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Abstract—When dealing with node or link failures in Software
Defined Networking (SDN), the network capability to establish
an alternative path depends on controller reachability and on
the round trip times (RTTs) between controller and involved
switches. Moreover, current SDN data plane abstractions for
failure detection (e.g. OpenFlow “Fast-failover”) do not allow
programmers to tweak switches’ detection mechanism, thus
leaving SDN operators still relying on proprietary management
interfaces (when available) to achieve guaranteed detection and
recovery delays. We propose SPIDER, an OpenFlow-like pipeline
design that provides i) a detection mechanism based on switches’
periodic link probing and ii) fast reroute of traffic flows even
in case of distant failures, regardless of controller availability.
SPIDER can be implemented using stateful data plane ab-
stractions such as OpenState or Open vSwitch, and it offers
guaranteed short (i.e. ms) failure detection and recovery delays,
with a configurable trade off between overhead and failover
responsiveness. We present here the SPIDER pipeline design,
behavioral model, and analysis on flow tables’ memory impact.
We also implemented and experimentally validated SPIDER
using OpenState (an OpenFlow 1.3 extension for stateful packet
processing), showing numerical results on its performance in
terms of recovery latency and packet losses.

I. INTRODUCTION

The longly anticipated paradigm shift of Software Defined
Networking (SDN) is radically transforming the network
architecture [1]. SDN technologies provide programmable
data planes that can be configured from a remote controller
platform. This control and data planes separation creates
new opportunities to implement much more efficient traffic
engineering policies than classical distributed protocols, since
the (logically) centralized controller can take decisions on
routing optimization exploiting a global view of the network
and a flow level programmatic interface at data plane. Fault
resilience mechanisms are among the most crucial traffic
engineering instruments in operator networks since they insure
quick reaction to connectivity failures with traffic rerouting.

So far, traffic engineering applications for SDN, and fail-
ure recovery solutions in particular, have received relatively
little attention from the research community and networking
industry which has focused mainly on other important areas
related to security, load balancing, network slicing and service
chaining. Not surprisingly, while SDN is becoming widely
used in data centers where these applications are crucial,
its adoption in operator networks is still rather limited. The
support in current SDN implementations of features for failure
recovery is currently rather weak and traditional technologies,

like e.g. Multi-Protocol Label Switching (MPLS) Fast Reroute,
are commonly considered for carrier networks more reliable.

The main reason for this gap in SDN solutions is that
some traffic engineering applications, such as failure recovery,
challenge the limits of the data plane abstraction that is the
key element of any SDN architecture. OpenFlow is largely the
most adopted abstraction for the data plane with its match-
action rules in flow tables [2]. Current OpenFlow abstraction
presents some fundamental drawbacks that can prevent an
efficient and performing implementation of traffic rerouting
schemes. As a matter of fact, in OpenFlow adaptation and
reconfiguration of forwarding rules (i.e. entries in the flow
tables) in the data plane pipeline can only be performed by
the remote controller, posing limitations on the granularity of
the desired monitoring and traffic control due to the overhead
and latency required.

We believe that failure detection and reaction can be better
handled locally in the switches assuming different sets of
forwarding rules that can be applied according to the observed
network state. This can be done retaining the logically central-
ized approach of SDN to programmability if we fully expose to
application developers in the network controller both the state
detection mechanism (i.e. link/node availabilities) and the sets
of rules for the different states. The extension of the Open-
Flow abstraction to stateful data planes has recently attracted
the interest of the SDN research community: OpenState [3]
(proposed by some of the authors), FAST [4], and the “learn”
action of Open vSwitch [5] are the main examples.

In this paper we propose SPIDER1, a fault resilient SDN
pipeline design that allows the implementation of failure
recovery policies with fully programmable detection and reac-
tion mechanisms in the switches. SPIDER is based on stateful
data planes and it provides guaranteed short failure detection
and recovery delays, with a configurable trade off between
overhead and failover responsiveness. We present a prototype
implementation of SPIDER based on OpenState prototype
switch and controller [6], and its performance evaluation on
some example network topologies.

