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ABSTRACT

Several Network Operating Systems (NOS) have been pro-
posed in the last few years for Software Defined Networks;
however, a few of them are currently offering the resiliency,
scalability and high availability required for production en-
vironments. Open Networking Operating System (ONOS) is
an open source NOS, designed to be reliable and to scale up
to thousands of managed devices. It supports multiple con-
current instances (a cluster of controllers) with distributed
data stores. A tight requirement of ONOS is that all instan-
ces must be close enough to have negligible communication
delays, which means they are typically installed within a sin-
gle datacenter or a LAN network. However in certain wide
area network scenarios, this constraint may limit the speed of
responsiveness of the controller toward network events like
failures or congested links, an important requirement from
the point of view of a Service Provider. This paper presents
ICONA, a tool developed on top of ONOS and designed in
order to extend ONOS capability in network scenarios where
there are stringent requirements in term of control plane re-
sponsiveness. In particular the paper describes the architec-
ture behind ICONA and provides some initial evaluation ob-
tained on a preliminary version of the tool.
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1. INTRODUCTION

Since the beginning of the Software Defined Network-
ing (SDN) revolution, the control plane reliability, scal-
ability and availability were among the major concerns
expressed by Service and Cloud Providers. Existing
deployments show that standard IP/MPLS networks
natively offer fast recovery in case of failures. Their
main limitation lies in the complexity of the distribu-
ted control plane, implemented in the forwarding de-
vices. IP/MPLS networks fall short when it comes to
design and implementation of new services that require
changes to the distributed control protocols and ser-
vice logic. The SDN architecture, that splits data and

control planes, simplifies the introduction of new ser-
vices, moving the intelligence from the physical devices
to a Network Operating System (NOS), also known as
controller, that is in charge of all the forwarding deci-
sions. The NOS is usually considered logically central-
ized since it cannot introduce any single point of failure
in production environments. Several distributed NOS
architectures have been proposed recently to guaran-
tee the proper level of redundancy in the control plane:
ONIX [1], Kandoo [2], HyperFlow [3] to name a few.

One of the most promising solutions to properly deal
with control plane robustness in SDN is ONOS (Open
Networking Operating System) [4]. ONOS offers a sta-
ble implementation of a distributed NOS and it has
been recently released under a liberal open-source li-
cense, supported by a growing community of vendors
and operators. In ONOS architecture, a cluster of con-
trollers shares a logically centralized network view: net-
work resources are partitioned and controlled by dif-
ferent ONOS instances in the cluster and resilience to
faults is guaranteed by design, with automatic traffic
rerouting in case of node or link failure. Despite the
distributed architecture, ONOS is designed in order to
control the data plane from a single location, even in
case of large Wide Area Network scenarios.

However, as envisioned in the work of Heller et al. [5],
even though a single controller may suffice to guarantee
round-trip latencies on the scale of typical mesh restora-
tion target delays (200 msec), this may not be valid for
all possible network topologies. Furthermore, ensuring
an adequate level of fault tolerance can be guaranteed
only if controllers are placed in different locations of the
network.

To this purpose, we designed a geographically distri-
buted multi-cluster solution called ICONA (Inter Clus-
ter ONOS Network Application) which is working on
top of ONOS and whose purpose is to both increase
the robustness to network faults by redounding ONOS
clusters in several locations but also to decrease event-
to-response delays in large scale networks. In the rest of
the paper we will consider a large scale Wide Area Net-
work use-case under the same administrative domain
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(e.g. single service provider), managed by a single logi-
cal control plane. ICONA is a tool that can be deployed
on top of ONOS; a first release is available under the
Apache 2.0 open source license [6].

The structure of the paper is as follows. Sect.
provides an overview of ONOS, while Sect. [3| presents
the ICONA architecture. Some preliminary results are
then discussed in Sect. [l Sect. [l discusses the state-of-
the-art in the field. Finally, Sect. [6] draws conclusions
and indicates future works.

2. AN OVERVIEW OF ONOS

ONOS (Open Network Operating System) is a distri-
buted SDN controller that has been recently released as
open source by ON.Lab as part of a joint community
effort with a number of partners including AT&T, NEC
and Ericsson among the others [7].

