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Abstract—Switches that can be (re)programmed through the
network programming language P4 are able to completely change
– even while in the field – the way they process packets. While
powerful, P4 code is inherently static, as it is written and installed
to accommodate a particular network requirement. Writing new
P4 code each time new requirements arise may be complex and
limits our agility to deal with changes in network traffic and
services.

In this paper, we present P4I/O, a new approach to data-
plane programmability based on the philosophy of Intent-Based
Networking. P4I/O provides an intent-driven interface that can
be used to install and/or remove P4 programs on the switches
when needed and which is easy to use. In particular, to realize
P4I/O, we (1) describe an extensible Intent Definition Language
(IDL), (2) create a repository of P4 code templates, which are
parsed and merged based on the intents, (3) provide a technique
to realize the resulting P4 program in a programmable switch,
while accommodating intent modifications at any time, and finally
(4) implement a proof-of-concept to demonstrate that intent
modifications can be done on-the-fly.

I. INTRODUCTION

Recent advances in data-plane programmability have en-
abled the implementation of customized high-speed network
functions directly into programmable switches. Examples
range from performing network telemetry on the switches [1],
[2], to fast congestion detection on the data-plane [3], to of-
floading distributed consensus algorithms to the data-plane [4].

The data-plane abstraction language P4 [5] enables network
operators to realize custom network functions without having
to tailor to the networking hardware in use. Those hardware
details will be taken care of by the compiler. This level of
abstraction makes P4 code powerful, yet it is inherently static,
because the code would have to be rewritten whenever a
new network requirement manifests, which caps our agility
in responding to network changes. We are in need of a system
that is able to accommodate changes in network requirements
and realize them quickly with minimum disruption to any
existing services. To this very problem, we present P4I/O, an
Intent-Based Networking (IBN) framework that allows users to
express their desired network functionality in the form of easy-
to-grasp intents, which are subsequently translated into P4
code, as illustrated in Figure 1. We adopt the concept of IBN to
shift the network control paradigm from an imperative manner
– which requires knowledge of the networking protocols and
the network topology – to a declarative manner, allowing
users to reap the benefits of data-plane programmability in
an intuitive manner.
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Figure 1. P4I/O architecture.

In order to realize P4I/O, in this paper, we present the
following key contributions:
Extensible Intent Definition Language (IDL). In order to
describe various kinds of network services as intents, we
devise in §III a high-level language that is close to the human
language, yet precise enough to be interpreted unambiguously
by the network controller. Furthermore, this language is exten-
sible so that we can define any kind of data-plane functionality.
Template-Based P4 Code Generation. We construct a repos-
itory of relevant network functions in the form of P4 code
templates. These templates are then parsed and represented
in a specialized data structure that facilitates combining the
network functions, following the intent instructions. The code
templates are then finally merged together to form a valid P4
program, as described in §IV.
Dynamic Intents Realization. We provide, in §V, a technique
to install the resulting P4 code in a programmable switch,
while permitting intent modification at any time. We realize
intent modifications, with minimal disruption to the traffic
forwarding process, through a state-transfer mechanism.
Framework Evaluation. In §VI, we demonstrate that P4I/O



works, by building a proof-of-concept. P4I/O code has been
released as open-source code [6].

II. NETWORK TELEMETRY USE CASES

P4I/O can be used for any network function, but to explain
its building blocks, we will consider several use cases from
the domain of network telemetry. Network telemetry functions
provide interesting challenges to solve, because they require
a state to be stored in the switch, e.g. in the form of P4
registers [7], along with complex pipeline processing logic to
compute the states. We consider the following use cases: (1)
Threshold-based Heavy-Hitter (HH) detection, (2) Distributed
Denial of Service (DDoS) victim detection, and (3) Super-
Spreader (SS) detection, which is the inverse of DDoS detec-
tion. All of these use cases are implemented using sketches,
in particular Count-Min Sketch [8] and Bitmap [9].