The paper is organized as follows. In Section II we discuss
related work, while in Section III we review the characteristics
of stateful data planes for SDN. In Section IV we introduce
SPIDER approach and in Section V we outline its pipeline

1Stateful Programmable faIlure DEtection and Recovery
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design and prototype implementation. Section VI provides
experimental results, while Section VII concludes the paper
with our final remarks.

II. RELATED WORK

The concern of quickly recovering from failures in SDN
has been already explored by the research community with
the general goal of making SDN more reliable by reducing
the need of switches to rely on the external controller to
establish an alternative path. Sharma et al. in [7] shows how
hard it is to obtain carrier grade recovery times (<50ms)
when relying on a controller-based restoration approach in
large OpenFlow networks. To overcome to such an issue, the
authors propose also a proactive protection scheme based on
a BFD daemon running in the switch and integrated with the
OpenFlow Fast-failover group type, obtaining recovery times
within 50ms. Similarly, Van Adrichem et al. shows in [8] how
by carefully configuring the BFD process already compiled
in Open vSwitch, it is possible to obtain recovery times of
few ms. The case of protection switching is also explored by
Kempf et al. in [9], here the authors propose an end-to-end
protection scheme based on an extended version of OpenFlow
1.1 to implement a specialized monitoring function to reduce
processing load at the controller. Sgambelluri et al. proposed
in [10] a segment-protection approach based on pre-installed
backup paths. Also in this case, OpenFlow is extended in
order to enable switches to locally react to failures by auto-
rejecting flow entries of the failed interface. The concern of
reducing load at the controller is also addressed by Lee at al. in
[11]. A controller-based monitoring scheme and optimization
model is proposed in order to reduce the number of monitoring
iterations that the controller must perform to check all links. A
completely different and more theoretical approach based on
graph search algorithms is proposed by Borokhovich et al. in
[12]. In this case the backup paths are not known in advance,
but a solution based on the OpenFlow fast-failover scheme
is proposed along an algorithm to randomly try new ports to
reach traffic demands’ destination.

Our work extends an earlier paper [13] were we first
describe an OpenState-based behavioral model to perform fast
reroute. In addition to that, we describe here for the first
time a solution to provide programmable failure detection,
including results on flow entries analysis, packet loss and
heartbeat overhead. Finally, to the best of our knowledge,
we are unaware of other prior work towards the use of
programmable stateful data plane abstractions to implement
both failure detection and recovery schemes.

III. STATEFUL DATA PLANES

OpenFlow describes a stateless data plane abstraction for
packet forwarding. Network states are maintained only at the
controller, which in turn, based on a reactive approach, updates
the flow table as a consequence of events such as the arrival
of new flows, topology changes, or monitoring-based events
triggered by the periodic polling of flow table statistics. We
argue that improved scalability and responsiveness of network
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Fig. 1. Architecture of a stage of the OpenState pipeline.

applications could be offered by adopting a stateful proactive
abstraction, where switches are pre-provisioned with different
sets of forwarding behaviors (i.e. flow entries), dynamically
activated/deactived as a consequence of packet-level events
and timers, and based on states maintained by the swich
itself. OpenState [3], FAST [4] and OVS [5] are example of
such an abstraction supporting stateful forwarding. OpenState
and FAST offers an explicit support to programming data
plane state machines by defining dedicated structures such
as state tables and primitives for state transition. OVS in
turn, provides implicit support to stateful forwarding thanks
to a special “learn” action (not currently supported in the
OpenFlow specification) that allows the creation at run-time
of new flow entries as a consequence of a packets matching
existing ones.

We choose to base our design and implementation on
OpenState for two reasons. First because, in our belief,
OpenState offers a simple stateful forwarding abstraction that
better serves the purpose of describing the behavioral model
implemented by SPIDER in the form of Finite State Machines
(FSMs). Indeed, while OVS’s “learn” action could be used
in principle to equivalently compile SPIDER features at data
plane, it would require a less trivial effort in describing its
design. Regarding FAST, although it provides a very similar
abstraction to OpenState, unfortunately, as of today there is no
publicly available implementation that we can use to imple-
ment and test SPIDER. Our second reason is that SPIDER
is built on the assumption that updates of the forwarding
state are possible at wire-speed, directly handled on the fast
data path. The OpenState abstraction is also based on this
assumption and its hardware experimental proof on a TCAM-
based architecture was already addressed in [14].

