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Abstract—The state-of-the-art mobile edge applications are
generating intense traffic and posing rigorous latency require-
ments to service providers. While resource sharing across multi-
ple service providers can be a way to maximize the utilization of
limited resources at the network edge, it requires a centralized
repository maintained by all parties for service providers to share
status. Moreover, service providers have to trust each other for
resource allocation fairness, which is difficult because of potential
conflicts of interest. We propose EdgeChain, a blockchain-
based architecture to make mobile edge application placement
decisions for multiple service providers. We first formulate a
stochastic programming problem minimizing the placement cost
for mobile edge application placement scenarios. Based on our
model, we present a heuristic mobile edge application placement
algorithm. As a decentralized public ledger, the blockchain
then takes the logic of our algorithm as the smart contract,
with the consideration of resources from all mobile edge hosts
participating in the system. The algorithm is agreed by all
parties and the results will only be accepted by majority of the
mining nodes on the blockchain. When a placement decision is
made, an edge host meeting the consumer’s latency and budget
requirements will be selected at the lowest cost. All placement
transactions are stored on the blockchain and are traceable by
every mobile edge service provider and application vendor who
consumes resources at the mobile edge.

Index Terms—Mobile edge computing, blockchain, placement.

I. INTRODUCTION

The rapid advance of mobile edge computing (MEC) has
been the last mile of enabling a shared, low-latency computa-
tional environment for multi-vendor mobile edge applications.
MEC performs computing offloading, data storage, caching
and processing, request distribution and service delivery from
the mobile edge to end users [1]. Applications with low latency
tolerance, such as augmented reality (AR), video streaming,
and online gaming, can deploy their services on the edge hosts
at a cost, to achieve lower latency and better user experience
[2].

As the market gets mature, there will be multiple 5G service
providers (SPs) provisioning MEC services to cover the same
area: bigger wholesale players will invest in infrastructure
to actually build mobile edge base stations, while there will
also be mobile virtual network operators (MVNOs) renting
resources from the former. These SPs can collaborate with
each other in several ways for better utilization of the resources

at the edge: virtual SPs have to place mobile edge (ME)
applications on one of the rented edge hosts, preferably with
lower cost, regardless of SPs. On the other hand, MEC base
stations from different SPs can share resources with each other
to process bursting requests.

For encouraging SPs to enroll their eligible MEC base
stations and hosts in resource sharing, it is common to give
incentives to SPs for contributing their resources of the hosts
for hosting edge applications. Following the changing demand
of end users, certain types of edge applications need to be
deployed on, migrated to, or removed from an edge host, in
order to meet the service requirement. By deploying the edge
applications at the right places, the edge application provider
will save costs, while providing high-quality service with low
latency to the end users. Meanwhile, the edge host will collect
incentives for its resources effectively used.

Clearly, the edge computing framework needs a placement
service to dynamically check the user needs and the available
edge hosts, and determine the placement or removal of edge
applications. In datacenters, virtual machine (VM) placement
has been well investigated, mainly with the focus of more
efficient resource utilization and lower operational expense
(OPEX). However, the collaboration of multiple SPs and
mobile edge applications vendors are posing new challenges
for ME application placement from the following aspects:
• A placement model has to make transparent and consis-

tent selections of the best host for each request for edge
computing resources. Moreover, the model has to take
into consideration that a mobile edge application may
require multiple services chained together at the edge.

• A trusted party is required to determine the best place
for application deployment. When an edge application is
deployed on a mobile edge host, the application vendor
needs to pay for the usage of the host. The placement
algorithm has to avoid affiliation to either SP to ensure a
neutral decision is made strictly according to the resource
and the cost. It may create conflicts of interest to put
any SP involved into the position of making placement
decisions: placing mobile edge applications onto the SP’s
own hosts would bring revenue for renting their resources.

• The application placement service needs to be steadily
available. Both the mobile edge hosting service providers
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Fig. 1. A MEC scenario in a certain service area. There are 3 ME base stations from 3 different SPs: SP-A, SP-B, and SP-C. They serve there own
users within the service area. For resource sharing and optimization purpose, the base stations are also connected to each other.

and the mobile edge application providers can constantly
change. The placement service provider must remain in
service regardless of the joining or quitting of vendors.