ONOS implements a distributed architecture in which
multiple controller instances share multiple distributed
data stores with eventual consistency. The entire data
plane is managed simultaneously by the whole cluster.
However, for each device a single controller acts as a
master, while the others are ready to step in if a fail-
ure occurs. With these mechanisms in place, ONOS
achieves scalability and resiliency. Figure |1| shows the
ONOS internal architecture within a cluster of four in-
stances. The Southbound modules manage the physical
topology, react to network events and program/configure
the devices leveraging on different protocols. The Di-
stributed Core is responsible to maintain the distributed
datastores, to elect the master controller for each net-
work portion and to share information with the adjacent
layers. The NorthBound modules offer an abstraction
of the network and the interface for application to in-
teract and program the NOS. Finally, the Application
layer offers a container in which third-party applications
can be deployed.

In case of a failure in the data plane (switch, link or
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Figure 2: the data plane is
divided in portions interconnected through so-called
inter-cluster links (in red). Each portion is managed by
multiple co-located ONOS and ICONA instances, while
different clusters are deployed in various data centers.

port down), an ONOS instance detects the event (using
the Southbound modules), computes alternative paths
for all the traffic crossing the failed element (operation
in charge of the Intent Framework), and publishes them
on the Distributed Core: then, each master controller
configures accordingly its network portion.

ONOS leverages on Apache Karaf [§], a java OSGi
based runtime, which provides a container onto which
various component can be deployed. Under Karaf, an
application, such as ICONA, can be installed, upgraded,
started and stopped at runtime, without interfering other
components.

3. ICONA ARCHITECTURE

The basic idea behind ICONA is to partition the
Service Provider’s network into several geographical re-
gions, each one managed by a different cluster of ONOS
instances. While the management of the network is still
under the same administrative domain, a peer-to-peer
approach allows a more flexible design. The network
architect can select the number of clusters and their ge-
ographical dimension depending on requirements (e.g.
leveraging on some of the tools being suggested within
the aforementioned work [5]), without loosing any fea-
ture offered by ONOS, neither worsening the system
performances. In this scenario, each ONOS cluster pro-
vides both scalability and resiliency to a small geo-
graphical region, while several clusters use a publish-
subscribe event manager to share topology information,
monitor events and operator’s requests.

The ICONA control plane is geographically distribu-
ted among different data centers, each one controlling



the adjacent portion of the physical network. Figure
shows the aforementioned architecture where each clus-
ter is located in a different data center (e.g. ONOS la
and ONOS 1b are co-located instances). To offer the
same reliability already available in ONOS, the ICONA
application runs on top of each instance. Referring on
Figure [} ICONA is deployed in the Application layer,
and interacts with ONOS using the Northbound - Intent
Framework. Inside each cluster, a master controller is
elected, using a distributed registry. The ICONA mas-
ter is in charge of sharing information and applying de-
cisions, while all the backups are aware of the network
status, and can become master in case of failure.

The communication between different ICONA instan-
ces, both intra and inter-cluster, is currently based on
Hazelcast |9]. Hazelcat offers a multicast event-based
messaging system, inspired by Java Messaging System
(JMS). Applications (e.g. controllers) can publish a
message onto a topic, which will be distributed to all in-
stances of the application that have subscribed to that
topic. Hazelcast does not have a single point of failure
that is not achieved easily by pure JMS solutions. In
ICONA, one Hazelcast channel is devoted to the intra-
cluster communication (e.g. local ONOS cluster) and
another one for the inter-cluster messages. ICONA runs
as bundle in the ONOS Karaf container, taking advan-
tages of all the features mentioned in Sect. [2]

In devising a geographical architecture, covering thou-
sands of square kilometers, a key element is the type
and amount of information that the different segments
of the control plane have to share. Control traffic has
to be minimized and the system has to optimize is per-
formance in terms of:

e offering an up-to-date view of the network, includ-
ing status of the nodes,

e configuring the network devices,

e reacting to failures both in data and control plane
without disrupting customer’s traffic.

Three internal modules implement these features in
ICONA (see Figure: the Topology Manager, the Ser-
vice Manager and the Backup Manager. In the follow-
ing Sections an overview of each of these components is
provided.

