
Dynamic Monitoring of Data Center Slices
Francesco Tusa, Stuart Clayman, Alex Galis

Dept. of Electronic Engineering, University College London, London, UK
Email: francesco.tusa@ucl.ac.uk, s.clayman@ucl.ac.uk, a.galis@ucl.ac.uk

Abstract—Slicing is a move towards segmentation of resources
and deployment of NFV for the purpose of enhanced services and
applications on globally shared resources. The slicing approach in
this paper considers Data Center slicing and the VIM on-demand
model. We focus on the monitoring of Data Center slices, showing
what is needed from the monitoring perspective and how the
monitoring should be done. The proposed monitoring approach
is validated on a platform that supports the on-demand creation
of lightweight VIM instances.

Index Terms—Cloud monitoring, resource monitoring, slice
monitoring, monitoring abstraction, dynamic control, on-demand
reconfiguration, network service orchestration, NFV, SDN, 5G.

I. INTRODUCTION

Slicing is a move towards segmentation of resources and
deployment of NFV for the purpose of enhanced services and
applications on globally shared resources. In order to support
service provisioning over a slice-enabled distributed NFVI (for
NFV Infrastructure), new mechanisms that implement slicing
over the whole end-to-end infrastructure – from the mobile
edge to the core DC – including network, compute and storage
resources need to be implemented for sliced services.

A slice-based orchestration approach will provide a more
effective resource management due to the isolation introduced
in both the control and data planes. A Slice will represent
a self-contained bundle of heterogeneous resources accessible
via a management and control interface that can be utilised to
dynamically modify both the slice topology and configuration
at run-time, according to the overall status of the infrastructure.

The slicing approach being considered in this paper aims at
bridging the conceptual separation between a pure network
slice and a Data Center (DC) slice in order to create an
end-to-end slice that encompasses the different segments of a
multi-provider NFVI. To design this new slicing approach, we
have made the case for creating a VIM (Virtual Infrastructure
Manager) on-demand and dynamically allocating a new VIM
for each DC slice segment, rather than having one VIM for
the whole DC [10] [5].

A Slicing Orchestrator with dedicated components, in the
Control Plane, will drive the creation of the slices, will
take care of the slice life-cycle management, and will also
include the dynamic slice reconfiguration based on elasticity
rules. We observe on the one hand the slice management
interface will enable abstract, unified management and control
of the resources constituting a slice; on the other hand,
the monitoring process becomes a fundamental aspect to be
considered when implementing slicing, as it will be used to

provide feedback about the slice utilisation. This will allow the
Slicing Orchestration layers to enforce dynamic slice elasticity,
reconfiguration, and so on.

In this paper we will focus on the monitoring aspects
of DC slicing. We consider a proper way to collect the
status of the DC slice elements and also to expose that
information to the Slicing Orchestration layer, regardless of
both the resource type (computing, storage and connectivity)
and technological implementation. For this reason, we intro-
duced a Slice Monitoring Abstraction (SMA) layer between
the Slicing Orchestration functions and the slice’s resource
infrastructure. This is required to support and complement the
abstraction characteristics of a slice. The SMA will provide
the proper abstractions on top of the resources bundled in
each slice by creating an on-demand, bespoke instance of a
monitoring system that follows the slice’s initiation pattern.
The monitoring elements allocated by the SMA for each slice
will be tailored to the specific resources of that slice, and will
allow a Slice Orchestrator to collect information about the slice
status and utilisation in a uniform way.

The SMA layer presented in this paper utilises the Lattice
Monitoring Framework [3]. Lattice was designed for highly
dynamic and virtualised environments, and has recently been
augmented with mechanisms to support on-demand deploy-
ment and dynamic reconfiguration of its monitoring elements
[11] in order to build a monitoring subsystem on-the-fly via
software control – Software Defined Infrastructure Monitoring.
In this paper we will explain how those features have been
utilised in the context of a sliced end-to-end infrastructure
to support the abstraction requirements of the slices, and to
instantiate a bespoke slice monitoring adaptor for each slice
at run-time.

II. RELATED WORKS AND BACKGROUND

The goal of providing services on top of slices, i.e., logically
partitioned resources of a multi-technology, multi-domain
software-defined NFVI, can be obtained through different
slicing strategies according to which specific system elements
provide the slicing and at what layer the slicing is introduced.