Before proceeding with the introduction of SPIDER, we
consider it necessary to briefly summarize OpenState features,
which are essential to define SPIDER in the rest of the paper2.
Figure 1 depicts the different elements of the OpenState
pipeline. The legacy OpenFlow’s flow table is preceded by
a state table used to store “flow states”. Each time a new
packet is processed by the flow table, it is first matched against
the state table. The matching is performed exactly (i.e. non-
wildcard) on a flow key obtained using the fields defined
by a “lookup-scope” (i.e. a list of OpenFlow’s header fields
identifier). The state table returns a “default” state if no state
entry is matched by a given flow key, otherwise a different

2The features presented here are based on the most updated version of the
OpenState v1.0 specification available at [6].



state is returned. The packet is then processed by the flow
table, here flow entries can be defined to match on the state
value returned by the state table. Moreover, a new “set-state”
action is defined to insert/update entries in any state table of
the pipeline. During a set-state action the state table is updated
using a flow key optionally different from the one used in the
lookup phase and defined by the “update-scope” (necessary
when dealing with bidirectional flows). Finally, idle and hard
state timeouts can be defined and are equivalent to those used
in OpenFlow flow entries. A “rollback state” is associated
to each timeout, and its value is used to update the state
entry after the timeout expiration. Idle timeouts expires after a
given entry is not matched by any packet for a given interval,
while hard timeouts are expired counting from the instant the
state entry has been inserted/updated. After configuring the
lookup-scope, update-scope and the flow table, the state table
is initially empty. It is then filled and updated based on the
set-state actions defined in the flow table and executed as a
consequence of packets matching flow entries in the flow table.

IV. APPROACH SKETCH

The features implemented by SPIDER are inspired by
existing legacy protocols such as Bidirectional Forwarding
Detection (BFD) [15] and MPLS Fast Reroute [16]. In this
sense, SPIDER provides mechanisms to perform failure detec-
tion and instant rerouting of traffic demands without requiring
the controller intervention. The controller interaction is needed
only at boot time to provision switches’ state tables and to
fill flow tables with the different forwarding behaviors. No
distributed protocols are required, instead the different for-
warding behaviors are handled at data plane level by labeling
packets with special tags and by using the stateful primitives
introduced before.

Backup path pre-planning. SPIDER does not distinguish
between node or link failures, instead we define with Fi a
particular failure state of the network for which node i is
unreachable. Given another node j, we refer to the case of
a “local” failure, when j is directly connected (1 hop) to i,
while we refer to a “remote” failure when node i is not directly
connected to j. In our design the controller must be provided
with the topology of the network and a set of primary paths
and backup paths for each demand. Backup paths must be
provided for each possible Fi affecting the primary path of
a given demand. A backup path for state Fi can share some
of the primary path, but it is required to offer a detour (w.r.t
primary path) around node i. In other words, even in the case
of a link failure making i unreachable from j, and even other
links to j might exist, we require that backup paths for Fi
cannot use any of the links belonging to i. The reason of such a
requirement is that, to guarantee very short (< 10ms) failover
delays, a characterization (link or node) of the failure is not
possible without the active involvement of the controller or
other type of slow signaling. For this reason SPIDER assumes
always the worst case where node i is down, hence it should
be completely avoided. An example of problem formulation
that can be used to compute an optimal set of such backup

paths has been presented in [17]. Finally, if all backup paths
are provided, SPIDER guarantees instantaneous protection
from every single-failure Fi scenario, without requiring the
controller to compute an alternative routing or to update flow
tables. However, the unfortunate case of a second or multiple
failures happening sequentially can be supported through the
reactive intervention of the controller.