The challenges above urge a comprehensive solution uniting
all SPs and their edge hosts without bias. In this paper, we
present an architecture combined with its algorithm, namely
EdgeChain, to create a decentralized placement service for
mobile edge application that does not require trust to any party,
i.e., trustless placement service. Compared with current place-
ment solutions, EdgeChain has the following contributions:

• A cost model is presented as a stochastic programming
problem, factoring in the pricing of edge hosts, latency,
and service chaining.

• We develop a heuristic placement algorithm based on the
proposed cost model with the consideration of efficiency
for running by the blockchain.

• We introduce blockchain technologies to the MEC re-
source orchestration framework with two considerations:
the first is to store the global resource availability, al-
location, and consumption information that helps our
algorithm make optimized decisions based on the global
resource information. The second consideration is to have
a decentralized public ledge for ensuring the neutrality of
the placement decisions.

• The EdgeChain framework is presented to run our
algorithm for making placement decisions. In our design,
SPs and mobile edge application vendors participate
in the maintenance of the blockchain. An EdgeChain
client is embedded in the network function virtualization
(NFV) framework to determine the placement based on
the existing information on the blockchain. To our best
knowledge, this is the first work that leverages blockchain
to coordinate SPs for MEC application placement.

• Simulation results of our placement algorithm show its
effectiveness in mobile edge host resource sharing among

SPs. We also implement the EdgeChain by leveraging
VeChain [3], an enterprise-level blockchain-as-a-service
framework derived from Ethereum [4].

We divide the contents into the following sections. The
related work is illustrated in Section II. Section III formulates
the problem. Section IV proposes the heuristic EdgeChain
placement algorithm based on the problem formulation. Then
the simulation results are shown in Section VI. Section VII
concludes the paper.

II. RELATED WORK

The research directions in network service chaining (NSC)
were discussed in [5]. For security considerations, the authors
highlighted the difficulty of bringing short-lived network ser-
vices to targeted users in a single subscriber network by using
the current security schemes. The potential security problems
in SFC were stated in RFC7498 [6], including service overlay
security, trusted classification policy, and secure SFC encap-
sulation. We investigated a placement problem in MEC with
the consideration of application availability in [7].

Xiong et al. proposed a pricing strategy for offloading the
blockchain’s resource-consuming proof-of-work tasks to edge
computing nodes [8]. A two-stage Stackelberg game model
was presented with both the edge computing service provider
and the miners involved. A hierarchical distributed control
system was built using Hyperledger Fabric blockchain [9].
The hosting locations of cloud and fog of blockchain were
compared in [10] for IoT networks with the conclusion that
fog nodes were better as network latency was the dominant
factor.

Nakamoto introduced the concept of blockchain and imple-
mented Bitcoin [11], a decentralized cryptocurrency that first
resolved the double spending problem. Blockchains are based
on Merkle trees [12] to efficiently allow multiple documents to
be saved together in a block. As a decentralized public ledger,



TABLE I
PARTIES INVOLVED IN A MEC PLACEMENT SCENARIO

Party Description
Users Subscribers of applications and services over 5G networks

with MEC enabled.
MECSPs MEC service providers, who deliver MEC hosting services

that can run MEApps at the network edge, close to end
users. Examples include telecommunication companies
like Rogers and Telus in Canada.

MEAVs Mobile edge application vendors, who provide MEApps
and services to end users. For instance, a company selling
AR services.

MEApps MEApps stand for mobile edge applications provided by
MEAVs.

MEHosts Servers that belong to different MECSPs to provide host-
ing service of MEApps.

HostLinks Network links between hosts, regardless of which MECSP
they belong to.

AppLinks When MEApps are chained together, virtual links will be
established for data transmissions traveling through the
chain.

TABLE II
NOTATIONS USED IN PROBLEM FORMULATION

Notation Description
s,Vs,Ls, v, l s is a service chain. Vs is the set of all MEApps in

s. Ls is the set of all AppLinks in s. A MEApp in s
is denoted by v ∈ Vs, and an AppLink between two
MEApps in s is denoted by l ∈ Ls.

H,E, h, e,Vh H is the set of all MEHosts. E is the set of all
HostLinks. A MEHost is denoted by h ∈ H, and a
link between two MEHosts is denoted by e ∈ E. Vh

is the set of all MEApps placed on h.
u,m, cs u is an end user. m is a MECSP. cs is the cost of

deploying s.
cv , cvhi,v′hj

cv is the cost of deploying v. cvhi,v′hj
is the cost of

the AppLink between v on hi and v′ on hj .
ns, Pm, hm ns is the total number of users requesting s. Pm is a

random variable denoting the percentage of the users
of MECSP m. hm is an edge host of m.