When slicing is implemented at the lower layers, namely
the infrastructure, the upper layers, such as VIMs and Or-
chestrators, do not need to be slicing-aware. If a slice is
presented to them, they can carry on working with minimal
or even no change. Conversely, if slicing is done in the
Orchestrator, which uses an inter-domain orchestration API
interaction and / or a peer to peer approach, a slice becomes
closer to a set of data structures in the Orchestrator rather than978-1-5386-9376-6/19/$31.00 c�2019 IEEE

an actual resource partition. Consequently, there are inherent
trade-offs when selecting one or the other slicing approach.
The actual decision on which slicing approach should be used
will depend on various key aspects of the service requirements
under consideration, and can be focused on the technical
desires of the provider, together with the technical abilities
and technological choices of the tenants.

There are various standards organisations that have been
addressing slicing and creating various definitions (ITU-T
IMT2010/SG13, ETSI, 3GPP TR23.799, ONF TR-526, IETF
and IEEE) as well as EU 5G-PPP White Papers on 5G
Architecture centred on network slicing (mark 1 and 2) and
various projects and initiatives that are considering slicing
implemented at the Orchestrator level. (SONATA, 5GEx, 5G
Transformer, 5G!Pagoda and SLICENET).

Monitoring solutions that were already designed for moni-
toring traditional IT infrastructures are not suitable for slice-
enabled software-defined NFVI scenarios as they lack some
relevant desired features: namely the ability to seamlessly
support different technologies, attaching / detaching new moni-
toring elements to the system at run-time in a software-defined
fashion, and re-configuring their behaviour without restarting
the running components.

The Distributed Architecture for Resource manaGement and
mOnitoring in cloudS (DARGOS) [1] is a Cloud monitoring
architecture to disseminate resource monitoring information
that is flexible, adaptable and allows defining and monitoring
new metrics easily. This solution has some commonalities with
Lattice as it cares about optimising the network traffic by keep-
ing a low overhead while the measurements are sent. However,
DARGOS does not provide any control element nor an API for
programming and automating either the deployment and (re)-
configuration of the monitoring subsystem. FlexACMS [6] is
a framework to automate monitoring configuration related to
cloud slices using multiple monitoring solutions. FlexACMS
is able to detect new cloud slices created in the cloud platform
and, for each new detected cloud slice, to trigger components
that can configure the monitoring solutions, building the
corresponding monitoring slice for that cloud slice.

Prometheus [8] is an open-source systems monitoring and
alerting toolkit that joined the Cloud Native Computing Foun-
dation in 2016. It works well for recording any purely numeric
time series and fits both machine-centric monitoring as well as
monitoring of highly dynamic service-oriented architectures.
Although Prometheus offers a more dynamic approach com-
pared to other monitoring solutions, its architecture is still
conceived around the concept of a central server entity that
needs to be configured and restarted every time a configuration
change / adjustment is required.

III. DATA CENTER SLICES

When looking at the current initiatives that are dealing with
slicing, we observe that slices can be requested from networks
and combined with various service elements plus VNFs (which
of course run in Data Centers), which are then presented in the
form of a Network Slice. This is currently on-going work in

many organisations such as ITU, IETF and the IEEE. However,
although networks and Data Centers are physically connected,
we identified an anomaly in the fact that it is not usually
possible to request a slice from a Data Center to build a
distributed end-to-end slice that includes an ad-hoc partitioned
set of computation, storage, and network resources to support
the deployment of network services. In this work, we focus
on the concept that slices should also be a feature that can
be requested from Data Centers to be then combined with the
network slice parts, in order to build full end-to-end slices.

A Data Center (DC) slice, which from now on will be the
focus of this work, is an abstraction over the resources of
a DC, and provides a mechanism to manifest infrastructure
slicing, such that:

• a DC slice presents a collection of resources that look
like a DC, only smaller, and

• a DC slice can be controlled, managed, and monitored
independently from any other DC slices.

For each DC Slice requested, there will be a VIM allocated
on-demand to service that DC Slice, as outlined in [5]. This
VIM will be only for that one slice, and will be independent
of the VIMs running in the rest of the Data Center. Given
that these on-demand VIMs for DC Slices are not pre-existent,
they can be allocated for any kind of lower level virtualization,
including Xen and KVM; or for containers such as Docker and
Kubernetes. As a consequence, this choice and flexibility is not
a feature pre-determined once by the DC or the provider, but
can now be an option for the customer. Furthermore, as the
VIM is allocated for the slice and is independent from other
VIMs, the customer can have a lot more ability to adjust the
configuration options for their VIM. It also means that the
customer could also be billed for their VIM, as opposed to it
being part of the shared infrastructure.

