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Abstract

In today's network, network operator uses di�erent middleboxes to achieve performance and security

challenges in the network. Some of the commonly used examples are NAT to solve IPv4 address

depletion and �rewall to deal the security attacks. These middleboxes comes with new challenges.

Service chaining is one of the challenges, where a sequence of middleboxes apply their service to

particular tra�c. Due to the lack of available protocols to route tra�c through middleboxes, oper-

ators still rely on error-prone and complex low-level con�gurations to steer the tra�c through the

desired sequence of middleboxes. With recent software de�ned networking (SDN) architecture and

OpenFlow protocol, it is possible to steer the tra�c through any sequence of middleboxes.

The challenge of service chaining is that a middlebox may alter the content of packet headers;

thus, the context of service chaining for particular tra�c gets lost. This thesis proposes Segmented

Proactive Flow Rule Injection (SPFRI) using SDN. The proposed approach adds inner and outer tag

to packets of the �ow to maintain the service chain context and next middlebox in the sequence of

service chain. Middleboxes need not to be aware of these tags and hence don't need any modi�cation

to the operating system or system software of the middlebox. SPFRI maintains the consistency of

service chain even though one or more middleboxes may alter the packets at both outbound and

inbound directions of a �ow. The network con�guration of middleboxes must be appropriately set

to make them perform in the service chain. The signi�cant bene�ts of the proposed SPFRI are as

follows :

1. No requirement of modifying to the middlebox operating system or software,

2. Steer the tra�c through the desired sequence of middlebox in the presence of mangling mid-

dlebox,

3. Longer and more chains,

4. scalable and

5. Friendliness to non-SDN switches.

This thesis details the segmentation of the service chain, calculates the required number of �ow

rules and the algorithm of �ow rule calculation to achieve the goals. The thesis discusses required

properties, challenges and study of existing service chaining solution. Thesis also discusses the

performance of SPFRI and a realistic approach to practical implementation.
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Chapter 1

Introduction

Various network appliances are widely used for Internet services, enterprise networks and cloud com-

puting environments. Typical examples of network appliances are �rewalls, content �lters, intrusion

detection systems, deep packet inspection, web proxies, load balancers, network address translation

(NAT) and transmission control protocol optimizers. Such network appliances are generally referred

to as middleboxes or inline services because end users are often unaware of their existence. We need

middleboxes in order to achieve performance and security challenges in the network (e.g., consider

proxy which stores the content and provides faster for next time, NAT to solve the problem of IP

address space depletion and Firewall to deal with various attacks). Service chaining is required

when tra�c must traverse more than one middlebox in a speci�c sequence (e.g., web tra�c should

be processed by a web proxy and then a �rewall). Although a signi�cant amount of work has been

done in recent years [1] [2] [3] there is still no satisfactory solution to the problem of directing tra�c

through the desired sequence of middleboxes. To enable service chaining when multiple sequences of

middleboxes are involved, the tra�c must �ow through the right sequence. In addition, middleboxes

may alter the context of the packet header. As a result, the context of the service chain is lost. This

context is critical to determine the next middlebox in the service chain (e.g., NAT can change the

source IP address, source port or both). As these middleboxes are closed and proprietary, problem

becomes more di�cult.

Service chaining requires carefully planned network topology, a consistent set of rules to route

tra�c through the desired sequence of middleboxes and safeguards for correct operation in case of

failures and overload. Such setups are complex and rigid, often lead to miscon�gurations and errors.

A lack of protocols and tools to perform accurate con�gurations makes service chaining complex.

SDN o�ers a promising alternative for service chain implementation. It uses logically centralized

management, decouples the data and control plane and provides programmability for forwarding

tra�c.

We propose SPFRI, a simple but e�ective and immediately deployable solution to the service

chaining problem. SPFRI, which does not require changing the middlebox software or OpenFlow

protocols [4], has the following features:

1. Retains the context of the service chain,

2. Consistently supports both outbound and inbound tra�c,
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3. Maintains the context in a lightweight manner and

4. Supports longer chains.

In SPFRI, the mechanism to divide the end-to-end path of the service chain into Segments con-

tributes to the determination of appropriate SDN switches to perform �ow rule injection. Minimum

restriction to the network con�guration of middleboxes is important to preserve the context of the

service chain, which is represented by a VLAN ID in 802.1AD [5] as an inner tag for the packet.