γm, δm γm is the unit price of serving m’s own subscribers.
δm is the extra charge for m serving users of other
MECSPs.

Cv ,Mv CPU and memory requirement of the MEApp v.
B(eij), ζeij B(eij) is the total bandwidth capacity of HostLink eij .

ζeij is the unit price of the bandwidth of eij .
BV (eij) BV (eij) is the total bandwidth used by MEApps

deployed on hi and hj .
B(vhi

, vhj
) Bandwidth used between MEHosts hi and hj .

Ch,Mh CPU and memory capacity of the MEHost h.
teij , ts, Ts teij is the latency incurred on HostLink eij . ts is the

latency of the service chain s. Ts is the max latency
allowed by s.

blockchains can serve beyond cryptocurrencies. Ethereum [4]
used blockchain to store smart contracts that support building
virtually any decentralized application.

III. PROBLEM FORMULATION

We first list all parties involved in a MEC placement
scenario in Table I. The problem is formulated from a MEAV’s
point of view: MEApps are direct consumers of the computing
resources in the MEC environment, because a MEAV needs
to pay MECSPs for hosting its applications in order to serve

their users and meet the latency requirement. Each MEApp is
equivalent to a virtual machine (VM) deployed on a MEHost.
MEApps provided by different MEAV can be combined as a
service chain to provide comprehensive services. A service
chain may span multiple MEAVs. In this case, revenues gen-
erated by the service chain can be distributed according to the
usage of each MEApp on the service chain. For instance, a full-
fledged AR service can load real-time navigation information
from an online map application, while it can also load promo-
tions of a shopping mall nearby from the mall’s application.
The navigation data is collected by the online map application,
and the shopping mall application gets paid if the user ”clicks”
the links of the promotions.

The notations used in formulating the problem is shown in
Table II. Define a chained service s as a forwarding graph [13]
Gs = (Vs,Ls), where Vs is the set of all MEApps contributing
to the service, and Ls is the set of all AppLinks connecting
applications together. A MEApp is denoted by v ∈ Vs, and an
AppLink between two MEApps is denoted by l ∈ Ls.

The chained service is deployed on a graph of connected
MEHosts Gh = (H,E), where H is the set of all MEHosts
owned by various MECSPs and E is the set of all HostLinks.
A MEHost is denoted by h ∈ H, and a HostLink between two
MEHosts is denoted by e ∈ E. The HostLinks can be either
physical or virtual links with fixed capacities and latencies.

Suppose in a certain service area, there are ns users from
various MECSPs requesting the same chained service s from
a MEAV. We use m to denote a MECSP and hm for a MEHost
that belongs to m. Define an assigning function xvhm

, whose
value is 1 if VM v is assigned to Host hm, 0 otherwise.

xvhm
,

{
1, v is deployed on hm;

0, otherwise.
(1)

Define a binary indicator of an AppLink between two
chained MEApps in s, denoted by L(vhi

, vhj
), such that

L(v, v′) ,

{
1, l ∈ Ls exists between v and v′;
0, otherwise.

(2)

Also, we use eij to represent the HostLink between hi and
hj . The cost of deploying s is the sum of the cost of deploying
each MEApp v of the service and the cost of the traffic between
each two adjacent MEApps in the service chain. It can be
shown by

cs =
∑

hm∈H

∑
v∈Vs

cvhmxvhm

+
∑

hi,hj∈H

∑
v,v′∈Vs

cvhi,v′hj
xvhi

xv′hj
L(v, v′),

(3)

where cs represents the cost of deploying s and cvhm
is for the

cost of a MEApp v deployed on a MEHost hm. We assume
that the pricing scheme for the same MECSP is the same across
all of its hosts. For a MEHost hm, define its basic unit resource
price, which is the unit price of serving its own subscribers,
as γm. When hm is serving users of other MECSPs, it charges
a premium of δm for its unit resource, as the return for doing



courtesy for its partners. Therefore, the shared unit resource
price of hm can be represented by (γm+δm). Define Chm and
Mhm to be the capacity of vCPU and memory provided by hm.
Define Cv and Mv as the vCPU and memory consumed by
v. Define Pm to be the random variable for percentage of the
users using the service chain s via networks of the MECSP m.
Depending on the numbers of active users for each MECSP,
the total cost for the MEAV to place its MEApp v onto a host
of m is the cost incurred by users of m plus the cost by users
of other MECSPs:

cvhm
=ns(Cv +Mv)Pmγm

+ ns(Cv +Mv)(1− Pm)(γm + δm)

=ns(Cv +Mv) [Pmγm + (1− Pm)(γm + δm)]

=ns(Cv +Mv) [γm + (1− Pm)δm] .