Once the different DC slices have been allocated and
separate independent VIMs have been spawned therein, then a
full end-to-end slice can be built by stitching together the dif-
ferent DC Slice segments via the relevant network slice parts.
For each created end-to-end slice, it is necessary to build a
uniform, on-demand monitoring layer to aggregate monitoring
measurements from the separate DC Slice segments, regardless
of the underlying VIM technology being used.

It is this uniform, on-demand monitoring layer that is the
focus here, and we address the way DC Slices are monitored
and controlled, following an on-demand dynamic allocation
pattern. In order for the existing orchestration layers (e.g.,
NFV MANO) to carry out their functions in such a slice-
enabled environment, a monitoring abstraction layer must be
deployed on top of the end-to-end infrastructure, and should
follow the slice creation pattern. That is, different VIMs can be
used for different slice parts, and the slices can be created an
destroyed in a dynamic way according to the network service
instances requested by the tenants.

IV. LATTICE MONITORING FRAMEWORK

Lattice was conceived as a highly flexible and versatile
framework able to provide adaptable building blocks for

building monitoring systems [3], and was designed and im-
plemented around the concept of elements that can be dynam-
ically composed as required, where the data collection task is
performed by probes able to retrieve measurements from dif-
ferent types of sources. A probe collects measurements related
to the elements of the system that needs to be monitored, and
provides a uniform way to collect the measurements regardless
of the specific type of entity to be monitored.

The Lattice framework is well suited to environments where
a network service or a resource bundle / slice that needs to
be monitored is based on a heterogeneous combination of
compute, storage and network resources allocated either in
a physical or virtualised form. Different implementations of
probes can be used to interact with different types of objects
that may be part of a slice, or that are dynamically created
and destroyed therein, eventually providing uniform types of
measurements as outcome of the overall monitoring process.
The usage of a monitoring subsystem based on Lattice can
thus provide an abstract way to collect different measurements
from the heterogeneous types of resources that can be bundled
within a slice (see [2], [3] and [11] for further details). In this
paper we will consider the DC Slice monitoring only.

Lattice has recently been extended to support mechanisms
that enable the dynamic instantiation, configuration and control
of all the monitoring entities that are going to be part of a
Lattice-based monitoring subsystem. This potentially allows
the deployment of a bespoke monitoring subsystem on-demand
as well as to perform its dynamic reconfiguration and adap-
tation according to the status of the main system that needs
to be monitored (e.g., the status of resources and services, the
overall number of instantiated entities, the instantiated slices
and their status, etc.). The Lattice Control and Information
planes [11] play a fundamental role in the implementation of
those functionalities.

The Lattice Information and Control planes are part of
the design specification described in [2] and [3], have fully
been implemented in the latest version of Lattice (using the
ZeroMQ asynchronous messaging library [7]) described in
[11]. The Information plane is used to share a topological
view of the monitoring entities that are up and running
in the monitoring subsystem (Probes and Data Sources as
well as Data Consumers and Reporters), also including their
properties / attributes and run-time status. The Control plane is
utilised to enable one, or more, Monitoring Controller entities
to interact with the other Lattice monitoring elements that
are under their control in order to enforce control actions
(e.g., activating / deactivating a given probe or a reporting
mechanism, dynamically adjusting the measurements rate of
a probe, etc.).

The Lattice Monitoring Controller has fully been imple-
mented and added to the other existing components of the Lat-
tice framework. The Monitoring Controller supports the fol-
lowing dynamic run-time functionalities: (i) Starting / Stopping
a Data Source monitoring agent on host / resource; (ii)
Loading / Unloading a probe (on a Data Source) with at-
tributes (service id, NF id, Virtual Link id, etc.); (iii) Activat-

ing / Deactivating a probe; (iv) Setting a probe measurements
collection / transmission rate; (v) Starting / Stopping a Data
Consumer monitoring agent on host / resource; (vi) Load-
ing / Unloading a reporter (on a Data Consumer monitoring
agent); and (vii) Configuring a reporter to use a particular per-
sistent storage system for storing the collected measurements.