3.1 Topology Manager

The Topology Manager (TM) is responsible to dis-
cover the data plane elements, reacts to network events,
stores in a persistent local database the links and de-
vices with the relevant metrics. To offer a partial view
of its network portion, each TM shares with the other
ICONA clusters the following information through the
inter-cluster channel:

o Inter-cluster link (IL): an IL is the physical connec-
tion between two clusters. ICONA implements an
enhanced version of the ONOS discovery mecha-
nism, based on the Link Layer Discovery Protocol
(LLDP). Each IL is shared with all the clusters
tagged by some metrics, such as the link delay,
available bandwidth and number of flows crossing
the link.

e End-point (EP) list: an EP defines the intercon-
nection between the customer’s gateway router and
the ICONA network. Each cluster shares the list
of its EPs and the metrics (bandwidth, delay) be-
tween these EPs and all the clusters ILs.

3.2 Service Manager

All the interaction between the network operators
and the control plane are handled by the Service Man-
ager (SM). This module offers a REST API used to poll
ICONA for network events and alarms, and to manage
(instantiate, modify and delete) the services. In our ini-
tial implementation, we have considered only two ser-
vices: L2 pseudo-wire tunnels and MPLS VPN overlay
networks, which are key services in a Service provider
network. However, the application can be easily ex-
tended to provide other functionalities.

The implemented services require interconnecting two
or multiple EPs that can be controlled by the same
ICONA cluster or by different ones. The SM computes
the overall metrics and chooses the best path between
two EPs. There are two cases:

o If they belong to the same cluster, it directly asks
ONOS to install an OpenFlow 1.3 [10] MPLS-based
flow path in the physical devices.

e If they belong to two different clusters, the SM
follows this procedure:

— It contacts all the involved clusters (e.g. the
ones that are crossed by this service request)
asking to reserve the local portion of the path.

— As soon as all the clusters have replied to the
reservation event (if at least one does has a
negative reply, the SM releases the path and
computes an alternative ones)7 it requests to
switch from the reservation status to the in-
stallation. Each ICONA cluster master then
contacts the local ONOS asking to install the
flow path in the physical devices.

— If the second step is successful too, the SM
ends the procedure, otherwise it asks all the
clusters to release the resources, computes an
alternative route and restarts the procedure.

Finally, the SM updates all the ICONA clusters with
the new installed service and the relevant information.



While this path installation procedure is slower than the
original implemented by ONOS (around three times),
ICONA cannot assume a strong consistency between
the remote databases. In the aforementioned ISP sce-
narios, the amount of time required for a service instal-
lation is not a relevant metric, but the procedure has to
be robust enough to tolerate substantial delays.

3.3 Backup Manager

If a failure happens within the same cluster, ONOS
takes care of rerouting all the paths involved in the fail-
ure. After receiving a PORT_STATUS or LINK_DOWN Open-
Flow message, ONOS detects all the flows crossing the
failed element and computes an alternative path to the
destination. Finally, it installs the new flows in the net-
work and removes the old ones.

If instead the failure happens between two different
clusters (e.g. it involves an IL or one of the two nodes
that sits at the edge of the IL) then the ICONA’s mod-
ule named Backup Manager (BM) will handle the fail-
ure. In particular:

e For each IL, a backup link (BIL) completely de-
coupled from the primary one, is computed and
pre-installed in the data plane. The BIL is a vir-
tual link selected among all the available paths
between the source and destination ICONA clus-
ters, taking into account composite metrics, such
as the delay, available bandwidth and numbers of
flows.

e When the failure happens, all the traffic crossing
the IL is rerouted to the BIL by each ICONA edge
cluster, without the need to wait for remote in-
stances to share any information.

e When the rerouting is completed, the new path is
notified to all the remote clusters, in order to share
the same network status.

The amount of time required for the rerouting is par-
ticularly relevant in an ISP network because it is most
directly related to SLAs guaranteed by network opera-
tors.

4. EVALUATION

The purpose of the experimental tests described in
this section is to compare ICONA with a standard ONOS
setup, and evaluate the performances of the two solu-
tions in an emulated environment.