(4)

When a request from a user for a service chain arrives,
the blockchain would know the MECSP from which the user
subscribes. For the same placement decision, the value cs
can significantly differ over changing distribution of users.
An example can be two MECSPs m1 and m2, each with
one host hm1

and hm2
. If all users are subscribers of m1

and all MEApps are placed on MEHosts of m1, then the cost
payable by the MEAVs would be lower than if all users were
subscribers of m2.

v2v1

v3 v4

v5 v6

v7

v8

ME Service Chain 1
ME Service Chain 2
ME Service Chain 3

Fig. 2. An example of ME service chains. There are 3 ME service chains
sharing the services provided by 8 MEApps.

A. HostLink Unit Price

When it comes to the cost modeling of a link between two
MEHosts, link availability is an important part for the service
consistency of the MEApps. If a heavily used HostLink is
down, consequences can be catastrophic: even if all individual
MEApps are running, the traffic would not be able to flow
through between one or more pairs of MEApps and the service
chain would not be functional. For each HostLink eij , there
can be one or more AppLinks sharing its bandwidth. HostLink
outages require migrating the MEApps if they cannot be
fixed in time. Therefore, HostLink availability has significant
influence on possible MEApp migrations and the potential
costs incurred.

The link unit price of a HostLink eij , denoted by ζeij , is
then defined to describe how much to use the HostLink eij .
The following two parameters will determine ζeij .

The first parameter is L(vhi
, vhj

) as defined in Eqn. (2). The
more AppLinks a HostLink carries, the more vital and expen-
sive it becomes. The reason behind this ranking parameter is
the potential consequence of migration: failure of a HostLink
used by many VMs would lead to massive migration of all
MEApps connected by that HostLink, which would be more
disruptive to the service chain.

The other parameter BV (eij) is the total bandwidth con-
sumed by traffic between MEApps on the two hosts. It is
selected because larger bandwidth usages would cause chal-
lenges at the time of migration: it can be hard to find another
link with enough capacity.

BV (eij) ,

 ∑
vhi

,vhj
,hi 6=hj

B(vhi
, vhj

)

 . (5)

Combining the two parameters, we define the unit price ζeij
of a HostLink eij , as the factor of the number of AppLinks
between two hosts times the factor of traffic flowing through
these links:

ζeij =

[∑
vhi

,vhj
,hi 6=hj

L(vhi
, vhj

)
]

Neij

BV (eij)

B(eij)
, (6)

where Neij is the maximum number of virtual links possible
on eij . Therefore, ζeij ∈ [0, 1]. The value of ζeij will rise
to mark up a link’s importance given it is either occupied by
more pairs of VMs, or there is more traffic assigned to eij ,
or both. The cost of any two MEApps is then the sum of the
cost serving users that belong to the MECSPs owning hi and
hj and the cost serving other users timed by the price factor
κeij :

cvhi,v′hj =nsζeij (Pmhi
+ Pmhj

)κmhi
mhj

+ nsζeij (1− Pmhi
− Pmhj

)(κmhi
mhj

+ σmhi
mhj

)

=nsζeij [(Pmhi
+ Pmhj

)κmhi
mhj

+ (1− Pmhi
− Pmhj

)(κmhi
mhj

+ σmhi
mhj

)].
(7)

B. HostLink latency

Define the latency of the link eij to be teij . For a service
chain s, the total latency ts is then

ts =
∑

hi,hj∈H

∑
vhi

,vhj
∈Vs

L(vhi , vhj )xvhixvhj teij . (8)

In the equation above, teij is a constant depending on the
particular eij . If hi = hj , then we consider the latency to be 0,
since no actual HostLink is used for data transmission between
the two MEApps. Define the maximum latency allowed for the
service chain s is Ts. Then there must be ts ≤ Ts to meet the
latency requirement.