These functions are exposed by the Monitoring Controller
via a RESTful API, which triggers proper control messages
accordingly. The control messages implement a request-reply
protocol involving the Monitoring Controller and the Moni-
toring elements that need to be controlled. A lightweight RPC
mechanism was implemented using the XDR (External Data
Representation) [9] to enforce the remote control of whatever
running entity that requires dynamic control / reconfiguration
via triggering the execution of proper methods / procedures.
The result of each control operation is then passed back to the
Monitoring Controller on the Control Plane and used as return
value of the original REST API call.

These mechanisms become fundamental to support the
monitoring abstractions within the SMA layer as they can
enable dynamic instantiation / deployment and control of the
monitoring elements of each end-to-end slice. Using the
Lattice dynamic management and control features, probes
can be loaded on specific Lattice Data Sources according
to the “spatial” configuration of the end-to-end slices being
instantiated and most importantly considering the type of
technology of each slice segment (e.g., the type of running
VIM in a DC Slice).

V. DESIGN FOR MONITORING OF DC SLICES

A monitoring sub-system that supports the deployment and
configuration of all the required monitoring entities at run-
time, as well as their dynamic control is essential, given the
context of slices. This will allow the dynamic instantiation of
the monitoring abstractions required for each particular slice,
as well as the ability to adapt the deployment, configuration,
and behaviour of the Slice Monitoring Adaptation (SMA)
according to the run-time status of the system.

For doing that, the implementation of the SMA should be
based on a monitoring subsystem that (i) is able to collect
and provide measurements from different types of resources,
regardless of the technology used for their implementation;
(ii) is able to easily scale up / down according to the number
of running entities in the system as result of the instanti-
ation / termination of multiple services / slice segments; (iii)
provides mechanisms to dynamically activate / deactivate its
constituent elements (e.g., probes) on demand according to
the type of services / resources to be monitored; (iv) is able to
provide mechanisms to dynamically adjust the configuration
if its elements, e.g., the measurements collection / sending rate
according to the status of the infrastructure, the number of
running entities and the characteristics of the slices (e.g.,
defined thresholds and events, SLAs, etc.).

Consider a single Data Center on which multiple DC Slices
segments are allocated. The Data Center supports multiple

independent DC slices which are managed by remote Orches-
trators to ensure modularity, isolation, and security [5]. During
the allocation of a new DC Slice segment, a Slice Orchestrator
also allocates the required monitoring adaptation layer which
provides a uniform measurements view of each Slice segment,
regardless of the implementation and the particular type of
deployed VIM. The representation, shown in Figure 1, is
focused on the slice allocation, which is performed by a Slice
Orchestrator function embedded in the Orchestration Layer,
interacting with the DC Slice Controller of the Data Center.

When an end-to-end slice is created by the Slice Orchestra-
tor, different DC Slices (segments) are allocated in different
Data centers, each possibly using a different type of VIM. As
the Slice Orchestrator is aware of the particular type of VIM
used in each DC Slice, it can interact with the Slice Monitoring
Abstraction (SMA) via its control interface to trigger the on-
demand instantiation of a Slice Monitoring Adapter for that
particular slice and VIM type. Figure 2 highlights the way
that the SMA has been implemented using the features and
components provided by Lattice. The Monitoring Controller
within the SMA will take care of translating the monitoring
requests sent by the Slice Orchestrator into the instantiation of
the monitoring components required to collect measurements
from each DC Slice segment. This will be done on-demand
by allocating and configuring one of more Lattice Data Source
elements associated to a particular DC Slice together with one
or more Probes that will collect relevant measurements for that
segment of the end-to-end slice.

