
EdgeNetworkCloudSim: Placement of Service
Chains in Edge Clouds Using NetworkCloudSim

Michael Seufert, Brice Kamneng Kwam, Florian Wamser, Phuoc Tran-Gia
University of Würzburg, Institute of Computer Science, Chair of Communication Networks, Würzburg, Germany

{seufert | florian.wamser | trangia}@informatik.uni-wuerzburg.de, brice.kwam@stud-mail.uni-wuerzburg.de

Abstract—Edge cloud computing is a trending paradigm,
which extends cloud computing by additionally utilizing comput-
ing resources at the network edge, e.g., at mobile base stations.
Especially personalized services can be instantiated or migrated
close to end users, which improves the latency and supports user
mobility. However, the placement of the service chains is crucial
for the performance of the services and the energy consumption
of the edge cloud platform, and appropriate algorithms have to
be designed. To support the simulative performance evaluation
of such algorithms, EdgeNetworkCloudSim was developed. It is
an extension of NetworkCloudSim, and allows to simulate and
evaluate the orchestration and consolidation of service chains in
an edge network cloud.

I. INTRODUCTION

Cloud computing relies on sharing computing resources

on demand, which allows to elastically scale the resource

utilization according to the workload. Most of the cloud

workloads are applications (software as a service), which have

high computing and network requirements. As the usage of

cloud computing is trending, also the network loads due to

data center traffic are increasing [1]. However, clouds, which

are highly centralized data centers in the core network, are

not optimized for personal services consumed by (mobile)

end users, e.g., in terms of low latency. Therefore, the new

paradigm of edge cloud computing aims to extend cloud

computing by additionally utilizing computing resources at the

network edge, e.g., at mobile base stations. Virtualized cloud

services can be instantiated or migrated at the network edge

close to end users to offer personalized services, support user

mobility, and achieve low latencies.

The EU H2020 project INPUT (In-Network Programma-

bility for next-generation personal cloUd service supporT 1)

aims to provide a programmable platform for fully virtualized,

personalized cloud services at the network edge, which opti-

mizes both power and performance, and vertically integrates

with cloud computing. The platform is instantiated on dis-

tributed network infrastructure (INPUT nodes) and manages

the utilization of the physical resources and the deployment

of services. When a new personal cloud service is requested

by an end user, the whole service chain, composed of the

1http://www.input-project.eu/, accessed: 2017-05-03

Fig. 1: INPUT service chains

specific service apps and the related back-end network, must

be deployed in the edge network, which is illustrated in

Figure 1. The single service apps composing the service chain

are implemented as virtual machines (VMs), which can be

instantiated and migrated to any INPUT node. Moreover, each

service chain contains a user app on an end device of the user,

which communicates with the service apps from the user’s

personal network, and optional datacenter apps, which can

run in traditional clouds in the core networks.

The placement of the service apps, i.e., the allocation of

VMs to physical servers, of the needed service chains highly

influences the performance of the services and the energy

consumption of an edge cloud platform. Therefore, appropriate

algorithms for the orchestration and consolidation of service

chains have to be designed and evaluated. As the complexity of

a sufficiently large edge cloud platform soon exceeds the appli-

cability of analytic evaluation methods or hardware testbeds,

simulative performance evaluation is a suitable alternative.

This paper presents EdgeNetworkCloudSim, which was devel-

oped in the INPUT project based on NetworkCloudSim [2]. It

allows to simulate and evaluate the placement, orchestration,

and consolidation of service chains in an edge network cloud.

Section II presents related simulation frameworks. Sec-

tion III describes the extensions of NetworkCloudSim to

support service chains and edge networks. Section IV presents

the parameters and metrics of the simulation framework,

and describes an exemplary performance evaluation. Finally,

Section VI concludes.

II. RELATED WORK

For cloud computing, a few simulation frameworks have

already been developed. In the following, an overview of open

source frameworks is given.

GreenCloud [3] is a powerful simulation tool to observe,

measure, and interact with cloud resources. GreenCloud was

developed for energy-aware data centers and is an extension

of the well-known NS2 Network Simulator [4]. It is primarily

focused on communications within the cloud, e.g., all com-

munication processes are simulated at the packet level.

iCanCloud [5] can be used to predict the trade-offs between

cost and performance of a given set of applications executed

in a specific hardware. It simulates instance types provided

by Amazon EC2 [6] and customized VMs. This framework

has a flexible cloud hypervisor module and provides a user-

friendly GUI to ease the generation and customization of

large distributed models. New components can be added to

the repository of iCanCloud to extend its functionality.