Given the �exibility of SDN, using VLAN IDs to indicate the service chain and next middlebox,

rather than isolating Layer 2 segments.

This thesis describes the network con�guration of middleboxes that is appropriate for SPFRI

and verify that it enables service chaining without losing context. This thesis also discusses the

performance and scalability of SPFRI as well as the advantages and disadvantages of proactive and

reactive �ow rule injection.
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Chapter 2

Related Work

The network service header (NSH) [6] attempts to solve the service chaining problem by adding an

additional header to each packet, which can be used by middleboxes for tra�c steering. However,

this approach requires modifying the middleboxes to make them aware of the additional headers.

StEERING [1] utilizes a pipeline feature introduced in OpenFlow 1.1 for service chaining. It also

examines how to select the best locations for placing services in the network to optimize performance.

However, it does not clarify how to deal with cases where middleboxes alter the packet header on

both outbound and inbound directions or how to ensure �ow processing in a sequence of middleboxes.

SIMPLE [3] o�ers a heuristic correlation approach to maintain the context of service chaining

even if a middlebox modi�es the contents of a packet header. It requires multiple packets to be sent

to the controller before and after processing by a middlebox to identify the �ow and its error rate is

19%. This process introduces high computational overhead because multiple packets per �ow must

be processed by the controller in a stateful manner.

FlowTags [2] employs simple extensions to middleboxes to handle additional tags in packet head-

ers. The tag associates the contextual information of a corresponding service chain with a tra�c �ow.

One drawback is that this requires middlebox modi�cations for tag generation and consumption at

middleboxes. Rewriting packet headers at every middlebox also incurs additional overhead.

Position [7] has di�erent types of drawbacks. Service chain scalability is proportional to the

number of users. A new service chain instance must be created for each new user; therefore, the

number of �ow rules can easily exceed the switch memory capacity. For small duration �ow, creation

and destruction of the service instance occurs very frequently, which introduces signi�cant overhead

on computation and �ow rule management on the switch. If the SDN switches are software-based,

memory consumption per �ow rule will be less when using the proposed SPFRI because the size of

the match �elds (16 bits of an outer tag using a VLAN ID) is smaller compared to [7] (48 bit MAC

address). Such a di�erence will introduce an impact when the number of �ow rules increases.

OpenSCaas [8] uses a source MAC address to encode the service chain context. However, this

raises security concerns in the data link layer due to ARP spoo�ng. Thus, MAC-based access control

cannot be implemented.
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Chapter 3

Segmented Proactive Flow Rule

Injection

The proposed SPFRI o�ers a solution to service chaining problem. The prerequisites and technical

components to enable service chaining and the SPFRI mechanism is described here.

3.1 Double Tagging for Service Chaining

Whenever a packet belonging to a new �ow arrives at the ingress switch, a service chain ID is assigned

by the SDN controller. All packets in the �ow contain a tag to indicate the ID as an additional �eld.

The service chain ID indicates the sequence of middleboxes the packet must go through. SPFRI

uses double tagging with an Inner and Outer Tag. The Inner Tag is implemented as the VLAN

ID to indicate service chain ID. The advantage of using a VLAN ID as the Inner Tag is the fact

that the VLAN ID will not be changed if the packet goes into and comes out of the same VLAN

interface of the middlebox. Therefore, even though a middlebox such as NAT or a proxy, modi�es

the packet header, the VLAN ID will remain the same and the context of the service chain will not

be lost. Another advantage is that VLANs are very well supported by the host operating systems of

middleboxes and SDN and non-SDN switches. If a middlebox is connected to only SDN switches,

our solution will work successfully in a hybrid network where both types of switches coexist. An

Outer Tag indicates the next middlebox that the packet must go through in the service chain. The

Outer tag is added and removed by the SDN switch that connects to the middlebox. This operation

means that middleboxes in the service chain do not have to maintain or understand the context of

the service chain. After a middlebox outputs the processed packet using the same VLAN ID, the

SDN switch attaches the updated Outer Tag to indicate the next middlebox.

3.2 Segmenting a Service Chain

In a service chain, an altering middlebox may communicate using IP with the following nodes:

1. the original source host of a �ow,

2. the adjacent altering middlebox in the service chain and
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3. the destination host that the original source host intended to reach.

Once a packet comes out of a middlebox, the content of the MAC header will be consistent until it

arrives at another middlebox.