For example, consider use case (1): HH detection is a
mechanism to compute whether a packet is part of an HH flow,
which we define as a flow that has more than our threshold
of T packets. Consequently, the switch must track the number
of packets in each flow, while it has very limited memory and
processing resources. To effectively make use of the limited
resources, we use the Count-Min sketch, which enables our
switch to track a virtually unlimited number of flows at the
expense of slightly reduced accuracy.

Our goal is to run a network in which network functions,
such as the described telemetry functions, can be (de)activated
at any time by adding/removing intents in the controller.
Realizing this goal is challenging, because intent modification
translates to the changing of switch pipeline configurations.
As each set of network functions has its own requirements for
state containers, we must consider the problem of preserving
the state from one set of functions to another. Moreover, as the
new set of functions might not have the same state containers
available, we need a mechanism to manage the unused state
values. Finally, we also have to minimize the effect of intent
modifications on the traffic forwarding process.

The following sections describe how we tackle these issues.

III. INTENT DEFINITION LANGUAGE

This section discusses the Intent Definition Language (IDL)
that is employed to express network intents. We begin by iden-
tifying the requirements for such a language and subsequently
present a working solution based on extending an existing IDL.

A. Requirements

While Han et al. [10] claim that there is currently no
standardized definition of network intent, they also argue that
intent is generally perceived as a business-level goal of how the
network should behave, abstracting the implementation details
from the operators. Reflecting on this objective, we identify
the following requirements to be satisfied by our IDL:
Readability. Network operators should be able to intuitively
express their intended services with minimum training. We
propose to cater to this need by developing a language that
is close to a natural language, e.g. English, yet still concise

Listing 1. Drop Heavy-Hitter Action Example.
import drop_heavy_hitters

define intent drop_hh_any_any:
from endpoint(’any’)
to endpoint(’any’)
for traffic(’any’)
apply drop_heavy_hitters
with threshold(’more or equal’, 20)

enough to be interpreted unambiguously by the controller.
Abstraction. The language should abstract out technical de-
tails of the implementation. To realize this, we have to move
the details of the implementation to a lower layer. The lower-
layer implementation should still be accessible by operators
with advanced technical knowledge for debugging purposes.
Flexibility. The language should be flexible enough to be
extended with any kind of required network functions. This
means that we have to design for a modular architecture, which
facilitates easy extensions of new network functions.

B. Nile Language Extension

We employ Nile [11] as the base language for our IDL.
Nile is a network intent language with the goal of providing
an intermediate layer between a natural language and lower-
level policies. In [11], user utterance is processed into a
network intent expressed in the Nile language. Nile satisfies
our requirements of readability and abstraction, but does not
facilitate the import of external module definitions. To that
end, we introduce several constructs:

1) import: to define custom actions and import them from
the actions repository,

2) apply: to apply the custom action by specifying the name
of the action in the intent definition, and

3) with: to provide parameter values required by the custom
action.

The import construct can be used multiple times to define
more than one custom action. The specified action is then exe-
cuted whenever the specified conditions in the intent definition
are satisfied.

For example, consider the code snippet in Listing 1. We
define a new action named drop_heavy_hitters that performs a
threshold-based HH detection, with threshold T = 20 packets.
The drop_heavy_hitters action is to drop HH flows. This intent
applies to all traffic, from any source or destination.

IV. P4 CODE TEMPLATES

In this section, we describe our template-based method
for forming P4 code. A knowledgeable party predefines P4
code templates that correspond to specific actions. The code
templates are then imported into a special repository in the
network controller. To render a template, the controller takes
various attributes defined in the intent as inputs. If there is



const bit<8> HH_THRESHOLD = {{ hh_threshold_val }};

const bit<8> HH_THRESHOLD = 1000;

if (meta.minRegVal > HH_THRESHOLD) {
drop();

}

Figure 2. (Top) Template example with placeholder. (Mid) Template example
with rendered placeholder value. (Bottom) Manipulation section example.

more than one intent or the intent itself is more complex, we
may also need to “merge” multiple P4 code templates into one
final P4 program.