CloudSim [7] provides a generalized and extensible sim-

ulation framework that enables modeling, simulation, and

experimentation of emerging cloud computing infrastructures

and application services. It has some pre-defined policies for

allocation of host resources to virtual machines, but also

supports user-defined policies. During the simulation, com-

ponents can be dynamically inserted, stopped, and resumed.

This framework supports virtualized server hosts, energy-

aware computational resources, and message-passing applica-

tions, but lacks a GUI. CloudAnalyst [8] is an extension of

the CloudSim framework, which can be used to model and

evaluate large-scale cloud applications in terms of geographic

distribution of both computing servers and user workload,

such as networking applications. It provides geolocation for

data centers and user distribution on a map of the world. The

simulation is made with the purpose of studying the behavior

of such applications under various deployment configurations.

It has a very easy to use GUI and the simulation can be

configured with a high degree of flexibility. The experiments

can be easily repeated since the configuration can be saved in

a file and restarted by loading that file. Moreover its output is

graphical, which makes its analysis very easy.

NetworkCloudSim [2] is an extension of CloudSim, and

implements the network layer in CloudSim to also simulate

network traffic. The drawback is that no GUI is available.

However, as NetworkCloudSim brings all the features of

CloudSim, and additionally allows to simulate the underlying

network, it was selected as the base of the edge network cloud

simulation framework.

III. EXTENSION OF NETWORKCLOUDSIM

Before getting into the actual work, it is important to

understand how NetworkCloudSim works. Therefore, this

section first introduces the most important components of

NetworkCloudSim. More details can be obtained from the

original publications [2], [7].

A NetworkDatacenter encapsulates a set of computing

hosts. Switch represents a network entity which can be

configured as a router or as a switch. Currently, to allow to

create various topologies, three types of switch are available:

root, aggregate, and edge switch. The edge switch is directly

connected to hosts. An aggregate switch connects different

switches. The root switch connects the datacenter to the

Internet. The network can be configured either through a

BRITE [9] file or through explicit generation of links between

the entities. Two types of packets can be sent. HostPackets
are transmitted in the virtual network of a single host, and

NetworkPacktes are sent from one server to another.

NetworkHost models a physical computer or storage server.

It hosts and manages NetworkVMs, which represent virtual

machines (VM). They are allocated to hosts according to

a NetworkVmAllocationPolicy. AppCloudlet represents an

application with multiple tasks (NetworkCloudlets). A Net-
workCloudlet is a task with various stages of execution, which

runs in a VM. There are four stages, namely, send, receive,

execute, and finished. They allow the NetworkCloudlet to send

or receive packets to/from other NetworkCloudlets, and pro-

cess data itself, which can be configured and implemented by

an event-based logic according to custom requirements. To run

an application, the NetworkDatacenterBroker schedules the

NetworkCloudlets on different VMs. NetworkCloudletSched-
uler implements a policy, which determines the sharing of

processing power among NetworkCloudlets in a VM.

A. Requirements for Edge Computing Platform

In order to simulate an edge computing platform in the

INPUT project, the simulator must fulfill some additional

requirements, which are described in the following.

Services have to be supported, which consist of several

service apps (VMs) that exchange and process data in a spec-

ified order. This means, services are implemented as service

chains, and in the remainder of this paper, these terms will be

used interchangeably. Policies have to be implemented, which

allocate or migrate service chains according to service-level

agreements or energy efficiency. Users have to be considered,

which start and interact with the services (inter-arrival time

distributions of service request or service interaction) and

possibly change their locations (user mobility). Services can

be used by users multiple times before the user terminates

the service (service time distribution). Statistics have to be

collected and exported regarding the service chain allocation,

host and network utilization, and energy consumption. They

can be used to evaluate the performance of different orches-

tration and consolidation policies and investigate trade-offs.

B. Implementation

The first implemented extensions introduce service chains,

one user, and new statistics to NetworkCloudSim. Many

classes of NetworkCloudSim needed only minor modifica-

tions, so they will not be discussed here. The remainder of

this section will only explain the major modifications, and

the features and capabilities they bring into the framework.

Note that multiple users, probabilistic user interactions, and

mobility of users were not implemented yet, but can be easily

added in the next extension phase. The current source code

of EdgeNetworkCloudSim is available on GitHub2 and can be

used under the Apache License, Version 2.0.