Failure detection. SPIDER uses tags (carried in a MPLS
label) to distinguish between different forwarding behaviors
and to perform failure detection and switch-to-switch failure
signaling. Figure 2 depicts the different forwarding scenarios
supported by SPIDER. When in normal conditions (i.e. no
failures), packets entering the network are labeled with tag=0
and routed through their primary path (Fig. 2a). To detect
failures, SPIDER doesn’t rely on any switch-dependent feature
such OpenFlow’s Fast-failover, instead it provides a simple
detection scheme based on the exchange of bidirectional
“heartbeat” packets. We assume that as long as packet are
received from a given port, that port can be also used to
reliably transmit other packets. When no packets are received
for a given interval, a node can request its neighbor to send an
heartbeat. As shown in Fig. 2d, heartbeat can be requested by
labeling any data packet with tag=HB_req. A node receiving
such a packet will perform 2 operations: i) set back tag=0 and
transmit the packet towards the next hop and ii) create a copy
with tag=HB_reply and send it back on the same input. In
this way the node that requested the heartbeat will know that
its neighbor is still reachable. Heartbeat are requested only
when the received packet rate drops below a given threshold.
If no packets (either data or heartbeat) are received for more
than a given timeout, the port is declared DOWN. The state of
the port will be set back to UP as soon as packets will be
received again on that port.

Fast reroute. When a port is declared DOWN, meaning a
local failure situation towards a neighbor node i, incoming
packets are labeled with tag=Fi and sent to an alternative
port (Fig. 2b), this could be a secondary port belonging
to a detour or the same input port where the packet was
received. In the last case we refer to a “bounced” packet.
Bounced packets are used by SPIDER to signal a remote
failure situation. Indeed, they are forwarded back along their
primary path until they reach a node able to forward them
along a detour. In Fig. 2c, when node 2 receives a bounced
packet with tag=F4, it updates the state of that demand to
F4 and forwards the packet along a detour. Given the stateful
nature of SPIDER, state F4 is maintained by node 2, meaning
that all future packets of that demand with tag=0, will be
labeled with tag=F4 and transmitted directly on the detour.
In the example, we refer to node 2 as the “reroute” node of
a given demand in state F4, while the portion of the path
comprised between the node that detected the failure and the
reroute node is called the “bounce path”.

Path probing. Failures are temporary, for this reason SPI-
DER provides also a probe mechanism to establish the original
forwarding as soon as the failure is resolved. When in state Fi
the reroute nodes periodically generates probe packets to check
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Fig. 2. Example of the different forwarding behaviors implemented by SPIDER.

the reachability of node i. As for heartbeat packets, probe
packets are not forged by switches or the controller, instead,
they are generated simply duplicating and labeling the same
data packets processed by a reroute node. In Fig. 2e, node 2
duplicates a tag=0 packet. One copy is sent on the detour
with tag=F4, while the other is labeled with tag=Pi and
sent on the original primary path. If node i becomes reachable
again, it will bounce the probe packet towards the reroute node.
The reception of a probe packet Pi from a node with a demand
in state Fi will cause a state transition that will re-enable the
normal forwarding on the primary path.

Flowlet-aware failover. SPIDER also addresses the issue of
packet reordering that might occur during the remote failover.
Indeed, in the example of Fig. 2c, while new tag=0 packets
arrive at the reroute node, one or more (older) packets may be
traveling backward on the bounce path. Such a situation might
cause packets to be delivered out-of-order at the receiver,
with the consequence of unnecessary throughput degradation
for transport layer protocols such as TCP. For this reason
SPIDER implements the “Flowlet-aware” forwarding scheme
first introduced in [18]. While SPIDER is already aware of
the failure, the same forwarding decision is maintained for
packets belonging to the same burst; in other words, packets
are still forwarded (and bounced) on the primary path until
a given idle timeout (i.e. interval between bursts) is expired.
Such a timeout can be evaluated by the controller at boot time
and should be set as the maximum RTT measured over the
bounce path of a given reroute node for state Fi. Effectively
waiting for such an amount of time before enabling the detour,
maximizes the probability that no more packets are traveling
back on the bounce path, thus minimizing the risk of mis-
ordered packet at the receiver.