The templates are written in a templating-language that
has several constructs that are syntactically distinguishable
from the actual text. The constructs act as placeholders that
can be populated with string values. This way, the final P4
code can be rendered by populating each placeholder with
precomputed string values. We employ Jinja2 [12], one of the
most popular templating-languages. Figure 2 (Top and Mid)
illustrates the placeholder and its associated rendered code.
The {{variable_name}} struct is used as a placeholder for a
string named hh_threshold_val.

A. Network Telemetry Function Structures

The P4 code templates for the majority of network telemetry
functions can be built upon the following structures:
Constant Definition. Integer constants, see Figure 2 (Top and
Mid).
Parser Definition. The state machine to parse the required
packet headers.
Metadata Definition. The metadata fields that are required by
the network function to perform its computation.
Packet Identification. A computation to identify whether a
packet belongs to a specified group of traffic (or vice versa).
Packet Manipulation. In this final phase, actions are taken on
the identified traffic. In the P4 language, the possible actions
are virtually limitless, but common ones are: count, mark,
drop, meter and/or a combination of them. Figure 2 (Bottom)
depicts an example for this phase.

B. Template Representation

In this section, we present a formal data structure to
facilitate combining intents and their corresponding P4 code.
As the network functions that we are dealing with are logical
representations of packet pipeline processing, the data struc-
ture should also be able to move from one condition to the
next, which is possible via a Directed Acyclic Graph (DAG)
that is based on PGA’s [13] graph structure.

1) Policy Graph Structure: To help illustrate our graph
structure, we use the HH example code in Figure 3. The
constant and metadata definitions contain no flow information
and therefore are not processed further. The parser definition
code can be represented as a directed graph with the vertices

representing the packet header names and the edges represent-
ing a possible state transfer from one header to another.

2) Combining Templates: We proceed to define how several
policy graphs can be combined. Each of the phases in §IV-A
has different characteristics and should be treated differently.
The simplest cases are the constant and metadata definitions.
To combine constant and metadata definitions from several
intents, we need to make the names unique by prepending each
name with a unique text – preferably generated from the intent
id number – and then do a string concatenation to combine all
of the constant and metadata definitions from various intents
together.

For the parser graphs, we expect many overlapping nodes
coming from several policies, which can be resolved via
computing the union of the vertices and the union of the edges
from all of the graph policies. The resulting edges and vertices
comprise the final graph for the parser.

Finally, the identification and manipulation actions are
stitched together one after another. Formally, let’s consider
two intents I1 := (ii,m1) and I2 := (i2,m2), with (in,mn)
defined as a sequence of identification and manipulation
actions. After the combination, we get the action sequence
of Combined := (i1,m1, i2,m2).

3) P4 Code Generation: For the final P4 program, we
need another base template that contains placeholders for
the aforementioned P4 code structures in §IV-A. This base
template represents a valid P4 program with several empty
sections, ready to be filled in with the rendered policies.

V. INTENT REALIZATION

This section starts by defining the software components used
to realize the controller and finally discusses how the system
handles intent modification. For ease of explanation, we limit
the scope of the intent realization to one programmable switch
connected to several hosts, but our framework can be extended
to intent realization over multiple switches.

A. Software Components

As depicted in Figure 1, P4I/O consists of the following
components:
Intent Parser. The intent parser parses the intents and stores
them in a hierarchical key-value storage intended to be used
by the policy builder.
Actions Library. The actions library acts as a repository for
defined actions represented as P4 code templates. It parses the
P4 code templates into a policy graph as explained in §IV-B1.
Topology Manager. The topology manager keeps track of
each host connected to the switch ports. The information of
which host is connected to which port is used to build a correct
P4 match-action table entry required for the packet forwarding
process.
Policy Builder. The policy builder executes the policy graphs
join computation as explained in §IV-B2. It outputs the com-
bined policy graph required to generate the final P4 program.
P4 Code Generator. The P4 code generator has as main
objective to generate a working P4 program with the input



header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16>   etherType;