C. Stochastic Programming Formulation

The problem is formulated as a stochastic programming
optimization. Define Vh as the set of all MEApps deployed
on the MEHost h. The objective is to minimize the total cost
of the service chain s to provide service with the lowest cost
to the end user. As discussed in Section III, the optimization
is to minimize the costs on MEHosts and HostLinks for all
MEApps of s.
Minimize

cs =
∑

hm∈H

∑
v∈Vs

cvhm
xvhm

+
∑

hi,hj∈H

∑
v,v′∈Vs

cvhi,v′hj
xvhi

xv′hj
L(v, v′)

=
∑

hm∈H

∑
v∈Vs

xvhmns(Cv +Mv) [γm + (1− Pm)δm]

+
∑

hi,hj∈H

∑
v,v′∈Vs

nsζeij [(Pmhi
+ Pmhj

)κmhi
mhj

+ (1− Pmhi
− Pmhj

)(κmhi
mhj

+ σmhi
mhj

)]L(v, v′),
(9)

w .r .t . xvhm
,

s.t . B(eij) ≥
∑

vhi
,vhj

,hi 6=hj

B(vhi , vhj ), (10)

Ch ≥
∑
v∈Vh

Cv, (11)

Mh ≥
∑
v∈Vh

Mv, (12)

∑
hi,hj∈H

∑
vhi

,vhj
∈Vs

L(vhi
, vhj

)xvhi
xvhj

teij ≤ Ts. (13)

Remarks
• Function (9) is the objective function. It minimizes the

cost of all MEApps and AppLinks by using less hosts,
while not exhausting them.

• Constraint (10) is the HostLink bandwidth capacity
bounds between each two hosts. Traffic transmitted be-
tween any two hosts hi and hj must not exceed the
corresponding bandwidth capacity B(eij).

• Constraints (11) and (12) are the CPU and memory
capacity bounds for each MEHost. The CPU and memory
used by MEApps coordinating with each other and by
intra-host communications must not exceed Ch and Mh.

• Constraint (13) is the latency requirement of the service
chain s to ensure that the total latency of s must not
exceed the maximum latency allowed Ts.

IV. THE EDGECHAIN PLACEMENT ALGORITHM

The formulation presented in the previous section is a
stochastic programming problem. Problems of this type been
proved to be NP-hard [14]. It may not be computationally
feasible when attempting to solve it in large scale. To apply our
model to real-world scenarios, we design a heuristic algorithm

called EdgeChain to achieve suboptimal results by applying
a hybrid strategy of best-fit and first-fit decreasing algorithm.
The pseudo code of the algorithm is shown in Algorithm 1.

Algorithm 1: EdgeChain Placement Algorithm
Data: host list: list of candidate MEHosts
Data: app: requested MEApp to be placed, including its

max latency allowed, stored in latency
Data: max latency: max latency allowed for the service

chain
Result: The best MEHost in host list to place app, or

none if no valid host is found
1 begin
2 sort by percentage of users of the service chain

descending
3 if multiple MEHosts found then
4 sort host list by the locations of app’s last-hop

MEApps
5 if still multiple MEHosts found then
6 sort by the latency of the HostLinks to the

previous MEApps in the service chain
ascending

7 end
8 end
9 for h ∈ host list do

10 latency← all latencies added together if app
placed on h

11 if latency ≤ max latency then
12 cpu left ← calculate remaining vCPU by Ch

and Cv of each MEApp placed on h
13 mem left ← calculate remaining memory by

Mh and Mv of each MEApp placed on h
14 if cpu left ≥ 0 and mem left ≥ 0 then
15 return h
16 end
17 end
18 end
19 return none
20 end

A. Processing Order and selection of MEHosts
The EdgePlace algorithm runs on each mining node based

on the Ethereum platform. The algorithm retrieves its input in-
formation from the blockchain, as all transactions and updates
are recorded on the blockchain. The EdgePlace algorithm
will select the MEHosts following the steps below.

1) Users: Sort all MEHosts by the percentage of users of
the service chain. For each MEApp on the service chain, con-
sider which MECSP has most users using it. Then MEHosts
with the same MECSP will have higher ranks to deploy this
MEApp. Since all MEHosts of the same MECSP have the
same unit resource cost, the MEApp can be placed on any
of the MEHosts that belongs to the best MECSP, to avoid
the situation that too many MEApps are concentrated on one
MEHost.