V. IMPLEMENTATION

In this following section we present the architecture of the
pipeline and the configuration of the flow tables necessary
to implement SPIDER. The pipeline (Fig. 3) is based on 4
different flow tables. An incoming packet is first processed
by table 0 and 1. These two blocks perform only stateless
forwarding (i.e. legacy OpenFlow), which features will be

Packets
State updates

Legend:

Table 0 Table 1 Table 2
RF FSM

Table 3
LF FSM Output port(s)

Fig. 3. SPIDER pipeline architecture.

described later. The packet is then processed by stateful tables
2 and 3. These tables implements respectively the Remote
Failover (RF) FSM, and the Local failover (LF) FSM described
later. Packets are always processed by table 2 which is
responsible for rerouting packets when the primary path of
a given demand is affected by a remote failure. If no remote
failure has been signaled to table 2, packets are submitted to
table 3 which handles the failover in the case of local failures
(i.e. directly seen by local ports). State updates in table 2 are
triggered by bounced packets, while table 3 implements the
heartbeat-based detection mechanisms introduced in Section
IV. Although table 1 is stateless and for this reason doesn’t
need to maintain any state, it is responsible for triggering state
updates on tables 2 and 3.

Table 0. It performs the following stateless processing
before submitting packets to table 1:

• For packets received from an edge port (i.e. directly
connected to a host): push an initial MPLS label to store
the tag.

• For packets received from a transport port (i.e. connected
to another switch): write the input port in the metadata
field (used later to trigger state updates from table 1).

Table 1. It handles the processing of those packets which
requires only stateless forwarding, i.e. which forwarding be-
havior doesn’t depend on states:

• Data packets received at a edge port: set tag=0, then
submit it to the next table.

• Data packets received at the last node of the primary
path: pop the MPLS label, then directly transmitted on
the corresponding output port (where the destination host
is located).
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• Packets with tag=Fi: directly transmitted on the detour
port (unique for each demand and value of Fi); set
tag=0 on the last node of the detour before re-entering
the primary path. An exception is made for the reroute
node of demand in state Fi, in this case the routing
decision for these packets is stored in table 2.

• Heartbeat requests (tag=HB_req): packets are dupli-
cated, one copy is set with tag=HB_reply and trans-
mitted through the input port, the other is set with tag=0
and then submitted to the next table.

• Heartbeat replies (tag=HB_reply): dropped (used only
to update the state on table 3).

• Probe packets (tag=Pi): directly transmitted on the
corresponding output port belonging to the probe path
(i.e. the primary path, unique for each demand and value
of Pi) (e.g. Fig. 2e).

Finally, table 1 performs the following state updates on table
2 and 3:

• For all packets: a state update is performed on table 3 so
to declare the port on which the packet has been received
as UP.

• Only for probe packets: a state update is performed on
table 2 to transition a flow state from Fi to Normal.

Table 2 (Remote Failover FSM). Figure 4 shows a sim-
plified version of the FSM. A state is maintained for each
different traffic demand served by the switch. As outlined
by the lookup and update scopes, in this case the origin-
destination demands are identified by the tuple of Ethernet
source and destination address, a programmer might specify
different aggregation fields to describe the demands (e.g. IP
source/destination tuple, or the 4-tuple transport layer pro-
tocol). Given the support for only single-failure scenarios,
transitions between macro states Fi are not allowed (state
must be set to Normal before transitioning to another state
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Fig. 6. Mealy machine implemented by the LF table