The EdgeService class represents a service chain that can

be started by a user. The service chain defines the Net-

workCloudlets and the corresponding task stages. Thereby,

NetworkCloudlets are bound to one VM each and consume the

allocated resources of the VM exclusively, which is assured

by using a modified space-shared NetwockCloudletScheduler

of NetworkCloudSim. The NetworkCloudlets of the chain

have typically the following six stages: receive, execute, send,

receive, execute, send. First, the request is received from

the user or the previous NetworkCloudlet. Then, some data

can be processed locally. A new request is sent to the next

NetworkCloudlet (if any). After all NetworkCloudlets of the

chain have forwarded the requests, the responses traverse

the chain backwards. Thus, a NetworkCloudlet receives the

response, it can again compute something locally, and then

send a response to the previous NetworkCloudlet or the user.

Thus, the user only has to start a service chain and send

a request to the first NetworkCloudlet. Then, the chain will

process the request as described above and return the result

to the user. The EdgeService also takes care of the VM

management for the given service and starts the required VMs

(one per NetworkCloudlet) in the appropriate data centers

according to the predefined allocation policy. Therefore, differ-

ent VM allocation policies were implemented, which consider

proximity to the user and available CPU, RAM, storage, and

bandwidth.

The EdgeDatacenterBroker class represents a broker,

which mediates the actions of a user. In NetworkCloudSim,

the broker was responsible for the VM management (cre-

ation, destruction, migration) as well as the scheduling of

NetworkCloudlets. In EdgeNetworkCloudSim, this is now the

responsibility of the service chain. However, the broker is now

responsible for the service management. This means, it creates

and starts the user VM and the services of a user and sends

requests to the services on behalf of the user.

To normalize the available VMs, different EdgeVms were

predefined and can be used to specify the size of service apps

easily. Several VmTypes based on the virtual machines avail-

able on Amazon Elastic Compute Cloud (Amazon EC2) were

implemented as listed in Table I. Nevertheless, other custom

VMs types can be added. Each VM runs a single specific

NetworkCloudlet. For each of these NetworkCloudlets, the

number of instructions, which have to be executed, and the

amount of data, which is sent by each of them, can be specified

or computed randomly.

After the deployment of the VMs on different hosts, the

packets of requests and responses have to be routed to the

destination VM (i.e., VM of next/previous NetworkCloudlet

in the service chain, or user VM). Therefore, the Floyd-

Warshall algorithm [10] was implemented to calculate the

delays between all data centers and the next hop matrix. At

2https://github.com/lsinfo3/EdgeNetworkCloudSim, accessed: 2017-05-03

TABLE I: VM Type Definition

VM Type CPUs RAM

T2Nano 1 512 MB
T2Small 2 2 GB
T2Large 4 6 GB

M4XLarge 8 16 GB

the beginning of the simulation, after loading the BRITE file,

a global (next hop) routing table of the complete topology

is computed and stored. This computation is done only once,

which allows a linear reconstruction of the paths on demand,

minimizing the memory consumption.

IV. SIMULATION ENVIRONMENT, PARAMETERS, AND

METRICS

The main purpose of this section is to explain how this

framework is to be used. First, the simulation environment

is described. Then, the specific parameters, which can be

configured, are presented. Finally, the results are outlined,

which can be obtained from a simulation run.

A. Simulation Environment

As this framework is an extension of NetworkCloudSim

[2], which was implemented in Java, a Java Development

Kit (JDK) and optionally an integrated development envi-

ronment (IDE) are needed to configure the simulation. Java

is not specific to any processor or operating system, thus,

EdgeNetworkCloudSim can be run on mostly all operating

systems (Linux/Mac/Windows) with a Java Runtime Environ-

ment (JRE). Simulation runs can be started on a console or

within an IDE.

B. Parameters

In order to use this framework, the user first has to set up the

investigated system and its entities, and define the evaluation

scenario. First of all, the edge resources have to be defined.

Therefore, the edge data centers (DC) are created. Each

DC has a name, a number of hosts, which have predefined

resources (i.e., CPU, RAM, storage), and a VM allocation

policy. The internal network of the edge resources has to be

defined as well. For this purpose, the type and number of

switches that are going to be used as well as the links between

them have to be specified. The links and their characteristics

(i.e., capacity and delay) are defined in a BRITE file, and then

the end points of the defined links have to be mapped to the

simulation entities (hosts and switches).

