
Providing In-network Support to Coflow Scheduling

Cristian Hernandez Benet∗, Andreas J. Kassler∗, Gianni Antichi †

Theophilus A. Benson‡ and Gergely Pongracz§

∗Karlstad University, †Queen Mary University, ‡Brown University, §Ericsson Research

∗cristian.hernandez-benet,andreas.kassler@kau.se, †g.antichi@qmul.ac.uk, ‡tab@cs.brown.edu, §Gergely.Pongracz@ericsson.com

Abstract—Many emerging distributed applications, including
big data analytics, generate a number of flows that concurrently
transport data across data center networks. To improve their
performance, it is required to account for the behavior of
a collection of flows, i.e., coflows, rather than individual.
State-of-the-art solutions allow for a near-optimal completion
time by continuously reordering the unfinished coflows at the
end-host, using network priorities.

This paper shows that dynamically changing flow priorities at
the end host, without taking into account in-flight packets, can
cause high-degrees of packet re-ordering, thus imposing pressure
on the congestion control and potentially harming network
performance in the presence of switches with shallow buffers. We
present pCoflow, a new solution that integrates end-host based
coflow ordering with in-network scheduling based on packet
history. Our evaluation shows that pCoflow improves in CCT
upon state-of-the-art solutions by up to 34% for varying load.

Index Terms—Coflow, Datacenter Networks, P4, Dataplane
Programming

I. INTRODUCTION

Emerging big data processing frameworks such as
MapReduce [1], Spark [2] or Dyan [3] are based on a
partition/aggregate programming model that allow them to
distribute and parallelize the processing across different
machines. Such big data analytics frameworks are also
becoming an important enabler for future mobile networks
with use cases ranging from incident detection at Network
Operations Centers [4], Traffic Classification and Network
Slicing [5] to IoT data processing [6]. A common property
of such big data frameworks is that each processing stage
cannot complete until all data have been transferred. As
a consequence of this property, the performance of these
frameworks is function of the behavior of the collection
of flows used to transfer data in each stage [3], [7], i.e.,
coflows [8]. More formally, coflows are collection of flows
of varying sizes with different communication endpoints.

Most of the growing work on improving performance within
data centers build upon the advances in data center load
balancing techniques, e.g., Hula [9], and data center centric
transports, e.g., DCTCP, which improve low level details of
the data center’s network. By abstracting details about load
balancing, routing, and transport, these emerging techniques
can focus on the crucial aspect of the network which
impact individual flow performance, i.e., controlling queuing,
priorities, or rate-limits. However, existing approaches for

queuing, priorities, rate-limits within the data center do not
provide the levels of dynamicity required to support recent
coflow proposals, e.g., Sincronia [10].

In this work, we ask the following fundamental question:
“Does the network provide sufficient primitives to faith-
fully support dynamic modification of coflow priorities and
queues?”. To answer this question, we use a large scale
trace-driven simulation, which allows us to methodologically
analyze a broad range of existing techniques and scenarios.
Our initial observations are that current network primitives do
not effectively support arbitrary modifications and changes to
a coflow’s queuing priorities. In particular, we observe that
while the network provides the illusion that all packets in a
flow can be atomically moved between queues. In practice,
once a packet has been queued, it does not dynamically change
queues, which leads to packets from a flow ending up in differ-
ent queues. The end result of this phenomenon is that packets
from a flow are spread across queues resulting in a high degree
of packet reordering when they arrive at the destination end-
hosts which lead to reduced performance due to TCP’s design.

In particular, due to TCP’s behavior high-degrees of packet
re-ordering can in some cases cause the congestion control
window to shrink with negative effect on performance.

In this paper, we argue that existing data center networks
lack in-network support for dynamically changing coflow
queuing priority: specifically, with existing network primitives
changing a flow’s priority does not consider packets already
traversing the network, thus causing inconsistencies between
the in-flights and newly generated packets of the flow
at switches with multiple priority queues. Motivated by
these observations, we propose an in-network primitive,
called pCoFlow, which allows flows to temporarily maintain
queue affinity until already enqueued packets are drained
when flows are being reprioritized due to coflow order
update. A key challenge in preserving flow affinity under
re-prioritization lies in maintaining network state and using
this state to dynamically override packet priorities and alter
queuing behavior. Our work builds on emerging techniques
for programmable data planes [11], [12] and uses them to
maintain minimal per-coflow state, i.e., optimized packet
histories, and dynamically manage flow priorities and queue
assignments based on this state.

To demonstrate the strength of our approach, we propose

ar
X

iv
:2

00
7.

