POLITECNICO DI TORINO
Repository ISTITUZIONALE

Per-user NFV services with mobility support

Original

Per-user NFV services with mobility support / D’Ambrosio, Matteo; Ullio, Mario; Vercellone, Vinicio; Cerrato, lvano;
Risso, FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2017), pp. 1-4. (Intervento presentato al convegno 3rd IEEE
Conference on Network Softwarization (NetSoft 2017) - Second IEEE Workshop on Open-Source Software Networking
(OSSN 2017) tenutosi a Bologna, Italy nel July 2017) [10.1109/NETSOFT.2017.8004240].

Availability:
This version is available at: 11583/2677013 since: 2017-11-04T11:55:43Z

Publisher:
IEEE

Published
DOI:10.1109/NETSOFT.2017.8004240

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024

Per-User NFV Services with Mobility Support

Matteo D’ Ambrosio, Mario Ullio, Vinicio Vercellone

Network Automation
TIM
Torino, Italy
Email: matteo.dambrosio @telecomitalia.it

Abstract—This paper presents an architecture to provide end-
to-end per-user services with support to client mobility, designed
according to the SDN and NFV paradigms. Our service platform
dynamically configures and launches service requests when the
client connects to the network, which are used by a multi-
domain orchestration system to arrange the required network
configuration and computational resources. Service configuration
is dynamically updated when a movement of the client is detected,
that is, when a client device changes its access point to the
network. A prototype implementing the idea has been developed
and validated over JOLNET, a real, geographical, OpenFlow-
based experimental network connecting several sites in Italy and
operated by Telecom Italia.

I. INTRODUCTION

Network operators are introducing in carrier networks ad-
vanced techniques traditionally used in data centers, in order
to execute network services (e.g., firewall and NAT) in vir-
tualized environments running on general purpose hardware.
This objective is achieved by exploiting the Software De-
fined Networking (SDN) and Network Function Virtualization
(NFV) paradigms, which promise high flexibility in network
operations, fast service creation, deployment and provisioning,
optimal usage of resources in underlying infrastructures, adop-
tion of cheap technology based on general purpose servers.
This results in a great advantage for network operators, which
can reduce infrastructure and operating costs while enhancing
capabilities for efficient and fast/agile service deployability.
In addition, the technique of Service Function Chaining
(SFC) [1], enabled by the SDN paradigm, abstracts the service
creation process by means of high level service chains/graphs
and automates the service deployment of Virtualized Network
Functions (VNFs) over the physical infrastructure.

In order to leverage the potential and the advantages brought
by SDN, NFV and SFC in delivering network services, several
approaches of resource orchestration and compute/network
virtualization in carrier networks have been proposed and
are under discussion in several standardization groups and
research projects. Among the others, it is worth to mention
the Service Function Chaining Working Group [2] in Internet
Engineering Task Force (IETF), the NFV Industry Specifica-
tion Group [3] in the European Telecommunications Standards
Institute (ETSI), the ETSI Open Source NFV Management
and Orchestration (MANO) project [4], and the EU-funded
projects UNIFY [5] and 5GEx [6].

Ivano Cerrato, Fulvio Risso
Department of Computer and Control Engineering
Politecnico di Torino
Torino, Italy
Email: ivano.cerrato @polito.it

This paper presents what we call the VPN Plus Plus
(VPNPP) service, which provides end-to-end per-user services
to mobile clients. The proposed service is based on an open
source, multi-domain architecture, which orchestrates compute
and network resources both in data centers and carrier net-
works by means of a hierarchical orchestration framework.
Particularly, in our proposal, a service platform dynamically
configures and launches, at client/user access, a per-user
service graph that is used by the multi-domain orchestration
system to arrange the required network configuration and com-
putational resources. The per-user service graph is dynamically
updated and re-instantiated when the client moves from one
access point to another.

A prototype of the VPNPP service has been implemented
and validated, from a functional point of view, over JOLNET,
a real, geographical, OpenFlow-based network, connecting
several sites in Italy and operated by Telecom Italia.

II. THE VPNPP SERVICE

The VPNPP service aims at provisioning end-to-end per-
user services that are automatically reconfigured when the use
mobile terminal (MT) moves from one network site to another.