The next step is to define the user, who is represented by the

EdgeDatacenterBroker, and the services he intends to start in

the edge cloud. For simulating the user, a dedicated user DC

has to be created to ensure that only the user VM but no service

VMs are allocated in that DC. Then, the services have to be

defined and added to the service list of the broker. The service

chain of each service has to be manually set up by specifying

the VM type and their order in the service chain, creating

the corresponding NetworkCloudlets, defining the task stages

of each NetworkCloudlet. This includes the definition of the

number of instructions, which have to be processed in the

execution stages, and the amount of data, which are sent in

the send stages of each NetworkCloudlet. These numbers can

be set statically or follow probability distributions.

As the implementation of the framework is ongoing, the

framework will support multiple users and user mobility in

the next extension phase. Therefore, several dedicated user

DCs will be instantiated, which can host many user VMs.

These user VMs can optionally be moved among the user

DCs according to mobility patterns. Moreover, the current

static service instantiation and interaction will be extended

to support also probabilistic user interactions. This means,

services can be started by users according to specific service

inter-arrival time distributions and these services usage time

follows specific service time distributions. Also within these

service usage phase, the requests, which are sent by the user

to the service, can follow certain request inter-arrival time

distributions.

C. Metrics

The goal of a simulation is to evaluate the performance of

orchestration or consolidation policies in different scenarios.

After the scenario has been defined, the simulation runs are

performed, and several metrics can be obtained. This section

explains what kind of metrics are produced and what they can

be used for.

Several information about the simulation environment itself

are collected to check the orderly execution of the simulation

runs. This includes the start and end time of the simulation run,

whether the entities (hosts and switches) were initialized, and

the network was successfully activated. Also the infrastructure

of the edge cloud is monitored. Therefore, the hosts and links

regularly log their utilization. This allows to compute the

energy consumption of the current allocation by adding energy

models for the simulated entities.

The framework also monitors the service placement and

request processing. Therefore, it logs the checks that were

performed to allocate a VM according to the VM allocation

policy and if and why the allocation failed for the checked

hosts (e.g., due to insufficient CPU or RAM on the target

host). Finally, it stores the data center in which the VMs of

a service were created, or whether VMs, and thus, the whole

service chains, could not be instantiated. If a service chain

was successfully placed, EdgeNetworkCloudSim monitors the

start and end of each VM, as well as each stage of the

NetworkCloudlets. Thereby, it can be monitored how long

each request was processed by a single service app or the

whole service chain. Finally, the EdgeDatacenterBroker logs

the times and types of the user interactions, i.e., the start of a

service and the corresponding requests and responses.

As the framework does not have a GUI, the logs are output

to the console or to a text or CSV file, depending on the needs

and the way the data will be evaluated. A built-in custom

logger gives the user the possibility to redirect the output to a

file in a custom format.

V. EXEMPLARY PERFORMANCE EVALUATION

In order to show how the framework shall be used, this

section presents a simple example. Figure 2a shows the scheme

of the edge network topology for this example. This topology

contains five data centers (DCs), four of the DCs are for

running the services and one DC for the user himself. To

simulate the user, he has to be located in a dedicated DC,

which hosts the user VM for sending requests to the services

in the edge cloud network. For simplicity, each DC contains

one host with 4 CPUs, 8 GB RAM, and 1 TB storage.

The interconnection of the edge cloud network has to be

implemented by choosing the appropriate switch and link

types. The hosts in each DC are connected to an EdgeSwitch

with a 10 Gbps connection with 0 ms delay to model high

speed connections within DCs. The DCs are connected to

AggregateSwitches with a 50 Gbps cable and 10 ms delay,

and the AggregateSwitches are interconnected with 100 Gbps

links and 50 ms delay. The resulting implemented topology

can be found in Figure 2b. It ensures that on each link of

the scheme of the network topology, the simulated packets

traverse one switch in the implemented topology.

(a) Scheme of network topology

(b) Implemented network topology

Fig. 2: Network topology of exemplary evaluation scenario

Listing 1 shows the BRITE file used to configure this

network. It contains 13 nodes and 15 edges (some lines of

the file have been left out for simplicity). The list of nodes

contains the node ID in the first column, which is the only

field used by the simulation framework at the moment. The

list of edges has an edge ID in the first column, the source

node ID in the second column, and the destination node

ID in the third column. Moreover, the delay (in ms) and

capacity (in kBps) are specified in the fifth and sixth column

respectively. The other fields of the BRITE file are not used by

EdgeNetworkCloudSim yet, but can be later used to specify

the x and y position of nodes, the indegree and outdegree,

the autonomous systems, or the node and link types [9]. The

entities then have to be defined and mapped to the nodes

configured in Listing 1.

