnNode()

+modifyQueueOnNode()

+removeQueueOnNode()

+getQueues()

+addQueue()

+modifyQueue()

+removeQueue()

«interface»

IQosConfigService

-minRate

-maxRate

-size

-priority

QueueConfiguration

Fig. 3. Interface for the QoS Config API and class for queue configuration

To guarantee the application level QoS it is necessary to
augment the QoS Config API with additional functionality. For
example, a service for bandwidth on demand (BoD) may be
implemented by leveraging the QoS Config API. The BoD
service would then support applications QoS requirements.

V. TEST AND RESULTS

The implementation has been tested in different
configurations to emphasize the capabilities and the
performance of the QoS Config API. The Client application is

3

an example of an extension to the QoS Config REST API. This
application keeps state about the network topology and the
queues configured in the network, and by using this state
information, it realizes higher level abstractions for QoS-aware
services: it creates QoS slices (Figure 4). A QoS slice is
defined by a set of priority queues that are configured on each
port in the network. Consequently, a slice has an amount of
bandwidth allocated to it, given by the rate with which the
packets are transmitted out of each priority queue. The slices
are created through the QoS Config REST API by configuring
the priority queues in the data plane forwarding devices.
Hence, the services offered by the Client application are QoS
slices. Test traffic (TCP flows) is generated within the QoS
slices to illustrate the behavior of this service.

OVSDB provides the functionality for port and queue
configuration in the network devices. The QoS Config module
abstracts this low level functionality, and offers fine granular
services for configuring QoS on various network elements (i.e.
network, nodes, and ports in Figure 4). Further, the client adds
another abstraction layer for the network resources by
implementing constructs that better reflect certain service logic
such as QoS slices (Figure 4).

QoS Config API abstractions
 - Network

 - Node

 - Port

 - Queue

Client application: QoS API abstractions

 - QoS slices

slice 1 slice 2

Fig. 4. Abstractions implemeted by the Client Application on top of the QoS

Config API

The tests have been performed on a distributed testbed,
which is an extension of the Distributed OpenFlow Testbed
(DOT) framework [17]. Figure 5 shows a logical view of the
testbed used herein, which consists of two physical servers:
server 1 and server 2. Server 1 contains two Virtual Machines
(VMs): (1) VM1 runs the Client application, and (2) VM2 runs
the SDNC. A second purpose for the client is to manage the
test lifecycle, define and execute the tests, by coordinating the
traffic generators (Figure 5). Server 2 contains the virtualized
test network comprising the OVS switches (sw1 - sw4), and a
set of VMs (h1 - h3). The VMs that are attached to the switches
contain the traffic generators that are remotely instructed by the
Client application regarding the traffic flow generation.

Client app SDNC

sw1 sw2

sw3sw4

h1 h2

h3

Server 2

VM 2

D-CPI

VM 1

Server 1
Client app.

A-CPI

Test lifecycle

management

Fig. 5. Test setup

Two tests have been performed to demonstrate the QoS
Config API. The first test focuses on demonstrating the

capabilities of the API by managing the bandwidth allocated to
different flows in real time, and the second test focuses on
assessing the performance of the API.

A. Test 1

For the first test, two QoS slices are created by the Client
application using the QoS Config REST API. Slice 1 has been
allocated 7 Mbps bandwidth on all the ports, and Slice 2 has
been given 3 Mbps. As illustrated in Figure 5, two traffic flows
are generated: (1) the green flow (from h1 to h2) is forwarded
within Slice 1, and (2) the blue flow (from h1 to h3) is
forwarded within Slice 2.

Figure 6 shows the measured throughput during the test, for
three of the links in the network. The duration of the test is
approximately 100 seconds. As it can be observed in the
figure, the measured throughput complies with the bandwidth
allocation for the first half of the test. The green flow, routed
within Slice 1 and forwarded on the link sw1 - sw2 (black
curve in Figure 6) has a throughput of approximately 7 Mbps.
Alternatively, the blue flow forwarded over the links sw1 - sw4
and sw4 - sw3, has a throughput of approximately 3 Mbps.

After the first 50 seconds (phase 1), the bandwidth
allocation for the slices is changed such that Slice 1 is reduced
to 2 Mbps and Slice 2 is increased to 5 Mbps. This change is
performed through the QoS Config REST API, by modifying
the characteristics of the rate limiting queues that belong to
Slice 1, which are configured on all the ports in the network.
The change in bandwidth allocation is marked by a short
transition period (Figure 6), which is also influenced by the
latency in the monitoring mechanism. The second phase,
following after the transition period (Figure 6), shows that the
measured throughput continues to comply with the newly
configured bandwidth allocations.

Fig. 6. Results for test 1

The results for the first test confirm that the implemented
QoS Config API offers the possibility for dynamically
controlling the bandwidth allocated to different traffic flows in
the data plane, by using rate limiting queues. Moreover, the
Client application implemented for this test demonstrates the
possib11ility of creating high level abstractions (i.e. QoS
slices) from the APIs exposed by the SDNC.