2) Last-hop MEApp: For MEHosts given higher priority in
the previous step, sort by the locations of last-hop MEApps.
MEHosts hosting the previous-hop MEApps will be considered
first. This step is to reduce the traffic cost between different
MECSPs.

3) Latency: For MEHosts given higher priority in the
previous step, sort by the latency of the HostLinks to the
previous MEApps in the service chain. MEHosts with lower
latency will be considered first.

After the list of candidate MEHosts are sorted according to
the steps above, the algorithm iterates the list and pick the first
valid MEHost that has enough resources to place the MEApp,
as well as meeting the latency requirement of the service chain.

V. EDGECHAIN DESIGN AND IMPLEMENTATION

In this section, we introduce the design and implementation
of EdgeChain, a blockchain-based system that integrates with
the existing MEC architecture for MECSPs and the scheduler
of MEAV. There are mainly two reasons the blockchain is used
in the system:
• The blockchain acts as a public ledger that stores all

useful information and transactions made during the
placement process. Exposure of the information would
help the placement algorithm make optimized decisions
considering the global resource demand and allocation.
The blockchain enables such centralized resource infor-
mation, in a decentralized implementation.

• As a public ledger applying proof-of-work verifications,
the blockchain makes it nearly impossible to tamper
the history stored in the blockchain. The EdgeChain
algorithm will be downloaded by all mining nodes and
they will execute the same algorithm with the same input.
The placement result will only be accepted by the system
if majority of the mining nodes reach agreement on the
output. This will ensure the neutrality of the placement
decisions.

The system takes requests to place MEApps from MEAVs,
and the placement algorithm runs as the smart contract on
the blockchain to select the best MEHost from all candidates.
The NFV orchestrator of the related MECSP receives and
enforces the placement decision, while posting the transac-
tion onto the blockchain for recording. While this paper is
written, the blockchain is implemented based on VeChain [3],
an enterprise-level blockchain-as-a-service framework derived
from Ethereum.

A. Data Entities

As Fig. 3 shows, there exist 6 types of data entities on the
blockchain and they are related to each other to represent the
status of MEHosts and placement decision of running MEApps.
The descriptions of these data entities are illustrated below.
Each data entity record has a unique Ethereum address for
other to locate it on the blockchain. All types of data entities
can be created, updated and deleted, while the blockchain will
keep the audit trail of every change.

MEHost-1

eth addr

Total CPU

Total memory

MECSP-1
eth addr

MEHost-1 eth

MEHost-2 eth MEApp-1 eth

MEApp-2 eth

Local rate

Roaming rate

MEApp-1
eth addr

CPU req

Memory req

SvcChain-1
eth addr

MEApp-1 eth

MEApp-2 eth

AppLink-1 eth

HostLink-1 eth
AppLink-1

eth addr

Src: MEApp-1 eth

Dst: MEApp-2 eth

Bw req

HostLink-1
eth addr

MEHost-1 eth

MEHost-2 eth

Total Bw

MEHost-2

eth addr

…

MEApp-2

eth addr

…

Blockchain

Fig. 3. Data entities and their relationship used by and stored
in EdgeChain, including MECSPs, MEHosts, HostLinks, SvcChains,
MEApps, and AppLinks.

1) MECSP: When a MECSP record is registered to
EdgeChain, a record of this MECSP is added with the
Ethereum addresses pointing to the records of all its eligible
MEHosts and HostLinks. A MECSP record is updated when-
ever there is change to any MEHost or HostLink.

2) MEHost: A MEHost record registers under an existing
MECSP to the blockchain. In a record, the vCPU and memory
capabilities can be found, along with the Ethereum addresses
pointing to the records of all MEApps placed onto it.

3) HostLink: Similar to MEHosts, a HostLink is under
a registered MECSP, which contains the two MEHosts it
connects, and the bandwidth of the HostLink.

4) SvcChain: A service chain is registered by a user to the
blockchain to reflect the resource consumption of a chained
service, including that from MEApps and the corresponding
AppLinks. The service chain can have MEApps from multiple
MEAVs.

5) MEApp: A MEAV will submit a record of a MEApp
whenever it needs to spin up one. A record stores the vCPU,
memory usage of the MEApp.