At the service bootstrap, the VPNPP service configures the
network to forward all the traffic generated on the infrastruc-
ture to an authentication service, in order to allow users to
authenticate themselves. After a user authentication, a VPNPP
session is started, which implies to launch dedicated VNFs that
operate only on the traffic belonging to that specific MT, and
which have been associated (out of band) to the specific user
just authenticated.

Particularly, the service request for a user specifies a con-
nection of the MT to the Internet and/or other intranets/private
networks. The service is described through a service graph
that indicates the service function chain that has to process
the user’s traffic (i.e., the traffic generated by the MT) before
it reaches the Internet/intranet.

The VPNPP service deploys the VNFs on the closest
computing resources to the MT attachment point; then, when
the MT changes its attachment point to the network, VNFs
are potentially restarted on those computing resources that are
now closer to the new location.

III. THE VPNPP ARCHITECTURE

In order to realize the VPNPP service in a complex scenario
encompassing a real geographical network, we designed the

—_> In-band VPNPP service VPNPP /4
== Qut-band) function database >
O epom | servcegraph - £

! H ¥ L 3

VPNPP Control —_—
Function (VCF) :
1

) o N T L service graph
service grapf:/ servlceqaph _______ VPNPP Service
L ~ SDN Domain Portal (VSP)
i % Orchestrator
UN Domain orch. UN Domain orch. Vanilla
Universal Node Universal Node OpenDaylight ~ p=======
(UN) (UN) controller clients’ locations

user & SDN network jmtranet

e = fj

Internet

USEr MT
(VPNPP client)

Fig. 1. VPNPP architecture.

hierarchical orchestration framework shown in Figure 1 and
described in the remainder of this section.

A. VPNPP service platform

The VPNPP Service Portal (VSP), the VPNPP Control
Function (VCF) and the VPNPP database constitute the VP-
NPP service platform.

The VPNPP database is exploited by the other modules of
the VPNPP service platform to authenticate users and to keep
track of clients currently connected. Moreover, it contains the
user profiles that, among other information, specify the service
graphs to be instantiated after the users authentication.

The VSP offers to mobile terminals an authentication server
and the possibility to register to a list of available VNFs to be
instantiated after the client has been authenticated. According
to Figure 1, the VSP interacts with the VCF in the backend in
order to notify the VCEF itself about clients state changes (new
client registrations, service authentications/disconnections).

The VCEF is in fact the module that actually implements
the service logic, and periodically queries an SDN controller
(OpenDaylight (ODL), as shown in Figure 1) to get the list of
connected clients and their locations. Each connected device
is identified by its IP address, which is permanently associated
to it. ODL records contain the following information for each
connected device: IP address, MAC address, ingress node in
the network, ingress port and VLAN. This information is then
stored by the VCF in the VPNPP DB.

Based on the current position of a mobile terminal (retrieved
through the SDN controller) and its registration state (kept
by the VSP in the VPNPP DB), the VCF triggers service
requests (in the form of service graph) to the Orchestration
Layer in order to implement the intended network and compute
configurations, as required by the specific user’s profile.

B. The VPNPP service graph

The service graph sent by the VCF to the orchestration
layer (the FROG global orchestrator in Figure 1) is actually
a JSON message that includes the following information: the
specification of requested VNFs; the endpoints of the service
to be deployed in terms of physical ports of infrastructure
domains (e.g., interface p1p2 of domain un_ve) and VLAN
IDs to be used to tag traffic coming from such an endpoint,

as shown in Figure 4; the traffic steering rules, which indicate
how endpoints and VNF ports should be connected to each
other to realize the requested service.

C. The VPNPP orchestration system

The VPNPP orchestration system includes two levels: the
first level consists of a global orchestrator that sits on top of
many infrastructure domains, while the second level includes
several domain orchestrators that take care of deploying ser-
vices on the infrastructure domain under their responsibility.

As a global orchestrator, the VPNPP architecture exploits
an enhanced version of FROG [7], an open source orchestrator
whose northbound REST API can be used by control network
functions (e.g., the VCF in case of VPNPP service) and service
layer applications to send requests to deploy/update service
graphs.