Each of those probes will interact with the particular VIM
and / or monitoring system already available in the DC Slice,
and will hide the related implementation details to the Slice

Slice Orchestrator

Orchestration Layer

DC Slice i DC Slice kDC Slice j

Slice
Controller

Slice Info

Slice 1
host a, host b, ...
min: 20 max: 30
key: JHJH748VXAZ

Slice 2
host r, host s,
min: 40 max: 40
key: MIHB83BG790

VIMVIM VIM

DC Nodes

Domain
Boundary

Slice Monitoring Abstraction

Monitoring Control Interface

Monitoring Report Interface

Other
Orchestrators

Figure 1: A Sliced Data Center

Slice Orchestrator

Monitoring
Controller

Data
Source

Orchestration Layer

Slice Monitoring Abstraction

Slice Monitoring Adapters

Data
Consumer

Reporters

Monitoring
Control Interface

Monitoring
Reporting Interface

DC Slice i

VIM

DC Slice j

VIM

DC Slice k

VIM

Figure 2: SMA Implementation using Lattice

Orchestrator. The measurements collected from a given DC
slice by the on-demand instantiated probes, will be sent
to an aggregation element implemented via a Lattice Data
Consumer, which will take care of formatting them using
a uniform data model before passing them on to the Slice
Orchestrator to be consumed.

The Slice Orchestrator will be provided with an overall and
uniform view of the status of the resource (both physical and
virtual) that have been assigned to each end-to-end slice, as the
above approach will be performed for collecting monitoring
measurements from all the segments of each end-to-end slice.
A global view of the end-to-end resource infrastructure will be
built using the monitoring information from all the end-to-end
slices and exploited by the Slice Orchestrator as feedback for
the execution of its services and functions.

VI. EVALUATION

In order to prove the effectiveness of the monitoring ab-
straction layer described in this paper, we have built a fully
integrated Multi MANO platform, presented in [12], using
Lattice. The platform has end-to-end slices which consist
of the composition of lightweight DC slices and Network
slices (out of the scope of this paper), where each DC slice
runs an instance of the VLSP (Very Lightweight Network &
Service Platform) VIM [4]. When the creation of an end-to-
end slice is triggered and performed by the Slice Orchestrator,
a monitoring activation request is also propagated to the SMA
component via the Control Interface, and a new Slice Mon-
itoring Adaptor is instantiated on-demand for each DC slice
segment. Then, one or more Lattice Data Source objects are
allocated in each slice (depending on the number of elements
to be monitored), together with the specific type of probes

that allow collecting information from the physical and virtual
resources of that slice segment. For each slice segment, and
each Slice Monitoring Adaptor, the measurements collected by
the probes and sent by the Lattice Data Sources are aggregated
by a Lattice Data Consumer, which is also configured at the
moment of creation of the Slice Monitoring Adaptor to report
the aggregated measurements back to the Slice Orchestrator,
via the Reporting Interface represented in Figures 1 and 2.

Each slice segment will run an instance of the lightweight
VLSP VIM, all the instantiated probes will implement the
required mechanisms to collect monitoring information via the
VLSP REST monitoring API exposed by its Global Controller.
The information will include both the resource utilisation of
the physical hosts assigned to the DC Slice as well as the
status of the allocated virtual objects. All the measurements
will properly be structured with respect to the Lattice data
model and each of the measurement objects will in turn be
encoded using the XDR format [9], before being sent over the
Data Plane. The XDR encoding approach is used in order to
reduce the amount of network traffic used by the streams of
monitoring data. XDR is a standard data serialization format
which allows data to be transferred between different kinds
of computer systems, and became an IETF standard in 1995.
Figure 3 provides an example of aggregated measurements
of a VLSP DC Slice sent by a Data Consumer to the Slice
Orchestrator via the Reporting Interface.

Host ID: 1
cpuLoad: 17.83 cpuIdle: 82.16
usedMemory: 2.140625 freeMemory: 1.8007812
energyTot: 3.416218 energyDelta: 0.568652
energyNow: 0.568652

id: Router-4
cpuLoad: 141.164 cpuIdle: 1188.411
usedMemory: 1005.539 freeMemory: 182.872
energyTot: 50682.0 energyDelta: 2.318565
energyNow: 0.14787656

id: Router-5
cpuLoad: 131.142 cpuIdle: 802.48
usedMemory: 666.287 freeMemory: 136.193
energyTot: 30214.0 energyDelta: 1.5388933
energyNow: 0.09207494

Figure 3: Aggregated measurements from a DC Slice

Although in the Multi MANO platform, all of the slice
segments consisted of lightweight VLSP DC Slices, when a
different virtualization technology is in use, the same approach
of using a Slice Monitoring Adaptor, allocated on-demand for
each VIM type, such as Openstack, Docker, etc., and can be
applied for collecting and encoding the measurements by using
the specific probe implementation for the type of VIM running
in the slice segment, or for monitoring systems that might
already be installed and are up and running in the DC slice,
such as Ceilometer, Prometheus, etc.