02
62

4v
1 

 [
cs

.N
I]

  6
 J

ul
 2

02
0



the design (§III) of a system that integrates state-of-the-art
ordering mechanisms at the end-host, such as Sincronia,
with in-network scheduling based on packet history (i.e.,
pCoFlow). We then show that the latter can be implemented
in P4 starting from the PIFO abstraction [12]. Finally, we
demonstrate that our approach reduces the average CCT by
15% up to 18% for 10% load and by 27 up to 34% for 90%
load with respect to state-of-the-art solutions.

In summary, the contributions of this paper are:
• We make the case for in-network support in the context

of coflow scheduling.
• We propose pCoflow, which is an architecture that inte-

grates state-of-the-art techniques performing ordering at
the end-host with advanced in-network packet scheduling.

• We design a coflow aware in-network priority scheduler
that avoids reordering and can be implemented using the
PIFO abstraction [12].

II. MOTIVATION

Recently, there has been a tremendous effort on network
designs for coflows [13], [14], [15], [16], [17], [18]. Some of
the works advocate for adopting a distributed approach [17],
[18], where coflows are scheduled and managed locally at
the end hosts; others propose a centralized scheme [13],
[14], [15], [16], where a single entity with global knowledge
is in charge of managing coflows. Centralized solutions
that rely on global knowledge have proved to guarantee
better performances. However, the need to centrally calculate
complex per-flow rate allocations has hindered the possibility
to realize them in practice [10].

Recently, Sincronia [10] has demonstrated that the key
ingredient to obtain near-optimal performances is to provide
convenient coflow prioritization. Specifically, if the right
ordering of coflows is given, any per-flow rate allocation
mechanism would lead to good results provable close to the
optimum if co(flow) scheduling preserves the order. In other
words, if coflow Ci is ordered higher than coflow Cj , all flows
and packets in Ci must be prioritized over Cj . Such an impor-
tant finding has opened up the possibility of a new network
design where a central controller is just in charge of ordering
the coflows, while leaving any per-flow prioritization to the
end-hosts, thus striking the right balance between centralized
and distributed schemes. In this regard, Sincronia assumes
that individual flow scheduling and rate allocation is provided
by a priority-enabled transport layer at the end-host, obeying
to a centrally managed coflow ordering controller [10].
In practice, given a coflow ordering, the end-host will
continuously (re)assign the priority of a flow coherently with
the coflow it belongs to using, for example, DiffServ markings.
The need for in-network support. Decoupling scheduling
decisions, centrally managed, from the flow-rate allocation
problem, controlled at the end-hosts through a priority-
enabled transport layer, might generate an excessive amount
of out-of-order packets thus affecting network performances.
To illustrate this problem, we used the NS2 simulator. We
assumed a non-blocking big-switch as network topology [19],

[14], [10] and we used Data center TCP (DCTCP) [20]
as state-of-the-art congestion control for data center
networks. We generated traffic according to the Sincronia
workload generator [10] which is based on Facebook traffic
characteristics and used an increasing number of coflows from
20 to 200. We let Sincronia calculate the coflow ordering
and we enforced the corresponding flow priority using
DSCP marking. Furthermore, to properly enforce the correct
ordering, we enhanced the big-switch abstraction with eight
queues per port. Figure 2 shows the total number of timeout
events obtained for different coflow sizes. The reason lies in
the Sincronia behavior that dynamically change flow priorities
enforcing new policies from the end hosts without considering
packets that are already traversing the network. Duplicated
ACKs might trigger a flow to shrink its congestion window,
impacting directly on network performance. The effect on the
CCT is shown in Figure 1. Here, we compare the CCT we
obtained with Sincronia against an optimal scenario where a
change in coflow priority does not cause any packet reordering.
The ideal case performs up to 1.5x better than Sincronia.

20 50 100 150 200
Num. Coflows

80

100

120

140

160

180

200

220

240
Av

er
ag

e 
CC

T 
(m

s)

Sincronia_ 
Sincronia_Ideal_ 

Fig. 1. Average coflow completion
time

20 50 10
0

15
0

20
00

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f D
UP

AC
Ks

Fig. 2. DupAcks for different
number of coflows

To better understand the cause of packet reordering, we
illustrate in Figure 3 what happens when the Sincronia
controller issues a change in coflow priority. Let us assume
that at some point coflow 1 finishes and Sincronia increases
the priority level of each remaining active coflow. This change
affects new packets to be generated from end hosts, while the
one already in-flight will be served with the old configuration,
i.e., priority. This clearly creates packet reordering if packets
of the same flow are still enqueued at a lower priority queue
at the same switch and newer packets having higher priority
arrive due to strict priority queue. Reordering may trigger
congestion control, which reduces the rate of the flow.