In order to support the VPNPP service, FROG has been
extended to orchestrate a network composed of several infras-
tructure domains, each one with different capabilities (e.g.,
execute VNFs, create network paths, and more) and with its
own domain orchestrator, as shown in Figure 1. Particularly,
through its southbound API, the FROG orchestrator interacts:
(i) with the SDN domain orchestrator (SDN-DQ), which sits
on top of an SDN network controlled by a vanilla ODL
(ODL) controller, and (ii) with the Universal Node domain
orchestrator (UN-DO), responsible of orchestrating a Universal
Node infrastructure domain. More in detail, while the SDN
domain consists of several OpenFlow switches that can be only
exploited to create network paths, the Universal Node (UN) [7]
is an infrastructure domain consisting of a single network
node, based on COTS hardware, which can execute network
functions (packet processing) as well as more traditional cloud
workloads (e.g., server web), and which enables flexible traffic
steering among the running functions or applications. Source
code of the FROG orchestrator and the domain orchestrators
described above is available at [8].

In the VPNPP architecture, the FROG orchestrator is in
charge of the following tasks: (i) receive, from domain or-
chestrators, information about the capabilities of the available
domains (i.e., what domains can do), (ii) receive and process
service requests from the VCF, (iii) calculate physical and
virtual resources required to implement the requested service,
(iv) determine routes and policies to be enforced, and (v)
split the input service graph in subgraphs to be sent to the
proper domain orchestrators for service instantiation. Notably,
the possibility to receive domain capabilities from domain
orchestrators, as well as the ability to split a service graph
based on such capabilities, and on information associated with
the endpoints in the graphs in order to instantiate VNFs as
close as possible to the users’ clients, have been added to
FROG in order to realize the proposed VPNPP service.

The SDN-DO receives and processes service requests com-
ing from the upper layer orchestrator and implements re-
quested service policies in the SDN network via the vanilla
ODL controller (Hydrogen release) northbound API. Particu-
larly, the SDN-DO asks to the ODL controller to configure

the underlying switches in order to create the paths described
in the service graph. It is worth mentioning that the ODL
controller is equipped with a “host tracker” module, which
keeps track of the connected devices by monitoring ARP
packets entering in the SDN network. This way, as described
in Section III-A, it can provide the proper information to the
VCF when such a module queries the controller itself.

The UN-DO receives and processes service requests coming
from the upper layer orchestrator and implements requested
services in the UN domain. In order to satisfy a service request,
the UN-DO starts the proper VNFs either as Docker containers
or virtual machines executed through the QEMU/KVM hyper-
visor. Then, it creates the proper paths between VNFs ports
and with the physical network by configuring the forwarding
tables of a virtual switch using OpenFlow 1.3 (the current
implementation of the prototype supports both the standard
and the DPDK-based Open vSwitch).

IV. JOLNET

JOLNET [9] is a distributed infrastructure deployed by
Telecom Italia, which consists of a geographical SDN network
connecting several Universal Nodes and OpenStack sites at the
edge. Resources are partitioned among several tenants through
the mediation of a virtualization system based on a special
purpose Openflow controller with network virtualization capa-
bilities (FlowVisor) and a cloud controller (OpenStack) for the
computing resources. A network slice (i.e., an overlay network
with dedicated resources) and a number of virtual machines
can be assigned to each tenant.

A. The JOLNET VPNPP slice

A small slice on JOLNET (Figure 2) has been allocated to
the VPNPP service. It corresponds to the SDN domain shown
in Figure 1, which is controlled by a vanilla ODL controller,
Hydrogen release, equipped with the Host Tracker module
mentioned above. The VPNPP slice is associated with a set
of VLAN tags; all traffic entering the JOLNET with one of
these tags is recognized as part of the VPNPP slice. JOLNET
FlowVisor automatically redirects all OpenFlow messages
related to this traffic to the VPNPP ODL Controller.

As shown in Figure 2, the VPNPP slice integrates two
physical Access Nodes (AN) and two Universal Nodes (UNs),
which provide computing resources to the per-user service
chains instantiated after the users authentication. Universal
Nodes are deployed in the Turin (TO) and in the Venice (VE)
sites. Mobile terminals are supposed to access the VPNPP
slice by attaching to the ANs, located in two different Points
of Presence (POPs), namely Trento (TN) and TO. It is worth
to note that, in our validation, MTs are emulated as virtual
machines on the ANs. Each VM has a virtual NIC connected
either to the local network infrastructure or to a remote
location by means of a bridge and tunnel arrangement, and
switch between the two connections. The resulting behavior
is the same of a device moving and attaching between TN
and TO ANs.