Figure 3.1: Expected Network Diagram for Designing System

Here, the concept of Segment is introduced to divide a service chain into sub connections, as

shown in Fig. 3.1. An Outer Tag represents the segment. A segment is an intermediate path between

switches that are directly connected to middleboxes or the communicating host in a given service

chain. For example, Segment 2 (Fig. 3.1) is con�gured over two connections between SW1 and SW2

and between SW2 and SW3. Once a packet enters the segment from a middlebox, e.g., MB1, the

context of the service chain and the �ve-tuple information (SrcIP, DstIP, SrcPort, DstPort, Proto) of

the packet are consistent until it reaches the next middlebox, i.e., MB2. At the end of each segment,

the switch, i.e., SW3 for Segment 2, will remove the Outer Tag and update the destination MAC

address of the packet so that it can be processed by MB2.

3.3 Required Network Con�guration for Middleboxes

The network con�guration on the middlebox is a critical part of our solution. Each middlebox

con�gures one or more IP addresses on the same VLAN interface if the middlebox is visible at Layer

3. This con�guration ensures that the middlebox is a part of a segment that corresponds to the

service chain. Accordingly, no matter how a packet is altered or forwarded to another subnet, this

middlebox service will still be provided on the same VLAN.

3.4 SPFRI

The end-to-end path between the communicating source and destination consists of two or more

segments in a chain. When the processed packet comes out of the middlebox, the default action

on the directly connected SDN switch is to send the incoming packet to the SDN controller. The

controller records the �ow and corresponding service chain ID and then adds an Outer Tag, i.e.,

the next middlebox in a service chain. The controller installs �ow rules so that SDN switches in a

segment can forward the packet based on the Outer Tag. The Controller also proactively installs the

�ow rules for the reverse direction of the �ow on all switches in the same segment. The �ow rules

forwarding the packets are based on the Outer Tag for the forward direction, and the corresponding

Outer Tag for the reverse direction. This proactive �ow rule injection maintains the consistency of
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service chaining in both directions because it is performed together immediately after the packet is

altered by the middlebox.
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Chapter 4

System Design and Architecture

The proposed system has two major components:

1. the SDN controller for implementing SPFRI and

2. the middleboxes with appropriate network con�guration to cope with SPFRI.

This section focuses on the system architecture of the SDN controller. Note that the middleboxes

are explained in the Section 4.8. Fig. 4.1 shows the system diagram of SPFRI on the SDN controller.
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Figure 4.1: System Diagram

4.1 Policy Database

First Network Administrator de�nes service chaining policy through REST API and stores in the

policy database. Policy Database consists of Source IP, Destination IP, Source Port, Destination

Port, Protocol and Policy ID or Service Chain ID used interchangeably. Incoming Packet is matched

against the policy database to �nd the Policy ID. Policy ID speci�es what are the sequence of
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middleboxes tra�c has to go through. We are considering middleboxes which are both virtualised

and physical entities. To implement the policy engine we can consider interoperability with existing

policy speci�cation languages such as Frenetic [9], PonderFlow [10], Ponder2 [11]. Policy Enforcer

focuses on which policy should be applied to given �ow and enforced it through SPFRI.

4.2 Middlebox Database

As we are treating Middleboxes as both physical and virtual entities network administer has to pro-

vide this information through REST API. It consists of Middlebox ID, Mac Address, Switch DPID,

Switch Port and Ordered List OFAction. In a pure virtualised environment, the NFV controller

must provide middlebox speci�c information which is stored in the middlebox database, to the SDN

controller. One approach proposed in [8] can be used where SDN topology manager communicates

with NFV topology Manager.

4.3 Policy Enforcer

When the �rst packet of a new �ow reaches an ingress switch from the source host, a packet-in

message is sent to the SDN controller. The policy enforcer is responsible for determining the actions

that are taken for the �ow. The Policy Enforcer communicates with policy database to classify the

�ow quickly and the service chain to be applied. It also receives packet-in from the switches connected

to a middlebox with VLAN header containing service chain ID. The policy enforcer provides the

service chain ID and the next middlebox to travel to in the sequence to the SPFRI engine. The

further process is to attach the appropriate tag to the packet and send �ow mod out .

4.4 SPFRI Engine

The SPFRI engine is responsible for installing �ow rules for a given segment. It communicates

with the Path Finder to obtain the segment. It also interacts with the middlebox database to

install middlebox speci�c actions on switches connected to middlebox. Then, the appropriate tag is

attached to the �ow and send �ow mod out.