VII. CONCLUSIONS AND FUTURE WORKS

This paper is focused on a slicing approach implemented
at the infrastructural layer using the concept of Data Center
slicing coupled with VIM on-demand – this allows achieving a
slicing approach which remains transparent to the upper layers
and Orchestrators operating on top of the NFVI. In particular
we focused on the monitoring of these Data Center slices,
showing what is needed from the monitoring system and how
the monitoring of those slices is done.

In this dynamic environment, it is fundamental that the
slice monitoring mechanisms are implemented following these

dynamic resource allocation patterns. For this reason, we con-
sidered in this paper the research problem related to the design
and implementation of such a dynamic monitoring layer, and
we provided a first solution based on a new component that we
named Slice Monitoring Abstraction (SMA), which is based on
the Lattice Monitoring Framework.

To demonstrate its feasiblity and operation, the implemen-
tation of the designed abstractions, APIs and data models
were integrated and functionally evaluated in that real plat-
form where end-to-end slices including lightweight VLSP DC
segments were instantiated and monitored in a uniform way
via the on-demand deployment of different Slice Monitoring
Adaptors performed via the SMA. A snapshot of the monitor-
ing data collected was presented.

In future works, we plan to extend the above testing scenario
with the instantiation of end-to-end slices whose DC Slice
segments include different technologies and VIMs in order
to further prove the effectiveness of our proposed approach.
Furthermore, work will be aimed at identifying the best
approach to monitor the Network slice parts of an end-to-end
slice (which was not in the scope if this paper), and extending
the data models and abstractions proposed here in order to
achieve a unified approach for monitoring both the DC and
Network Slice segments that are part of an end-to-end Slice.

ACKNOWLEDGEMENTS

This work was partially supported by the EU-Brazil project:
NECOS – “Novel Enablers for Cloud Slicing” (777067).

REFERENCES

[1] DARGOS: A highly adaptable and scalable monitoring architecture for
multi-tenant Clouds. Future Generation Computer Systems, 29(8):2041
– 2056, 2013.

[2] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L.M.
Vaquero, K. Nagin, and B. Rochwerger. Monitoring Service Clouds in
the Future Internet. In Towards the Future Internet - Emerging Trends

from European Research. IOS Press, Fourth 2010.
[3] S. Clayman, A. Galis, and L. Mamatas. Monitoring virtual networks

with Lattice. In 2010 IEEE/IFIP Network Operations and Management

Symposium Workshops, pages 239–246, April 2010.
[4] S. Clayman, L. Mamatas, and A. Galis. Experimenting with control

operations in Software Defined Infrastructures. In 2016 IEEE NetSoft

Conference and Workshops (NetSoft), pages 390–396, June 2016.
[5] S. Clayman, F. Tusa, and A. Galis. Extending Slices into Data Centers:

the VIM on-demand model. In 9th International Conference on the

Network of the Future (NOF), pages 31–38, Nov 2018.
[6] M. B. de Carvalho, R. P. Esteves, G. da Cunha Rodrigues, C. C. Mar-

quezan, L. Z. Granville, and L. M. R. Tarouco. Efficient configuration of
monitoring slices for cloud platform administrators. In IEEE Symposium

on Computers and Communications (ISCC), pages 1–7, June 2014.
[7] iMatix Corporation. Zero MQ Distributed Messaging, 2019. URL:

http://zeromq.org.
[8] Prometheus. Prometheus – monitoring system and time-series database,

2019 (accessed on 2019-01-07). URL: https://prometheus.io.
[9] R. Srinivasan. XDR: eXternal Data Representation standard, 1995.

[10] Stuart Clayman. Network Slicing Supported by Dynamic VIM Instan-
tatiation. In NFVRG, IETF 100, Singapore, 2017.

[11] F. Tusa, S. Clayman, and A. Galis. Real-time management and control
of monitoring elements in dynamic cloud network systems. In IEEE 7th

International Conference on Cloud Networking (CloudNet), 2018.
[12] Francesco Tusa, Stuart Clayman, Dario Valocchi, and Alex Galis. Multi-

Domain Orchestration for the Deployment and Management of Services
on a Slice Enabled NFVI. In IEEE NFV-SDN - Mobislice, Verona, Italy,
November 2018.