Fi). Figure 5 depicts a detailed version of the Remote Failover
FSM with macro state Fi exploded. At boot time the state
of each demand is set to the default value Normal. Upon
reception of a bounced packet with tag=Fi, the latter is
forwarded on the detour and state set to Fault signaled.
The flowlet-aware routing scheme presented before, is here im-
plemented by means of state timeouts. When in state Fault
signaled, packets arriving with tag=0 (i.e. from the source
node) are still forwarded on the primary path.This behavior is
maintained until the expiration of the idle timeout δ1, i.e. after
no packets of that demand have been received for a δ1 interval,
which should be set equal to the RTT measured on the bounce
path3.To avoid a situation where the demand remains locked
in state Fault signaled, an hard timeout δ2 > δ1 is set so
that the next state Detour ready is always reached after at
most a δ2 interval. When in state Detour enabled, packets
are set with tag=Fi and transmitted directly on the detour. In
this state an hard timeout δ5 assures the periodic transmission
of probe packets on the primary path. The first packet matched
when in state Need probe is duplicated: one copy is sent
on the detour towards its destination, another copy is set with
tag=Pi and sent to node i through the original primary path
of the demand. If node i becomes reachable again, it responds
to the probe by bouncing the packet (tag=Pi is maintained)
to the reroute node that originated it. The match of the probe
packet at table 1 of the reroute node will trigger a reset of
the Remote Failure FSM to state Fault resolved. When
in state Fault resolved, the same flowlet-aware routing
scheme of state Fault signaled is applied. In this case an
idle and hard timeout are set in order to maintain the current
routing (on the detour) until the end of the transmission of
the current burst of packets. In this case δ3 must be set to the
maximum delay difference between the primary and backup
path. After the expiration of δ3 or δ4, the state is set back
to Normal, hence the transmission on the detour stops and
packets are submitted to table 3 to be forwarded on their
primary port.

3Such a feature requires the support for very short timeouts. OpenState
v1.0 currently define state timeouts with microseconds resolution.



Table 3 (Local Failover FSM). Figure 6 depicts the FSM
implemented by this table. Here flows are aggregated per
output port (encoded in the metadata field), meaning that all
packets destined to the same port will share the state. This
FSM has two macro states, namely UP and DOWN. When
in state DOWN, packets are forwarded to an alternative port
(detour or input port in case of bounced packets, according to
the pre-planned backup strategy). At boot time all flows are
optimistically set in default state UP: need heartbeat,
meaning that an heartbeat packet must be generated and a
reply received, so that the port keeps being declared UP.
Indeed, the first packet matched in this state will be sent with
tag=HB_req and the state updated to UP: heartbeat
requested. While in this state, packets will be transmitted
on the primary output port, until an hard timeout δ7 expires,
in which case the port will be declared DOWN. The timeout
δ7 represents the maximum interval admitted between the
generation of the heartbeat request and the reception of the
corresponding reply. Every time a packet (either a data, probe
or heartbeat) is received at table 1 the state of that port is reset
to UP: wait. The Local Failover FSM will stay in this state
for an interval δ6 (hard timeout), after which the state will be
set back to UP: need heartbeat. Hence, δ6 represents
the inverse of the minimum received packet rate required for a
given port to avoid the generation of heartbeats. If the timeout
δ7 expires, the port is declared DOWN. Here, packets will be
tagged with Fi (where i represents the failed node directly
connected to the port) and forwarded on an alternative port.
Similarly to the Remote Failover FSM, an hard timeout δ5
assures that probe packets will be generated even when the
port is declared DOWN.

In conclusion, Table I summarizes the different timeouts
used in the SPIDER pipeline. We emphasize how, by tweaking
these values, a programmer can explicitly control and impose
i) a precise detection delay for a given port (δ6 + δ7), ii) the
level of traffic overhead caused by probe packets of a given
demand (δ5 and δ6), the risk of packets reordering in the case
of a remote failover (δ1, δ2, δ3, and δ4). Experimental results
based on these parameters are presented in the following
section.

Experimental implementation

SPIDER has been implemented using a modified version of
the OpenFlow Ryu controller [19] extended in order to support
OpenState [6]. SPIDER source code is available at [20]. For
the experimental performance evaluation we used an emulated
testbed based on Mininet [21] using a version of the CPqD
OpenFlow 1.3 softswitch [22] as well extended with OpenState
support [6].