4.5 Path Finder

The path �nder determines the sequence of switches to be followed to reach the next middlebox in

the chain. It uses the IRoutingService of Floodlight [12] and provides the shortest path to the next

middlebox. Note that QoS can be the purpose of service chaining and a part of the service chain.

We can �exibly select di�erent paths using the path �nder module to implement QoS.

4.6 Types of Segments

Based on the sequence of middleboxes to go through, SPFRI sets up the segment within which the

�ow rules for packet forwarding are proactively injected for both forward and reverse directions.
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To perform proactive �ow rule injection, SPFRI in the SDN controller must know which switch

plays what role in the given segment. Once SPFRI knows what role each switch plays in the given

segment, the service chain can be applied to a �ow. SPFRI looks up the mapping between the

corresponding middlebox and switch in the middlebox database. In the rest of this section, the

switch IDs, which appear in the following descriptions, correspond to those in Figs. 4.2 and 4.3

according to the direction.

Figure 4.2: Forward Direction Segment VLAN

Figure 4.3: Reverse Direction Segment VLAN

4.6.1 Ingress Segment

When the �rst packet is transmitted by the user, the ingress segment is formed with the ingress

switch and all other switches on the path to the �rst middlebox. SPFRI on the SDN controller

triggers proactive �ow rule injection, which contains slightly di�erent actions according to the role

of the switch. The ingress switch functions as a starting point of a segment.

The Ingress Switch (SWI) adds an Inner Tag that corresponds to the service chain ID and an

Outer Tag that speci�es the next middlebox in the service chain and the output port is determined
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based on the Outer Tag. For the reverse direction, SWI simply forwards the packet to the destination

MAC address in the Ethernet header. The corresponding �ow rules are injected for both directions

simultaneously.

At the end point of the Segment, the switch (SW1) removes the Outer Tag and executes

the middlebox speci�c action on the packet to be processed by the middlebox, such as setting the

destination MAC address in the Ethernet header and sending it through the corresponding port. All

this required information is stored in the middlebox database. For the reverse direction, the switch

removes the Inner Tag because all services from the service chain have been traversed. The switch

also modi�es the destination MAC address to that of the end host and outputs the packet from the

port such that the destination MAC address is reachable.

If an intermediate switch exists in the segment, it forwards a packet based on the Outer Tag

for the forward direction. For the reverse direction, the switch forwards a packet to the end host

just like a learning switch.

4.6.2 Egress Segment

A switch that is directly connected to the last middlebox of the service chain (SW3), is the starting

point of the egress segment in the forward direction and the end point in the reverse direction.

Accordingly, the egress switch of the �ow (SWE) will be the end point of the segment in the forward

direction and the starting point in the reverse direction. Here, the �ow rules that are proactively

injected to these switches are exactly symmetric to the case of the ingress segment.

4.6.3 Intermediate Segment

The intermediate segment starts at a switch directly connected to the corresponding middlebox, e.g.,

SW1 and MB1. On this switch, SPFRI adds an Outer Tag to the incoming packet to specify the

next middlebox in the service chain and outputs it from the port such that the next middlebox is

reachable. For the reverse direction, the switch removes the Outer Tag and executes the middlebox

speci�c action on the packet to be processed by the middlebox. If an intermediate switch (SW2)

exists in the segment, it forwards a packet based on the Outer Tag for both forward and reverse

directions. At the end point of the segment (SW3), the switch removes the Outer Tag and modi�es

the destination MAC address to that of the VLAN interface of the middlebox and outputs the

packet. For the reverse direction, the switch adds an Outer Tag that speci�es the next middlebox in

the service chain and outputs the packet from the port such that the next middlebox is reachable.

4.7 Implementing Inner and Outer Tags

The VLAN ID �eld in the VLAN header [13] is 12 bits. We use the VLAN ID �eld for the Inner

Tag with 1 bit for direction and 11 bits are used to identify 2048 di�erent service chains. Similarly,

the VLAN header or MPLS header [14] can be used for the Outer Tag. As shown in Table 4.1,

the VLAN header as the Outer Tag will get 12 (VLAN ID) +3 (PCP) bits for the middlebox ID,

i.e., 32768 di�erent middleboxes in a network. With the MPLS header as the Outer Tag will get 20

(MPLS Label) +3 (QoS) bits for middle box ID, i.e., 8388608 di�erent middleboxes in a network.