Listing 1: Excerpt from BRITE network configuration file

Topology : (13 Nodes , 15 Edges)

. . .

Nodes : (13)

0 1 1 1 1 1 RT NONE

1 1 2 2 2 1 RT NONE

2 2 3 3 3 1 RT NONE

. . .

Edges : (15)

0 0 1 3 . 1 6 0 . 0 1250000 .0 1 1 E RT U

1 1 2 5 . 0 9 1 0 . 0 6250000 .0 1 1 E RT U

2 3 4 1 . 4 1 0 . 0 1250000 .0 1 1 E RT U

3 2 4 6 . 0 0 1 0 . 0 6250000 .0 1 1 E RT U

4 2 5 5 . 0 9 5 0 . 0 12500000 .0 1 1 E RT U

. . .

In this exemplary performance evaluation, two service

chains will be placed consisting of VMs defined in Table I. The

service chain of Service 1 consists of two sequential T2Nano

VMs followed by a T2Small VM, Service 2 uses a T2Small,

a T2Nano, and a T2Large VM in this specified order. The

user will request Service 1 (A), Service 2 (B), and a second

instance of Service 1 (C). The policy to place the VMs in

the edge network cloud is the VmAllocationPolicyCpu,

which will try to allocate the VMs of a service chain one after

another. All data centers are checked if they can host the VM

according to its requirements. Then, the placement policy will

prefer the data center with the lowest delay and the host with

the smallest number of CPUs allocated. Since the user and

his corresponding broker are located in the user DC (#13),

the closest data center is DC #2, in which all services try to

start their VMs first. Service A can be completely allocated

to DC #2 as the resources of the host are sufficient for all

three VMs of the service. The second service chain (B) fails

to allocate its first VMs in DC #2 because no more CPUs are

available. Thus, it places the T2Small and the T2Nano VMs

on DC #4, which is the next close DC (together with DC #6).

The T2Large VM needs 4 CPUs, which are not available on

DC #4, but on DC #6. Finally, the third service chain succeeds

to start its first T2Nano on DC #4, and the other two VMs

have to be started in DC #8. An overview of the placement is

given in Table II.

After the start of the services, the user can now send requests

to the services. In order to show the impact of the network

TABLE II: Placement of VMs in data centers

Entity VM Type VM ID DC ID

User T2Nano 0 13
Service A T2Nano 1 2

T2Nano 2 2
T2Small 3 2

Service B T2Small 4 4
T2Nano 5 4
T2Large 6 6

Service C T2Nano 7 4
T2Nano 8 8
T2Small 9 8

configuration in the framework, the service time of the baseline

configuration and three modified configurations are compared.

Note that only one simulation run was conducted per con-

figuration because this exemplary performance evaluation is

completely deterministic. This means, in each simulation run,

the user sent one request to each service, and the services

processed a deterministic number of instructions in each VM.

Also the amount of data transmitted between the user and the

service chain, and between the VMs within a service chain is

fixed to 1 GB. This deterministic evaluation scenario allows to

explicitly calculate the service times of each service depending

on its placement, and thus, to verify the simulation framework.

In a real performance evaluation, multiple mobile users have

to be considered, as well as probabilistic service requests and

request sizes.

Figure 3a shows that the baseline service times of all three

services (black bars) are similar but slightly increasing from

service A to C. This is expected as more links have to be

traversed by packets of services, which are more distant to the

user (service B and C). The figure also shows a comparison

between the baseline and a configuration, in which the user

and services have to send twice as much data (2 GB) as in

the baseline configuration (1 GB, yellow bars). It can be seen

the service time of each service increases, because the data

transmission in the network takes longer.

Also when the link delay is doubled, the packets need more

time on each link. This affects all service times negatively,

which is shown in Figure 3b. Again the baseline is depicted

in black, while the results of the modified configuration are

plotted as yellow bars. It can be seen that service A is

least affected as only four transmissions (from user DC via

AggregateSwitch 1 to DC #2 and back) are needed. In contrast,

packets of service B and C traverse much more links, which

causes the higher increase of the service time.

Finally, Figure 3c compares the baseline (black) to a con-

figuration with double link bandwidths (yellow). The bars

show that the service times slightly improve. Services, which

send packets over more links, benefit more from the double

bandwidth. Note that for all service times presented in Fig-

ure 3, the obtained results from the simulation exactly matched

the computed service times of this deterministic performance

evaluation scenario.