}

header ipv4_t {
bit<4>    version;
bit<4>    ihl;
bit<8>    diffserv;

...

register<bit<8>>(1024) regCountMin;

action compute_tcp_reg_index() {
hash(meta.hAddr_s1, 

HashAlgorithm.crc16, 10w0,
{

hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr,
hdr.ipv4.protocol,

...

if (meta.minRegVal > HH_THRESHOLD) {
drop();

} else {
...
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Figure 3. P4 code template translation to a Directed Acyclic Graph (DAG) structure.

of a policy graph, as described in §IV-B3.
States Manager. The states manager keeps track of all match-
action table entries that are implemented on the switch. Each
time a new P4 program is installed in the switch, the switch
will lose all of its old entries and therefore needs to be
repopulated by the entries stored in this component.
Switch Controller. The switch controller is responsible for
pushing the generated pipeline configuration file into the
switch and maintaining the communication channel to the
switch, e.g. via gRPC. This process is done on-the-fly, while
the switch is forwarding traffic.

B. Intent Modification

Switch pipeline configuration modification is realized via
the interface defined in the P4Runtime specification [14], via
the procedure of SetForwardingPipelineConfig. By default,
each time a BMV2 [15] simple_switch_grpc is instructed to
load a new pipeline configuration, it will lose all of the match-
table entries and all of the other states, e.g. register, counter,
meter, etc. We refer to this problem as the state preservation
problem.

We handle the problem of state preservation by providing
two mechanisms:
Match-Table Entries Preservation. Preservation is done by
rewriting the match-action table entries every time a switch
pipeline configuration is reloaded. The entries are stored at
the State Manager component.
Switch States Preservation. The states in the switch can be
preserved via two approaches: external and internal backup.
External Backup. In this approach, the value in the states
is first read by the network controller. After the states are
completely read, the controller reloads the switch with the
new configuration and writes back the state arrays into the
switch. The writing process can be done in two ways: (1)

multiple single values are written into the switch memory, or
(2) single multiple values are written by passing the whole
array in one write procedure. The default simple_switch_grpc
only supports method (1).
Internal Backup. This method does the backup within the
internal memory of the switch. As it does not require any exter-
nal communication, there will be no external communication
overhead. However, the switch should have enough memory
for the backup and dedicate some computation resources for
the states duplication procedure.

For our proof-of-concept, we adopt the internal backup
mechanism by developing a custom P4 software switch based
on BMV2’s simple_switch_grpc that has the functionality to
preserve state from one configuration to another. It will first
store all of its state to its internal memory. After the new
pipeline configuration is enforced, the switch will try to restore
the backed-up state, provided the previous state container still
exists in the new one. The algorithm for the switch state
preservation is depicted in Algorithm 1. This process happens
while incoming packets are temporarily stored on an input
buffer in the switch.

foreach registers ∪ counters ∪ meters ∪ ... do
backupState[stateName]← oldV alue;

end
ENFORCENEWPIPELINECONFIG;
foreach element in backupState do

if element exists in new pipeline then
newV alue← backupState[stateName];

end
end

Algorithm 1: State Transfer Algorithm.
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Figure 4. Proof-of-Concept topology.

VI. EVALUATION

We evaluate the feasibility of P4I/O through a proof-
of-concept implementation. Our prototype implementation is
written in Python and contains approximately 4.530 lines of
code.

A. Proof of Concept Setup

We define 6 epochs, t′0, t
′
1, .., t

′
5, to aid us in evaluating

intent modifications on P4I/O. In each epoch, different intents
are defined. In t′0, we run DDoS and SS detection functions.
In t′1, we add one Heavy-Hitter (HH) detection intent, which
drops traffic exceeding a threshold of T = 1800 packets. In
t′2, we remove the SS detection. Further, in t′3 we also remove
the HH detection, leaving us with only DDoS detection. We
then add back HH detection in t′4, this time with a threshold
of T = 3600 packets. Finally, we enter the last epoch of t′5 by
removing the HH detection function, effectively leaving DDoS
detection as the only running function.