6) AppLink: AppLinks describe chained relationship be-
tween two MEApps. The source and destination MEApps are
stored in an AppLink record, as well as network bandwidth
requirement of this link.

B. EdgeChain Work Flow

A typical EdgeChain work flow can be demonstrated by
Fig. 4, where there are three parties participating in the entire
process: MECSPs, MEAVs, and mining nodes. We use circled
numbers and alphabets to define the work flow in sequence.

1 A user requests a service chain from the blockchain.
Such requests will be sent to the blockchain every time a user
requests a service chain.

2 The request for the service chain is recorded. When
the request is synced to the mining nodes, it will be broken
into requests for MEApps. The mining nodes will run the
logic to break down the service chain creation request. Then
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Fig. 4. Typical work flow of EdgeChain. MECSPs, MEAVs, and mining
nodes participate in the process. Steps of the work flow are marked by
circled numbers and alphabets with details documented in Section V-B.

the requests for MEApps are propagated to all corresponding
MEAVs.

3 Based on its user demand, the MEApp Scheduler
decides to create a new instance of MEApp and pass the
request to the Ethereum client of the MEAV.

4 The Ethereum client running the EdgeChain service
sends the request to the blockchain, creating records for the
request of placing a new MEApp.

5 The request of creating a new MEApp arrives at a
MECSP through its Ethereum client.

6 For every MECSP, the Ethereum client requests the
NFV Orchestrator (NFVO) to call the EdgeChain placement
algorithm downloaded to the resource manager for the decision
of the placement. This will ensure that the placement algorithm
be executed by different parties for verifying the results.
The placement result returned by the next step will only be
accepted if majority of the parties return the same placement
result.

7 The NFVO calls the EdgeChain placement algorithm
for the placement decision. Note that the decision can be a
hash representing any MEHost within the entire MEC network.
If the result points to a MEHost which does not belong to
the current MECSP, then no actual placement will be done.
Instead, only the result along with the algorithm’s hash will
be returned to the Ethereum client for verification.

8 If the result points to a MEHost of the current MECSP,
then the NFVO will sends the request to place the MEApp to
the VNF Manager (VNFM). Also, a transaction shown in Fig.
5 will be posted to the blockchain to record that placement
actually occurs.

9 The VNFM sends the request to the NFV Infrastructure
(NFVI) deploy the MEAPP onto the target MEHost.

T The mining nodes periodically perform the mining
process to verify the blockchain, as well as earning Ethers
for requesting placement services. Meanwhile, the resource

manager periodically synchronizes with the NFVI for the up-
to-date resource usage and availability, and then posts the
updated information to the blockchain.

State
182f7b: MEHost-1
vCPU: 15
Mem: 327680
Links: 
- MEHost-2
MEApps:
- MEApp-1
- MEApp-2

83c2ea: MEHost-2
vCPU: 15
Mem: 115,200 MB
Links: 
- MEHost-1
MEApps:
- MEApp-3

State’
182f7b: MEHost-1
vCPU: 15
Mem: 327680
Links: 
- MEHost-2
MEApps:
- MEApp-1
- MEApp-2

83c2ea: MEHost-2
vCPU: 13
Mem: 111,104 MB
Links: 
- MEHost-1
MEApps:
- MEApp-3
- MEApp-4

Transaction
MEApp-4
vCPU: 2
Mem: 4096 MB

EdgeChain
Placement Algorithm 
Output: MEHost-2

Fig. 5. A placement transaction in EdgeChain. A state transition happens
upon a transaction. As this figure shows, MEApp-4 is to be placed with
the requirement of 2 vCPUs and 4096 MB of memory. The input of the
EdgeChain placement algorithm is the current state of the two MEHosts.
The result is to place MEApp-4 onto MEHost-2. After the transaction
is accepted, the resources taken by MEApp-4 are deducted from the
remaining resources of MEHost-2.

VI. NUMERICAL RESULTS

In this section, we illustrate the numerical results of the
MEC placement cost changes based on varying mobile edge
application user cases using CloudSim [15]. To clearly demon-
strate the focused trends, the following assumptions are made
to simplify the modeling of the problem without losing gen-
erality. We first discuss the placement results output by the
EdgeChain algorithm for the same service chain on the same
set of MEHosts.

1) The unit costs of the CPU and memory of all hosts for
the same MECSP are the same.