Note that there is virtually no restriction on the length of the service chain.
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Header Fields Bits Middleboxes

VLAN
VLAN ID 12 4096
VLAN ID + PCP 12 + 3 32768

MPLS
MPLS LABEL 20 1048576
MPLS LABEL + QoS 20 + 3 8388608

Table 4.1: Outer Tag Implementation

4.8 Practical Network Con�guration for Middleboxes

Figure 4.4 shows the con�guration of a VLAN interface on a middlebox that is serving as a NAT

router. The middlebox con�gures both internal and external IP addresses on the same VLAN

interface using an alias. Even if the NAT router alters the content of packet headers, incoming and

outgoing packets have the same VLAN ID in the VLAN header to indicate that they belong to the

same segment.

Figure 4.4: Practical Network Con�guration for NAT Middlebox

4.9 Segmented Proactive Flow Rule Injection for a Segment

Whenever the �rst packet of the new service chain ID arrives at the switch from the middlebox, it is

sent to the controller with the VLAN (i.e., Inner Tag) header as a packet-in message. Upon receiving

the packet with the VLAN tag, SPFRI decodes the tag to �nd the current and next middleboxes in

the service chain for the �ow of the same packet. It �nds the path between these two middleboxes

using the middlebox database. It then installs a �ow rule to add an Outer Tag as that of the next

middlebox ID on the switch from which the packet-in message is generated. It also installs an Outer

Tag based �ow rules on all the switches between these two middleboxes to steer the tra�c in the

forward direction. For the reverse direction, it uses the current middlebox ID as the Outer Tag

to steer the tra�c in the reverse direction. Note that the rules for the reverse direction �ow are

installed at the same time.
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Chapter 5

Protocol Behaviour

This chapter describes in detail execution of SPFRI.

5.1 Segment and Switch Types

Based on the sequence of middleboxes to go through, SPFRI setups the segment within which the

�ow rules for the packet forwarding are proactively injected for both forward and reverse directions.

Table 5.1 and Table 5.2 show the segments formed in forward and reverse direction. There are three

types of the segment.

1. Ingress Segment: Formed between Ingress switch and all other switches on the path to the

�rst middlebox in the service chain.

2. Egress Segment: Formed between switch connected to last middlebox and all other switches

on the path to the end host communicating.

3. Intermediate Segment: Formed between switches connected to adjacent middlebox and all

other switches on the path between them.

In the segment, there are three types of switches and each of them has a di�erent role and Flow

Rule installed.

1. First Switch: It adds the Outer tag which next middlebox in Service Chain. In the case

of ingress segment, it also adds inner tag corresponding to the service chain id. In the case

of egress segment, it removes inner tag as all the middleboxes in the service chain has been

traversed.

2. Intermediate Switch: It does forwarding based on Outer tag. In the case of partial proactive

�ow rule injection, it sends the packet to the controller in order to �nd the next middlebox in

the service chain sequence.

3. End Switch: It removes an outer tag and executes middlebox speci�c action on the packet

in order to packet being processed by the middlebox like setting mac address in destination

address �eld and sending through the correct output port.
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No Segment Type Path of Switches First Switch Intermediate Switches Last Switch

1 Ingress SW1-SW2-SW3 SW1 SW2 SW3

2
Intermediate SW3-SW2 SW3 - SW2

SW2-SW3-SW4-SW5 SW2 SW3, SW4 SW5
3 Egress SW5-SW6 SW5 - SW6

Table 5.1: Segments in Forward Direction

No Segment Type Path of Switches First Switch Intermediate Switches Last Switch

1 Ingress SW6-SW5 SW6 - SW5

2
Intermediate SW5-SW4-SW3-SW2 SW5 SW4, SW3 SW2

SW2-SW3 SW2 - SW3
3 Egress SW3-SW2-SW1 SW3 SW2 SW1

Table 5.2: Segments in Reverse Direction

5.2 Execution of Flow Rule Injection

To perform the proactive �ow rule injection, SPFRI in the SDN controller needs to know which

switch plays what role in the given segment. Because once the SPFRI knows what role each switch

plays in the given segment, the service chain can be applied to a �ow. SPFRI looks up the mapping

between the corresponding middlebox and switch in Middlebox Database. In the rest of this section,

the switch IDs, that appear in the following descriptions, correspond to those in Figures 5.1 and 5.2

and 4.3 according to the direction.