The control plane is always composed of 8 virtual
machines, each with four Intel Core i7-2600 CPUs @
3.40GHz and 8GB of RAM. While for the ONOS tests
all the instances belong to the same cluster, with ICONA
we have created 2, 4 and 8 clusters, respectively with
4, 2 and 1 instances each. The data plane is emulated
by Mininet [11] and Netem [12]: the former creates and
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Figure 3: Average, maximum and minimum latency to
reroute 100 paths in case of link failure for ONOS and
ICONA (2, 4 and 8 clusters)

manages the OpenFlow 1.3 network, while the latter
emulates the properties of wide area networks, such as
variable delay, throughput and packet loss. Both solu-
tions (ONOS and ICONA) have been tested with both
a regular (grid) topology and with the topology of the
GEANT [13] pan-European network. It is important to
highlight that the current ONOS release (Avocet 1.0.1)
is focusing on functions and correctness, while Black-
bird, to be released in March, will dramatically improve
the internal performance. For these reasons, the results
presented in this section should not be considered as
benchmark.

4.1 Reaction to Network Events

4.1.1 Grid networks

The first performance metric is the overall latency of
the system for updating the network state in response to
events; examples include rerouting traffic in response to
link failure or moving traffic in response to congestion.
To evaluate how the system performs when the forward-
ing plane scales-out, we have selected some standard
grid topologies, with a fixed link delay of 5ms (one-way)
and then we have been comparing the latency needed
to reroute a certain number of installed paths when an
inter-cluster link fails for both ONOS and ICONA with
various clustering settings.

We define as overall latency the amount of time that
both ONOS and ICONA require to react to the failure
as the sum of: i) the amount of time for the OpenFlow
messages (PORT_STATUS and FLOW_MOD) to traverse the
control network, ii) the alternative path computation,
iii) the installation of new flows in the network devices
and iv) the deletion of the pre-existing flows. In par-
ticular, we have been running several simulations by
installing one thousand paths in the network and then
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Figure 4: GEANT pan-European network

by making fail an inter-cluster link with al least one
hundred pseudo-wires running.

Figure [3| shows the latency (avg, min, max) required
for the different solutions to execute the four tasks pre-
viously mentioned. Each test has been repeated 20
times. Despite the same mechanism used by ICONA
to compute and install the new paths, the difference
is mainly due to the following reasons: i) each ICONA
cluster is closer to the devices, thus reducing the amount
of time required for OpenFlow messages to cross the
control channel and ii) the ICONA clusters are smaller,
with fewer links and devices, thus decreasing the com-
putation time and the overall numbers of flows to be
installed and removed from the data plane.

4.1.2 GEANT network

The same metrics have been evaluated on the GEANT
topology (see Figure . Circuits have various one-way

delays (from 10 to 50ms) and throughputs (from 1 to
100Gbps).

Control | Avg la- | Min la- | Max la-
plane tency tency tency

[ms] [ms] [ms]
ONOS 297 284 308
ICONA2 | 272 261 296
ICONA4 | 246 232 257
ICONAS | 221 199 243

Table 1: GEANT network: average, maximum and
minimum latency to reroute 100 paths in case of link
failure for ONOS and ICONA (2, 4 and 8 clusters)

Table [1| depicts similar results as the previous test.
ONOS has been compared with three different ICONA
deployments, with 2, 4 and 8 clusters, respectively with
4, 2 and 1 instances each. While having the same num-

ber of VMs running the control plane software, their
geographical distribution improves the overall perfor-
mance of the system. While the network is smaller
than the 10*10 grid topology, with 41 switches and 58
bi-directional links, the higher delay in the data plane
requires an additional amount of time to reconverge.

4.2 Startup Convergence Interval

This second experiment measures the overall amount
of time required for both solutions to re-converge af-
ter a complete disconnection between the control and
data planes. The tests have been performed over the
GEANT topology, and replicated 20 times. Table
shows the average, maximum and minimum values in
seconds.

Control | Average Minimum | Maximum
plane Time [s] Time [s] Time [s]
ONOS 6,98 6,95 7,06
ICONA 6,96 6,88 7,02

Table 2: Amount of time required to obtain the network
convergence after disconnection for ONOS and ICONA

The result shows that ICONA and ONOS require
comparable time intervals to return to a stable state,
in case of a complete shutdown or a failure of the con-
trol plane.