2) Costs of network bandwidth for all links follow the same
unit price.

3) One mobile edge application includes the same type of
VMs with the same CPU, memory and network band-
width requirements.

4) A request from the user will be processed by one VM,
while the VM may communicate with other VMs to
exchange information.

A. Parameters

With the assumptions above, we choose parameters for our
placement model to evaluate the performance and the facts
under different circumstances. First, we choose a MEC service
scenario of 3 MECSPs m1, m2, and m3, each with 3 MEHosts,
where h1, h2, h3 belong to m1, h4, h5, h6 belong to m2, and
h7, h8, h9 belong to m3.

Three identical requested service chain, each with 5
MEApps is to be placed. The MEApps of each service chain
are denoted by v1, v2, v3, v4, and v5. The service chain starts
from v1 and ends at v5: v1 → v2 → v3 → v4 → v5. We
assume that all MEApps have the same CPU, memory and



h1 h2 h3 h4 h5 h6 h7 h8 h9
MEHosts

0.6

0.5

0.4

0.3

0.2

0.1

U
ni

t r
es

ou
rc

e 
pr

em
iu

m
 fo

r 
m

1 
(\

de
lta

_1
) 0

0

5

5

5

5

0

0

2

5

5

5

0

0

0

2

4

5

5

5

5

3

1

0

5

2

3

0

0

0

5

0

0

0

0

0

0

5

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

(a) Pm1 = 0.5 and Pm2 = Pm3 = 0.25.
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= 0.25 and Pm3
= 0.5.

Fig. 6. Placement results of 3 service chains consisting of 15 MEApps in
all. The value of δm1 changes from 0.1 to 0.6. Figure (a) shows the place-
ment decision when Pm1 = 0.5 and Pm2 = Pm3 = 0.25. In comparison,
Figure (b) shows the placement decision when Pm1 = Pm1 = 0.25 and
Pm3 = 0.5.

bandwidth requirements, which are shown in Table III, along
with other parameters.

TABLE III
PARAMETERS FOR THE MEC SCENARIO

Parameter Value Parameter Value
Cv 2 vCPUs Mv 2048 MB
Ch 64 vCPUs Mh 65536 MB
γm1 1.0 δm1 0.2
κm1 1.0 σm1 0.2
γm2 0.8 δm2 0.5
κm2 0.8 σm2 0.5
γm3 1.2 δm3 0.3
κm3 1.2 σm3 0.3
ns 100 users Pm var
B(eij) 10000 Mbps B(v, v′) 30 Mbps
teij 15 ms Ts 50 ms

B. Placement trends with changing unit resource premium

The placement decision changes by the increase of δm1

under different user distributions are shown in Fig. 6, where
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Fig. 7. Numbers of MEApps placed on the 3 MEHost with different
percentages of users in the network. Users of m1 increase from 0% to
100%, while those of m2 decrease from 100% to 0%. There is no user
for m3.

δm1
, the unit resource premium payable to the MECSP for

hosting MEApps for others, increases from 0.1 to 0.6. For
comparison, in Fig. 6(a), most users are from m1. There is
Pm1 = 0.5 and Pm2 = Pm3 = 0.25. Meanwhile, in Fig. 6(b),
most users subscribe services from m3 as Pm1 = Pm1 = 0.25
and Pm3

= 0.5.
From the results of the two scenarios, we learn that the

MEHosts with lower combination of unit resource base price
(γm) and unit resource premiums (δm) will be selected first.
The MEHosts of the MECSP will have more weight upon
consideration if there are more users from that MECSP.

C. Placement trends with changing user distribution

To further demonstrate the impact from the distribution
of the users, we simulate various scenarios with different
percentages of users for m1 and m2, while there is no user
for m3. Users of m1 increase from 0% to 100%, while those
of m2 decrease from 100% to 0%.

The results have shown the trends of MEApps migrating to
MEHosts owned by the MECSP that has more active users to
avoid premiums charged by other MECSPs. However, resource
sharing still takes place (m3 hosting MEApps for m1 and m2)
when needed for better latency results and service quality.

VII. CONCLUSIONS

In this paper, we have presented the architecture and the
algorithms for mobile edge applications placement for multi-
ple mobile edge computing service providers, leveraging the
blockchain-based system called EdgeChain. Future work will
be considering multiple service chains initiated by multiple
users, to achieve lower overall costs for the entire system.
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