Figure 5.1: Detailed Protocol Behaviour in Forward Direction

Ingress Segment

When the �rst packet is transmitted by the end host (Fig. 5.1)(1), the ingress segment is formed

with the ingress switch and all other switches on the path to the �rst middlebox. SPFRI on the

SDN controller triggers the proactive �ow rule injection, which contains slightly di�erent actions

according to the role of the switch.
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Figure 5.2: Detailed Protocol Behaviour in Reverse Direction

The ingress switch functions as a starting point of a segment and �ow rules, with following

actions, are installed on the ingress switch.

Forward direction

1) attach Inner Tag corresponding to service chain id and Outer Tag corresponding to 1st

middlebox in sequence to the packet, and

2) output the packet from the port to the �rst middlebox.

As shown with (Fig. 5.1)(1) and (Fig. 5.1)(2).

Reverse direction

1) output the packet to the MAC address of the destination host.

As shown with (Fig. 5.2)(13) and (Fig. 5.2)(14).

The �ow rule is determined by the simple learning switch module because of following 1) this

ingress switch is directly connected to the destination host and

2) the Inner Tag is removed before reaching this ingress switch.

The �ow rule with following actions is installed on the switch at the end point of a segment

(SW3).

Forward direction

0) for Outer Tag corresponding to the Middlebox ID [Match Condition],

1) change the destination MAC address to that of the middlebox's (MB1) VLAN interface in

the Ethernet header,

2) remove Outer Tag and

3) output the packet to the middlebox.

As shown with (Fig. 5.1)(3) and (Fig. 5.1)(4).

Reverse direction

0) for Inner Tag corresponding to the Service Chain ID with the input port connecting to the

last middlebox [Match Condition],
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1) remove Inner Tag also from the packet,

2) change the destination MAC address to that host and

3) output the packet from the port through that the MAC address of the destination host is

reachable.

As shown with (Fig. 5.2)(12) and (Fig. 5.2)(13).

Note that the �ow rule for the reverse direction is based on the expectation that the packet has

already gone through all middlebox sequence. Therefore, this particular switch (SW3) removes the

tagged header and then delivers it to the destination MAC address according to the learning switch

module in SPFRI.

If an intermediate switch exists in the segment, the �ow rule with following actions is installed.

Forward direction

0) for Outer Tag corresponding to the middlebox ID [Match Condition],

1) output the packet from the port to the middlebox.

Reverse direction

1) output the packet from the port through that the MAC address of the destination host is

reachable.

As shown with (Fig. 5.2)(12) and (Fig. 5.2)(13).

Egress Segment

The switch, which is directly connected to the last middlebox of service chain (SW5), is the starting

point of the egress segment in a forward direction as well as the end point in a reverse direction.

Accordingly, the egress switch of the �ow (SW6) will be the end point of the segment in the forward

direction as well as the starting point in the reverse direction. Here, the �ow rules that are proactively

injected to these switches the exactly symmetric to the case of ingress segment.

Intermediate Segment

The intermediate segment starts at the switch, which is directly connected to the corresponding

middlebox (MB1),i.e., (SW2). On this switch, SPFRI gives two di�erent �ow rules with a di�erent

priority to the switch.

Forward direction: Flow Rule 1 with Low Priority

0) for the �rst packet of a new �ow which comes from port connected to the middlebox [Match

Condition],

1) send the packet to the controller.

Note that this action is necessary to let the controller �nd the next middlebox of the �ow

corresponding to this service chain.

Forward direction: Flow Rule 2 with High Priority

0) for the packet coming from the middlebox using Inner Tag corresponding to the service

chain, which was given by the controller in response to Flow Rule 1 [Match Condition],

1) add Outer Tag corresponding to next middlebox ID and
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2) output the packet from the port reachable to the next middlebox.

As shown with (Fig. 5.1)(9) and (Fig. 5.1)(10).

Reverse direction

0) for the packet comes from the middlebox using Inner Tag corresponding to the service

chain[Match Condition],

1) change the destination MAC address to that of the middlebox's VLAN interface in the

Ethernet header,

2) remove Outer Tag to the one that is con�gured on the middlebox and

3) output the packet to the middlebox.