S. RELATED WORK

The logical centralization of the control plane advo-
cated by the SDN approach requires a specific design in
terms of control network performance, scalability and
fault tolerance. Most of the open source controllers cur-
rently available are focused on functionalities more than
on scalability and fault tolerance. This section provides
a review about distributed architectures for the SDN
control plane, that address the scalability and fault tol-
erance issues. ONIX [1] provides an environment on top
of which a distributed NOS can be implemented with a
logically centralized view. The distributed Network In-
formation Base (NIB) stores the state of network in the
form of a graph; the platform is responsible for manag-
ing the replication and distribution of the NIB, the ap-
plications have to detect and resolve conflicts of network
state. Scalability is provided through network parti-
tioning and aggregation. Regarding the fault tolerance,
the platform provides the basic functions, while the con-
trol logic implemented on top of ONIX needs to handle
the failures. ONIX has been used in the B4 network, the
private WAN [14] that inter-connects Google’s data cen-
ters around the world. This high level design is similar
in our ICONA solution, but ICONA is not tailored to a
specific use case, providing a reusable framework on top
of which it is possible to build specific applications. The



Kandoo [2] architecture addresses the scalability issue
by creating an architecture with multiple controllers:
the so-called root controller is logically centralized and
maintains the global network state; the bottom layer is
composed of local controllers in charge of managing a
restricted number of switches. The Kandoo architec-
ture does not focus on the distribution/replication of
the root controller and on fault tolerance neither in the
data plane nor in the control plane. HyperFlow [3] fo-
cuses on both scalability and fault tolerance. Each Hy-
perFlow instance manages a group of devices without
losing the centralized network view. A control plane
failure is managed by redirecting the switches to an-
other HyperFlow instance. The applicability of such
approach to WAN scenarios with large delays between
the different HyperFlow instances is not considered.
DISCO |15 architecture considers a multi-domain en-
vironment. This approach is specifically designed to
control a WAN environment, composed of different ge-
ographical controllers that exchange summary informa-
tion about the local network topology and events. This
solution overcomes the HyperFlow limitations, however
it does not provide local redundancy: in the case of
a controller failure, a remote instance takes control of
the switches, increasing the latency between the de-
vices and their primary controller. ElastiCon [16] and
Pratyaastha [17] aim to provide an elastic and efficient
distributed SDN control plane to address the load im-
balances due to static mapping between switches and
controllers and spatial/temporal variations in the traf-
fic patterns. SMaRtLight [18] considers a distributed
SDN controller aiming at a fault-tolerant control plane.
It only focuses on control plane failures, assuming that
data plane failures are dealt with by SDN applications
on top of the control platform. The Beacon cluster
[19] project also targets the datacenter scenario, with
a general framework focusing on load balancing (with
addition and removal of controllers), dynamic switch-
to-controller mapping and instance coordination. In
OpenDaylight [20], an initial work on clustering has
been provided in the last release of the project (He-
lium) using the Akka framework [21] and the RAFT
consensus algorithm [22].

6. CONCLUSIONS

In this paper we have presented ICONA (Inter Clus-
ter ONOS Network Application), a tool built on top of
ONOS distributed controller [4] whose aim is to enable
clustering of ONOS instances across different locations
on a Wide Area Network. In fact, while current ONOS
release may scale and perform well on a variety of net-
work topologies, it may not suffice for all, especially
when there are latency bounds in restoration scenarios.
ICONA is based on a pragmatic approach that inher-
its ONOS features while improving its responsiveness to

network events like link /node failures or congested links
that impose the rerouting of large set of traffic flows.

A preliminary release of ICONA is available under
permissive open source license and we are collaborat-
ing with ON.Lab to evaluate the opportunity to include
some of the ideas developed therein as part of the official
release of ONOS. Future improvements of ICONA will
focus on solutions to improve the path installation pro-
cedure and on combining clustering design techniques
with ICONA deployment in order to guarantee the best
tradeoff between performances and replication of clus-
ters in different network locations.
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