VI. PERFORMANCE EVALUATION

A. Flow entries analysis

We start the analysis of SPIDER evaluating the resources
required by a switch to implement the presented pipeline
architecture in terms of flow table entries and memory required
for states. We start by defining as D the maximum number

of demands served by a switch, F the maximum number of
failures that can affect a demand (i.e. length of the longest
primary path), and P the maximum number of ports of a
switch. We can easily model the number of flow entries
required by means of Big-O notation as O(D×F ). Indeed, for
table 0 the number of entries is equal to P ; for table 1 in the
worst case we have one entry per demand per fault (D × F );
for table 2 we always have exactly 7×D × F , and for table
3 exactly P × (3 + 2 × D). In total, we have a number of
entries order of P +D × F +D × F +D × P and then of
D × F + D × P . Assuming F >> P we can conclude that
the number of entries is O(D × F ).

If we want to evaluate the complexity according to network
size, we can observe that in the worst case F = N = E +C,
where N is the number of nodes, E the number of edge nodes
and C the number of core nodes. Assuming a path protection
scheme, which is the most demanding in terms of rules since
all the Fi states are managed by the ingress edge nodes, and a
full traffic matrix, we have D = E(E−1) ≈ E2. In the worst
case we have a single node managing all faults of all demands,
where the primary path of each demand is the longest possible,
thus F = N . In this case the number of entries will be O(E2×
N).

In Table II we report the values for grid networks n × n
where edge nodes are the outer ones of the grid and there
is a traffic demand for each pair of edge nodes. In addition
to the O(E2 ×N) values, we include in the table the values
per node (min, max, average) calculated for the case of end
to end protection where the primary path is the shortest one
(number of hops) and the backup path is the shortest node
disjoint from the primary. The number of rules is generated
according to the SPIDER implementation described in Section
V and available at [20]. We can observe that even the max
value is always much smaller than the values estimated by the
complexity analysis. Obviously, for more efficient protection
schemes based on a distributed handling of states Fi (e.g.
segment protection), we expect an even lower number of rules
per node.

As far as the state table is concerned, table 2 for node n
needs Dn entries, where Dn is the number of demands for
which n is a reroute node. For the width of the table we need
to consider the total number of possible states that is 1+4Fn,
where Fn is the number of remote failures managed by n.
Similarly, for stage 3 we have only 5 possible states and a
number of entries equal to P .

B. Detection mechanism

To evaluate the effectiveness of the SPIDER heartbeat-
based detection mechanism, we have considered a simple
experimental scenario of two nodes and a link with traffic
of 1000 pkt/sec sent in one direction only. In Fig. 7 we
show the number of packets lost after a link failure versus δ6
(heartbeat interval) and δ7 (heartbeat timeout). As expected,
the number of losses decreases as the heartbeat interval and
timeout decreases. In general, the number of dropped packets
depends on the precise instant the failure occurs w.r.t. δ6 and



TABLE I
SUMMARY OF THE CONFIGURABLE TIMEOUTS OF THE SPIDER PIPELINE

Timeout Type Description Value

δ1 Idle Flowlet idle timeout before switching packets from the
primary path to the detour

Maximum RTT measured on the bounce path for a specific demand and Fi

δ2 Hard Maximum interval admitted for the previous case before
enabling the detour

> δ1

δ3 Idle Flowlet idle timeout before switching packets from the
detour to the primary path

Maximum end-to-end delay difference between the backup path and the
primary path

δ4 Hard Maximum interval admitted for the previous case before
re-enabling the primary path

> δ3

δ5 Hard Probe generation timeout Arbitrary interval between each periodic check of the primary path in case
of remote failure

δ6 Hard Heartbeat requests generation timeout Inverse of the minimum rx rate for a given port before the generation of
heartbeat requests and the corresponding replies

δ7 Hard Heartbeat reply timeout before the port is declared down Maximum RTT for heartbeat requests/replies between two specific nodes
(1 hop)

TABLE II
NUMBER OF FLOW ENTRIES PER NODE.