As shown with (Fig. 5.2)(5) and (Fig. 5.2)(6).

The �ow rule with following actions is installed on the switch at the end point of the intermediate

segment (SW2).

Forward direction

0) for Outer Tag corresponding to the middlebox id [Match Condition],

1) change the destination MAC address to that of the middlebox's VLAN interface in the

Ethernet header,

2) remove OuterTag that is con�gured on the middlebox, and

3) output the packet to the middlebox.

As shown with (Fig. 5.1)(6) and (Fig. 5.1)(7).

Reverse direction

0) for the packet comes from the middlebox using Inner Tag corresponding to the Service

Chain ID in the reverse direction [Match Condition],

1) add Outer Tag corresponding to next middlebox id and

2) output the packet from the port reachable to the next middlebox. As shown with (Fig.

5.2)(8) and (Fig. 5.2)(9).

The �ow rule with following actions is installed on an intermediate switch in the intermediate

segment (SW3).

Forward direction

0) for Outer Tag corresponding to the middlebox id [Match Condition],

1) output the packet from the port to the next middlebox.

As shown with (Fig. 5.1)(9) and (Fig. 5.1)(10).

Reverse direction

0) for Outer Tag corresponding to the middlebox id [Match Condition],

1) output the packet from the port to the next middlebox.

As shown with (Fig. 5.2)(5) and (Fig. 5.2)(6).
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Chapter 6

Discussion

6.1 Overhead of Double Tagging and Choice of Outer Tag

Each packet in a �ow is tagged with an additional Inner and Outer Tag to maintain the context

of the service chain. This causes an overhead of 8 bytes for each packet of the �ow if the VLAN

header is used as both the Inner and Outer Tags. This approach is friendly with existing Layer 2

switches because they also understand VLANs and can be con�gured in truncated mode to forward

packets tagged by SPFRI. Given the bene�ts achieved by using an 802.1AD header and the active

use of VLANs in most enterprise networks, the impact of this additional header can be considered

negligible. SPFRI also helps the deployment of service chaining in a hybrid network environment

that consists of SDN and non-SDN switches. For the VLAN as Inner Tag and MPLS as an Outer Tag,

the overhead is the same, i.e., 8 bytes. Using a packet header compression technique, the overhead

of the tag for small packets can be reduced; however, the processing overhead at the controller may

increase.

6.2 Mode of Proactive Flow Rule Injection: Partial or Full ?

SPFRI can be achieved using fully and a partially proactive �ow rule injection.

6.2.1 Time Required to Install Flow Rules

Fully proactive �ow rule injection installs all required �ow rules to all switches in the service chain

at once.However, if a partial proactive �ow rule injection approach is followed, the corresponding

switch must communicate with the controller at the beginning of each segment. Therefore, the time

required to complete a �ow rule injection is proportional to the number of segments i.e., the number

of middleboxes in a particular service chain.

Time required to set up Service Chain = Time required to Map users tra�c to Service ID using

policy database + (Finding the paths between middleboxes and selection of path with respect to

Service Chain ID + retrieving middlebox speci�c actions form middlebox database) * number of

middleboxes in the service chain + maximum of communication between switch and controller.
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6.2.2 Dynamic Policy Update

If the chaining policy is updated while fully proactively injecting �ow rules, there may be inconsis-

tency between the policy and its enforcement. As old rules from switches must be replaced with new

rules, such time lag can be connected to a security threat or misbehaviour of tra�c such as packet

drops or unwanted tra�c shaping. For partial proactive �ow injection, such risks can be mitigated

to some extent.

6.2.3 Total Number of Flow Rules

Assuming many to one mapping of users to the service chain, the number of �ow rules is not

proportional to the number of users. The number of �ow rules per service chain at each switch along

the path is two (one each for forward and reverse direction). With proactive �ow rule injection, one

additional �ow rule must be inserted at the switch connected to a middlebox.

Total �ow rules = (2 * no of service chains) * number of switches + no of middleboxes * no of service

chains. Note that VLAN ID masking will reduce the number of �ow rules.

6.2.4 Limitations

For each service chain, each middlebox in the sequence must con�gure a VLAN interface that

corresponds to the service chain ID. In addition, the matching among VLAN ID, IP address, service

and the middlebox must be maintained appropriately. This may slightly increase the operational

cost of service chains.
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Chapter 7

Evaluation

The ideal solution that implements service chaining should have following properties:

1. No Modi�cation to Middlebox :

The tra�c must follow the sequence of middlebox traversal without modifying operating sys-

tem or software of these middleboxes. The solution proposed NSH [6], FlowTag [2] fails as

middleboxes need to be aware of tags. SPFRI requires no modi�cation to operating system or

software of middlebox.