We use a simple topology with our modified sim-
ple_switch_grpc software switch connected to a traffic gen-
erator and a traffic receiver as illustrated in Figure 4. The
generator then injects random UDP traffic at 1 mbps. We use
a single IP address per sending/receiving side. The topology
is run on top of Mininet [16], which in turn runs on top of a
Ubuntu Linux 16.04 desktop with a dual-core 1.6 GHz Intel i5
processor and 2GB of RAM. The resources are shared between
the host, Mininet, simple_switch_grpc, and P4I/O.

B. Result and Discussion

Figure 5 depicts the throughput graph as observed from the
receiving side. At epoch t′0, the traffic rate is relatively stable
until we reach t′1, which temporarily causes a fluctuating rate,
due to the actualization of the new P4 code. We can note that
at approximately t = 27s, the HH threshold T = 1800 is
reached causing the traffic to be dropped. At epoch t′2, the
HH state from the previous epoch is successfully preserved as
proven by the absence of traffic. The removal of HH detection
network function at the beginning of epoch t′3 gives us back
the inbound traffic. Likewise, t′4 also demonstrates the same
phenomenon as t′1, but with a twice as long delay before we
reach the new threshold of T = 3600.

Reflecting on this result, we believe that our approach is
applicable to real-world use cases. We can conclude that the
existing hardware is fast enough to do pipeline configuration
modifications with minimum interruption to the traffic for-
warding process. While we see some fluctuating throughput

rate in the result, it can be explained by the condition of our
testbed that performs all computation, e.g. P4 code generation
and traffic forwarding, in a single machine.

VII. RELATED WORK

Programmable Network. Pyretic [17] allows building net-
work services by means of network programmability. How-
ever, their approach to the network programming language
is of imperative nature. PGA [13] addresses the problem of
network policies reconciliation, i.e. aligning overlapping/con-
flicting policies, by devising a graph abstraction that inspires
our DAG abstraction. PGA is implemented as an extension of
Pyretic. Janus [18] extends the work of PGA by adding the
notion of dynamic policies and incorporating QoS constraints.
Janus’ implementation is also based on Pyretic.

Intent-Based Networking. Nile [11] provides a human-
readable IDL for implementing network services and is fo-
cused on translating user utterance into an IDL and incor-
porating user feedback to improve the translation model.
Marple [1] and Sonata [2] generate pipeline configurations
– also in P4 – from dynamic queries, but do not focus on
the technique for generating the code. Moreover, they do
not consider the problem of intent modification on-the-fly.
Donovan & Feamster [19] propose the notion of intention-
based monitoring, which offloads the task of matching traffic
to the data-plane. Their Pyretic-based implementation matches
traffic based on attributes with static mapping like domain
name and AS number.

Sketch-Based Network Telemetry. OpenSketch [20] uti-
lizes sketches for various flow measurement tasks. However,
their implementation is on NetFPGA, which provides no
mechanism to reload the switch pipeline configuration on-the-
fly. UnivMon [21] contests OpenSketch’s approach by propos-
ing a universal sketch algorithm adopted from universal stream
theory. UnivMon focuses on evaluating the performance and
memory utilization of the universal sketch.

VIII. CONCLUSION

In this paper, we have presented P4I/O, an intent-based
networking framework that facilitates a simple adoption of
P4 data-plane programmability. Through P4I/O, programmable
switches can be quickly and easily programmed, without
having to code in P4. In order to build P4I/O, we have
described an extensible Intent Definition Language, used a
P4 code template approach, and enabled intent modifications
on-the-fly. We have made an open-source Proof-of-Concept
implementation of P4I/O, with which we have demonstrated
that intents can indeed be installed/removed in the field.
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