To sum up, this exemplary performance evaluation showed

how to configure EdgeNetworkCloudSim for a specific evalu-

A B C
24.0

24.5

25.0

25.5

26.0

Service

Se
rv

ic
e

Ti
m

e
[s

]

Baseline
Double communication data

(a) Double communication data

A B C
24.0

24.5

25.0

25.5

26.0

Service
Se

rv
ic

e
Ti

m
e

[s
]

Baseline
Double delay

(b) Double delay

A B C
24.0

24.5

25.0

25.5

26.0

Service

Se
rv

ic
e

Ti
m

e
[s

]

Baseline
Double bandwidth

(c) Double bandwidth

Fig. 3: Comparison of service times for baseline configuration and modified configuration

ation scenario. The obtained evaluation results confirmed that

placement algorithms for edge clouds have a huge impact on

the overall performance of an edge cloud. Already for this

simple example with a single user and static service requests,

the placement of a particular service chain determined how

different network conditions differently affected the service

times. In future work, more complex simulative evaluations

have to be conducted, which investigate the performance of

edge service placement algorithms in more detail, for example,

in terms of resource and energy utilization of hosts, service

quality, and placement algorithm computation time. Therefore,

EdgeNetworkCloudSim proved to be a valuable tool, which

can be easily customized to the needed evaluation scenarios.

VI. CONCLUSION

This paper presented EdgeNetworkCloudSim, an extension

of NetworkCloudSim [2], which allows to simulate the orches-

tration and consolidation of service chains in an edge cloud

environment. The extension introduces users, service chains,

and service request processing, which is implemented as a

combination of local processing and forwarding of requests

and responses along the service chain. The framework allows

to specify the edge cloud resources, the network topology, the

user interactions, and the VM allocation policies. The results

of a simulation run allow to evaluate the resource utilization

and service processing according to energy efficiency and

service-level agreements.

An exemplary performance evaluation has been presented

to show how the simulation framework can be configured.

Moreover, the impact of different network configurations on

the service times of the placed services was investigated. It

could be seen that, depending on the particular placement of

a service chain, the service time was impacted differently by

the different network configurations. Thus, placement algo-

rithms for service chains have a huge impact on the overall

performance of an edge cloud, and need to be evaluated and

optimized.

As the implementation of EdgeNetworkCloudSim is ongo-

ing, the current implementation only supports one user and

static service requests. In the next extension phase, which will

be published in a few months, the support for multiple users,

probabilistic user interactions, and mobility of users will be

added. Then, the framework will be a valuable tool, which

is used in the INPUT project to compare the performance of

placement strategies for service chains on edge clouds. The

goal is to assess the different orchestration and consolidation

approaches (e.g., heuristics, linear programs) in terms of run

time to compute the placements, and goodness of placements,

i.e., trade-offs between service quality and energy efficiency.

ACKNOWLEDGMENTS

This work was partly funded in the framework of the EU

ICT project INPUT (H2020-2014-ICT-644672). The authors

alone are responsible for the content.

REFERENCES

[1] Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2015–
2020,” Cisco, Tech. Rep., 2016.

[2] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling Parallel
Applications in Cloud Simulations.” in 4th IEEE/ACM International
Conference on Utility and Cloud Computing (UCC), Melbourne, Aus-
tralia, 2011.

[3] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: A Packet-level
Simulator of Energy-aware Cloud Computing Data Centers.” Journal of
Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[4] “The Network Simulator Ns2,” http://www.isi.edu/nsnam/ns/, accessed:
2017-03-20.

[5] A. Nuñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “iCanCloud: A Flexible and Scalable
Cloud Infrastructure Simulator.” Journal of Grid Computing, vol. 10,
no. 1, pp. 185–209, 2012.

[6] “Amazon EC2 Intances,” https://aws.amazon.com/de/ec2/
instance-types/, accessed: 2017-03-20.

[7] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms.” Software: Practice and Experience, vol. 41, no. 1, pp.
23–50, 2011.

[8] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst:
A CloudSim-Based Visual Modeller for Analysing Cloud Computing
Environments and Applications.” in 24th IEEE International Conference
on Advanced Information Networking and Applications (AINA), Perth,
Australia, 2010.

[9] A. Medina, A. Lakhina, I. Matta, and J. W. Byers, “BRITE: An
Approach to Universal Topology Generation,” in 9th International
Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Cincinnati, OH, USA, 2001.

[10] R. W. Floyd, “Algorithm 97: Shortest Path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