2. Mangling Middlebox :

Steering the tra�c through desired sequence of middlebox even in the presence of middlebox

that alters packet header is di�cult to achieve as service chain context may get lost. The

proposed solution uses VLAN ID �eld which remains unaltered as packet entering and existing

through same VLAN interface. Thus, Service chain context remains intact even in the presence

of mangling middlebox in the service chain.

3. Friendliness with non SDN :

Steering [1] uses pipeline feature introduced with OpenFlow version 1.1. The service chain

context is stored using 64-bits meta information which is not available in traditional switches

and router. VLAN are very much popular in an enterprise network. Our proposed solution

uses VLAN ID �eld to maintain the service chain context and works in case both traditional

and SDN network.

4. Scalability :

The solution should support longer and thousands of service chains with many middleboxes.

Steering [1] supports only 63 service chain (1 bit is used for direction). Position [7] uses a

service instance per user. With the number of users goes on increasing , �ow rules to support

increasing service instance increases. But SDN switches have limited capacity to support �ow

rules as TCAM has �xed and limited size. SPFRI support any length of service chain and any

number of middleboxes.

5. Less Computation Overhead :

Simple [3] sends multiple packets to the controller to correlate �ow in the case of mangling

middlebox that introduces additional overhead over a controller. For position [7], the service
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instance deployment per user in the case of the small duration, �ow rules introduce computation

overhead as well as management of �ow rules on SDN switches. NSH [6] and FlowTag [2]

propose an additional header to carry service chain context that middlebox needs to be aware

of. The middleboxes need to produce, process and consume these tag which an additional

overhead.

6. Less number of Flow Rules :

Position [7] requires per user a service instance. In SPFRI, many users are mapped to one

service instance that will require one �ow rule at ingress switch. Thus, saving more number of

�ow rules.

7. Security :

OpenSCCaas [8] uses source MAC address to encode the service chain context. Thus we can

not use MAC-based access control list.

The existing service chain solution approaches to steer the tra�c through the desired sequence of

middlebox fail to achieve at least one of the characteristic. Table 7.1 shows the comparison of SPFRI

with the existing service chaining solutions.

Solution NSH StEERING SIMPLE FlowTag Position OpenSCaas SPFRI
No Modi�cation to Middlebox N Y Y N Y Y Y
mangling Middlebox Y N Y Y - Y Y
Friendliness with non SDN - N Y Y N - Y
Scalability Y N - - N - Y
Less Computation Overhead N - N N N - Y
Less number of Flow Rules - - Y - N - Y
Security - - - - - N Y

Table 7.1: Comparison with the Existing approaches for Service Chaining
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Chapter 8

Conclusion and Future Work

Service chaining is challenging because middleboxes modify the packet headers and the service

context gets lost. While existing approaches su�er from critical drawbacks, we have designed and

implemented a system that can guarantee correct middlebox traversal without any modi�cations to

the middlebox software. The proposed SPFRI utilizes the VLAN ID in the VLAN header to store the

contextual information for service chaining. Our speci�c contribution exploited existing technology

with carefully managed and con�gured middleboxes to solve the service chaining problem. The

proposed SPFRI is lightweight and works for any type of middlebox. We have theoretically veri�ed

that service chaining using SPFRI can be achieved even in the presence of altering middleboxes.

We believe that the disadvantage of con�guring VLAN interfaces on middleboxes is su�ciently

negligible considering the signi�cant bene�t gained by service chaining with the proposed SPFRI,

which provides longer and more service chains with consistent �ow rule enforcement.

In future, a practical implementation of the proposed method will be a primary focus. Currently,

802.1AD is supported by OpenFlow 1.3 but is not widely available on open source software switches.

However, Lagopus [15] appears promising for SPFRI using 802.1AD. We will practically implement

the proposed SPFRI and explore its integration to the existing NFV software architecture for the

purpose of real deployment and also further analysis of performance and operational overhead. We

will be coming with some greedy algorithm to assign the tag to these service chain so that we will

be able to reduce the number of �ow rule on switches.
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