B. Test 2

The purpose of the second test is to assess the performance
of the operations offered by the QoS Config API with respect

4

to the response time. The methods assessed here are the first
four in Figure 3. The methodology used for the test is to
execute requests through the QoS Config Java API, and
measure the round trip time (RTT) for the requests. The RTT
comprises the processing inside the SDNC (both ways) and the
RTT for the communication with the data plane through
OVSDB. To identify the contribution of the communication
with the data plane, the RTT spent on the OVSDB channel
(including the processing in the switch) is measured also
separately. 500 executions have been performed in order to
have a statistical proof.

The test results, depicted in Figure 7, show that it takes on
average 7 ms to execute one Add, Modify, or Remove request,
whereas a Get request takes approximately 14 ms. For the Get
request there is significantly more data about the queues carried
over the OVSDB channel (thus the RTT is higher on average),
and there is also more processing of this data within the SDNC.
The average RTT for the OVSDB channel for the duration of
the test, for all request types, is 2 ms (Figure 7).

Fig. 7. QoS Config REST API response times (with standard deviation)

The results show that the current performance of the QoS
Config API is good enough to enable dynamic configuration of
QoS in the forwarding devices. For scenarios where the SDNC
installs flow entries in a reactive manner, it is possible to
perform QoS configurations with a small impact on the flow
setup delay. For example, adding a rate limiting queue for a
new flow delays the set up process with only 7 ms.

While the RTT for the OVSDB channel cannot be readily
improved, it is possible to reduce the overall number of
OVSDB requests. This can be achieved by multiplexing
several operations in the same OVSDB message, and it is
especially useful when several queue configurations have to be
performed simultaneously. Overall, the API proposed here
performs better that other reported similar APIs [11].

VI. CONCLUSION

This paper describes the implementation of a fine granular
API for configuring QoS (using rate limiting queues) on OVS
switches, using the OVSDB protocol. Additionally, higher
level network abstractions (with coarser granularity) are
created on top of the fine granular QoS Config API. The QoS
Config API opens the possibility for creating innovative
services that bridge the gap between the high level application
demands and low level capabilities exposed by the controller at
the A-CPI. Such services can be implemented as internal
controller modules using the Java version of the QoS Config
API, or as external entities using the QoS Config REST API.

The SDNC platform presented herein, together with an
OVS-based virtualized network environment, enables
researchers to make use of more advanced QoS features,
beyond the features offered through OF. Moreover, the
OVSDB module can be used for other configuration and
management operations (e.g. tunnel configuration, link
aggregation, etc.).

The test results demonstrate the capabilities, and give an
indication about the performance of the QoS Config API. For
future work, the SDNC will be extended with higher level
abstractions based on the QoS Config API. These will provide
integration with QoS-aware applications such as VoIP clients.

The implemented SDNC platform will be available to the
open source community. The intent is to allow other
researchers and developers to experiment with the QoS features
available in OVS, through the QoS Config API, thus to
contribute to the SDN ecosystem.

REFERENCES

[1] Open Networking Foundation, “SDN Architecture”, issue 1, June 2014.

[2] M. Boucadair, C. Jacquenet, “Software-Defined Networking: A
Perspective from within a Service Provider Environment”, RFC 7149,
March 2014.

[3] Open Networking Foundation, “OpenFlow Switch Specification, version
1.0.0”, 2009.

[4] R. Enns, M. Bjorklund, J. Schoenwaelder, A. Bierman, “Network
Configuration Protocol (NETCONF)”, IETF RFC 6241, June 2011.

[5] B. Pfaff, B. Davie, “The Open vSwitch Database Management
Protocol”, IETF RFC 7047, December 2013.

[6] http://openvswitch.org/, accessed November 2014.

[7] C.Y. Hong, et al., “Achieving High utilization with software-driven
WAN”, Proc. ACM SIGCOMM, Hong Kong, China, pp. 15-26, 2013.

[8] K. Wonho, et al., “Automated and Scalable QoS Control for Network
Convergence”, Internet Network Management conference on Research
on Enterprise Networking, 2010.

[9] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, “PolicyCop: An
autonomic QoS policy enforcement framework for Software Defined
Networks”, IEEE SDN for Future Networks and Services, Trento, Italy,
pp. 1-7, November 2013.

[10] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, S. Krishnamurthi,
“Participatory networking: an API for application control of SDNs”,
ACM SIGCOMM Computer Communication Review, 43, (4), pp. 327-
338, 2013.

[11] D. Palma, et al., “The QueuePusher: Enabling Queue Management in
OpenFlow”, Third European Workshop on Software-Defined Network,
September 2014.

[12] Open Networking Foundation, “OpenFlow Switch Specification, version
1.3.0”, 2012.

[13] http://www.projectfloodlight.org/floodlight/, accessed November 2014.

[14] https://wiki.opendaylight.org/view/OVSDB_Integration:Main, accessed
November 2014.

[15] Open vSwitch manual, http://openvswitch.org/ovs-
vswitchd.conf.db.5.pdf, accessed November 2014.

[16] A.V. Akella, K. Xiong, “Quality of Service (QoS)-Guaranteed Network
Resource Allocation via Software Defined Networking (SDN)”, IEEE
12th International Conference on Dependable, Autonomic and Secure
Computing (DASC), pp. 7-13, August 2014.

[17] A. R. Roy, M. F.l Bari, M. F. Zhani, R. Ahmed, and R. Boutaba,
“Design and management of DOT: A Distributed OpenFlow Testbed”,
IEEE Network Operations and Management Symposium (NOMS), pp.
1-9, May 2014.

5