= AN’ Access Node

G Cisco C3850

Exaf ciscoucs N,

UN

Mobile Terminal

Venice (VE)
Universal Node

Fig. 2. Experimental setup on JOLNET for the VPNPP service.

: / \
INTERNET VLAN 200 - 1.1.1.0/24 { 13 |

\, 1 =

(ey i

INTRANET o VLAN 201 - 1.1.201.0/24 1

|
|
|
T t
|

|
\OPENSTACK TN,

VLAN 202
100.70.0.0/21

‘Q PENSTACK_TO

4

NODE-VE NoDE-TN|228
J5103 5104

100.70.0.2) 100.70.1.10 100.70.0.3

Fig. 3. Default network paths in the VPNPP slice over JOLNET.

V. VALIDATION

In order to validate the VPNPP architecture, we initially
arranged the VPNPP slice as shown in Figure 3, which
enforces all traffic from unregistered clients attached to the
network at the TN and TO sites, to be forwarded to the
VSP through a VPNPP proxy (both located in the JOLNET
OpenStack cloud system). Hence, when a new MT performs
an HTTP GET request, the VSP captures the message and
provides a login/password challenge to the user.

During the evaluation, the VPNPP database includes the
user Alice, which is associated with a user profile that guar-
antees only access to the Internet, but limited access to the
Intranet (she can reach the authentication service, but not the
Intranet WWW server). When Alice attaches to the TN site
and authenticates herself, her authentication state is notified
to the VCF, which is also aware of the Alice’s location
thanks to the ODL controller. Therefore, the VCF is now
aware that Alice is at a certain ingress port on the AN in
Trento, and then it instantiates a new service graph to start
the VPNPP session for Alice (Figure 4(a)). In particular, the
VCEF provides such a graph to the FROG orchestrator, which
looks for computing (VM firewall for Alice) and networking
(e.g., VLAN tags) resources, calculates paths, splits the request
among the compute (UNs) and network (SDN) domains, and
finally sends the subgraphs to the proper domain orchestrators.

Since the UN in Venice is the closest one to the TN site,
which does not have any UN, the FROG orchestrator asks
the UN-DO associated with such a domain to set up the
ALICE_FW virtual machine, while the ODL-DO configures
the network paths through the JOLNET VPNPP slice as

a) Alice service in intranet

Trento (TN Site) "if-name": "p1p2",
"vlan-id": "200"
"domain": "un_ve"
[usr,Alice_MAC(p:0)]
"node-id": “NODE-TN" Internet
"if-name": "5099" O ALICE "if-name": "p1p2",
"vlan-ic_:l":"202" FW l "vlan-id": "201“
"domain": “sdn_do" UN VE "domain": "un_ve"
b) Alice service in intra"r?fet ", tatha"
Torino (Ti Site) ol ;,Zzto,,z’
vlan-i
"domain": "un_to”
[usr,Alice_MAC(p:1)]
"r;ode-id": "QIS)I;E-TI” Internet
"if-name": " " ALICE "if-name": “eth2",
::vlan-i(li"':"'goz“ Q l FW l O "vlan-id": "201“
domain": “sdn_do UN TI "domain": "un_to"

Fig. 4. Service graphs for Alice when connected to TN (a) or TO (b) sites.

(3
! (INTERNET) :
i INTERNET i
' VLAN 200 - 1.1.1.0/24 5 :
5 ’
8 \
[V5P]
i 1]
| INTRANET Cag — |
{] . 70 VLAN 201 - 1.1.201.0/24 !
. ’
| OPENSTACK_TN | 1 65 1
e i | \ DPENSTA%K_TD
VLAN 2b (PROXY
viay2ef | 100.70.0.04 A
5105-510

Alice

100.70.0.2 U 100.70.1.10

100.70.0.3

Fig. 5. Available paths for Alice after her authentication in Trento.

required. The firewall is configured according to the Alice’s
profile; available paths for Alice after the deployment of the
service graph are shown in Fig 5.