Net D E C min avg max E2 ×N

5x5 240 16 9 402 727 934 6400
6x6 380 20 16 497 1046 1490 14400
7x7 552 24 25 720 1578 2280 28224
8x8 756 28 36 998 2117 3523 50176
9x9 992 32 49 1273 2744 4318 82944
10x10 1260 36 64 1121 3421 5708 129600
11x11 1560 40 81 1359 4061 7213 193600
12x12 1892 44 100 1127 4915 9106 278784
13x13 2256 48 121 1989 5977 10486 389376
14x14 2652 52 144 1404 6892 14536 529984
15x15 3080 56 169 3576 8171 15522 705600
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Fig. 7. Packet loss (data rate 1000 pkt/sec)

δ7. The curves reported are obtained averaging the results of
10 different tries with failures reproduced at random instants.

C. Overhead

Obviously, the price to pay for a small number of losses
is the overhead due to heartbeat packets. However, SPIDER
exploits the traffic in the reverse direction for failure detection,
and this reduces the amount of heartbeat packets. For the
same two nodes scenario in the previous section, we have
evaluated the overhead caused when generating a decreasing
traffic profile of 200 to 0 pkt/sec, with different values of δ6.
Results are reported in Fig. 8.
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Fig. 8. Heartbeat overhead with decreasing data traffic 200-0 pkt/sec and
heartbeat request rates (inverse of δ6) of 70, and 100 pkt/sec.

We can see that, as long as the reverse traffic rate is higher
than the heartbeat request rate (1/δ6), zero or low signaling
overhead is observed. When the traffic rate decreases, the
overhead due to heartbeats tends to compensate for the missing
feedback packets up to the threshold. However, this overhead
does not really affect the network performance since it is
generated only when reverse traffic is low.

D. Comparison with OpenFlow

We now compare a SPIDER based solution with a strawman
implementation corresponding to a reactive OpenFlow (OF)
application able to modify the flow entries only when the
failure is detected and notified to the controller. We have
considered the network shown in Fig. 9a. For the primary
and backup paths, as well as the link failure indicated in the
figure, we have considered an increasing number of demands
with a fixed packet rate of 100 pkt/sec each one. For the OF
case, we used the detection mechanism of the Fast-failover
(FF) group type implemented by the CPqD softswitch, and
different RTTs between the switch that detects the failure and
the controller. For SPIDER we used a heartbeat interval (δ6) of
2 ms and timeout (δ7) of 1 ms. For all the considered flows,
no local backup path is available: in the SPIDER case the
network is able to autonomously recover from the failure by
bouncing packets on the primary path, while in the OF case
the controller intervention is needed to restore connectivity.
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Fig. 9. Comparison with OpenFlow: (a) test topology used in experiments
and (b) packet loss

The results obtained are shown in Fig. 9b. We can see that
the losses in the case of SPIDER are always lower than OF.
Note that, even if the heartbeat interval used is small, this is
not actually an issue for the network since in the presence of
reverse traffic the overhead is proportionally reduced so that
it never affects the link available capacity. The value of the
timeout actually depends on the maximum delay for heartbeat
replies to be delivered, which in networks with high speed
links mainly depends on propagation and can be set to low
values by assigning maximum priority to heartbeat replies.
In the case of OF, the number of losses increases as the RTT
between switch and controller increases. Obviously, losses also
increase with the number of demands since the total number
of packets received before the controller installs the new rules
increases as well.

VII. CONCLUSION

In this paper we have presented SPIDER, a new approach to
failure recovery in SDN that provides a fully programmable
abstraction to application developer for the definition of the
re-routing policies and for the management of the failure
detection mechanism. The use of recently proposed stateful
data planes, allows to execute the programmed failure reaction
behaviors directly in the switches, minimizing the recovery
delay and guaranteeing the failover even when the controller is
not reachable. We believe that the proposed approach can close
one of the gaps between the required and supported features
that at the moment are slowing down the adoption of SDN in
carrier grade networks for telco operators.

SPIDER has been implemented using OpenState. The proto-
type implementation (code is made available at [20]) has been
used to validate the proposed scheme and to experimentally
assess its basic performance in a few example scenarios. The
results have shown the potential advantages of SPIDER with
respect to fully centralized applications where the controller is
notified of failure events and is required to modify all affected
forwarding rules.
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