When Alice disconnects from Trento site and moves and
reconnects to Turin site, this behavior is recognized by the
VCEF, which updates the Alice’s service graph (see Figure 4(b))
and sends it to the FROG orchestrator. At this point, the
ALICE_FW instance in the UN at the TN site is terminated,
a new instance is started at the UN in TO, and network paths
are recalculated, resulting in the scenario of Figure 6.

Alice exits from the VPNPP service either by logging out
through the authentication server, or by cutting the connection
with the Access Network. The VCF is then notified (by the
authentication server in the first case, or by polling the ODL
controller in the latter) and sends to the FROG orchestration
a request to delete the Alice’s service graph. Computing and
network resources used to implement such service session are
then released by the proper domain orchestrator(s).

As a qualitative evaluation, the current version of the
prototype launches a VPNPP service graph in 45s in average.
Most of the delay is due to the boot time of the firewall VM
(10-40 seconds). The remaining time is spent along the control
path (VSP, VCF, FROG Orchestrator, Domain Orchestrators).

To conclude, a demonstration video showing the proposed

’ 77 (epE) N
! INTERNET L
! VLAN 200 - 1.1.1.0/24,
\ t T J
{ I Vsp |]
| INTRANET Cang) ‘ N i
i .70 VLAN 201 - 1.1.201.0/24 . }
\ | T x“T _____ A
| oPENSTACK_TN) I 4165
~———— | VPNPP | jun_TO
PROXY I
VLAN 202
6{ENSTACK—T° 4 10070004 | 227" Wvian2
Se-———= 099
NODE-VE ODE-
5103 510 5098
sk2
Alice Alice S
100.70.1.10 5106-5107

100.70.1.10

8 mmp g

5107 \\DNS2)

100.70.0.2 100.70.0.3

Fig. 6. Available paths for Alice when she moves to Torino.

VPNPP service at work is available at [10].

VI. CONCLUSION

The VPNPP service and architecture presented in the paper
provides end-to-end per user services through a two-layers
orchestration framework. The proposed idea has been validated
through an open source prototype running over JOLNET,
an experimental, geographical, OpenFlow-based network. The
VPNPP experiment has shown hierarchical orchestration of
network services over multiple technological domains and
dynamic reconfiguration of per-client service function chains
on a geographical setup.

As a future work, we will address performance and scal-
ability issues related to the mobility support in the proposed
framework. We will also implement the modules that compose
the VPNPP service function (Figure 1)) as VNFs that are part
of a service graph; this would provide more flexibility since it
would allow, for instance, to reuse the same slice for multiple
purposes by just deploying/undeploying such a service graph.

REFERENCES

[1] P. Quinn and T. Nadeau, “Rfc7498 - problem statement for
service function chaining.” [Online]. Available: https://tools.ietf.org/
html/rfc7498

[2] “Service function chaining (sfc).” [Online]. Available: https://datatracker.
ietf.org/wg/sfc/charter/

[3] “Network functions virtualisation.” [Online]. Available: http://www.etsi.
org/technologies-clusters/technologies/nfv

[4] “Open source mano.” [Online]. Available: https://osm.etsi.org/

[5] “Unify: unifying cloud and carrier network,” 2013. [Online]. Available:
http://www.fp7-unify.eu/

[6] “Sg exchange,” 2015. [Online]. Available: http://www.5gex.eu

[7] 1. Cerrato, A. Palesandro, F. Risso, M. Su, V. Vercellone, and H. Woes-
ner, “Toward dynamic virtualized network services in telecom operator
networks,” Computer Networks, vol. 92, Part 2, pp. 380 — 395, 2015,
software Defined Networks and Virtualization.

[8] Netgroup @polito. The FROG (v.4). https://github.com/netgroup-polito/
frog4.

[9] “Jolnet: a geographical sdn network testbed.” [Online]. Available:
https://www.softfire.eu/jolnet/

[10] M. D’Ambrosio, V. Vercellone, M. Ullio, F. Risso, and I. Cerrato.
Demo prototype vpnpp with dynamic service reconfiguration.
[Online]. Available: https://www.dropbox.com/s/bkm82fbw700myq7/
VPNPP_Presentation%26Demo%?20v2.avi?dl=0