Low-priority

Middle-priority

High-priority

2

23

3

33 22

10

3

3

2

2

10

N-Queues

Reordering

Coflow 3

10

Coflow 2
Coflow 1

Coflow 1 finished

Sincronia updates priority

Packet number

Scheduler

Fig. 3. Packet reordering after priority updates



This simple example illustrates a wider problem: in real
data center topologies where multiple paths from source to
destination are available, the amount of reordering as well
as its effect on network performances can be even bigger.
Indeed, to select the best path, the research community has
shown the effectiveness of congestion aware flowlet-based
load-balancing approaches [21], [9]. Those schemes split
flows into smaller flowlets, exploiting the burstiness of TCP.
The idea is to route each flowlet over the least congested
path. However, when using Sincronia in combination with
the mentioned solutions might trigger a reordering of not just
few packets, but instead entire flowlets.

III. DESIGN

Given the insights from the previous section, we ask the
question is it possible to minimise packet reordering due
to priority changes by allowing switches to participate in
scheduling decisions? We answer this positively by describing
pCoflow, a solution which provides in-network support for
coflow scheduling. pCoflow integrates state-of-the-art ordering
techniques at the end-host, e.g., Sincronia, with scheduling
decisions taken in-network. The main idea is to leverage
programmable switches to temporarily maintain queue affinity
for newly arriving packets until already enqueued packets
are drained when flows are being reprioritized due to coflow
order update. We show that this can be realized with the PIFO
abstraction [12] and by taking into account the priorities of
packets before and after an update, i.e., their history.

A. Design Objectives

Avoiding In-Network Reordering:
Coflow schedulers such as Sincronia ensure coflow isolation

and preserve the order of coflows by delegating prioritization
to a priority-enabled transport mechanism. When run together
with TCP, this requires a prioritization of IP packets according
to the coflow priority, which is typically implemented using a
multi-level queuing system with strict priorities. Such systems
schedule packets waiting at higher priority queue first. Ideally,
this would allow higher priority coflows to finish earlier and
thus improving overall transmission time. However, the arrival,
termination or changes in the remaining transmission time of
coflows can lead to shifting in priority levels at end-hots that
might lead to packet reordering, triggering congestion control
and reducing the rate of the newly prioritized flow, achieving
exactly the opposite effect. When using multi-level queuing
systems, priority updates at end-hosts should therefore not
result in packet reordering. Therefore, we aim to implement a
single queue that manages coflow priorities during insert using
packet histories that track priorities of enqueued packets.
Avoiding Coflow Starvation: Whether coflows are prioritized
using per-flow rate allocation or transport layer priorities,
coflow starvation must be avoided. This is necessary to
ensure that large coflows do not starve short coflows. By
leveraging network feedback in the form of Early Congestion
Notification (ECN), congested network elements can signal
end-host transport layer such as TCP [22] or DCTCP [20] that

congestion is building up forcing them to scale back in rate.
However, when using a single queue that manages different
priorities, care must be taken to how ECN marking is applied.

B. pCoflow Design Overview

pCoflow uses state-of-the-art centralized coflow controllers
such as Sincronia that orders coflows and derives their priority
and combines it with transport layer that enforces priority
scheduling (see Figure 4). The core component of pCoflow
is a novel coflow aware strict-priority packet scheduler inside
the data plane that is aware of priority levels of coflow
packets waiting in the queues.

pCoflow

p1 p2

Priority marking

Coflow tagging

p3
c1 c1 c2 c3

End-host agent

Coflow list

Priority marking

Coflow tagging

End-host agent

Coflow Controller

Coflow list

Coflow list

Fig. 4. pCoflow Architecture Overview

C. End-host

End-hosts are responsible for marking packets with the
corresponding coflow priority and sending packets over
the transport protocol. We exploit a shim layer between
the application and the transport layer which continuously
orders the coflows using e.g. information available from a
centralized controller (e.g. Sincronia) [10]). The coflow order
is translated by the end-host agent to DSCP values that map
the highest order coflow to the highest priority level. Second
highest priority is mapped to second highest priority, etc.
and all remaining priorities are mapped to the lowest priority
level. The shim layer also tags each packet with an unique
coflowID, which is subsequently used by switches to avoid
reordering when coflow order is updated by the end-host shim
layer. The coflowID can be provided in an extra header
(e.g. using GPE extension of VXLAN) or can be conveyed
within the IP Identification field or TCP options.

D. In-Network Coflow-aware Scheduler

The main objective of our coflow aware programmable
scheduler approach is to maintain coflow priorities for
dequeuing operation while avoiding reordering when coflow
priorities are switched at end-hosts. Consequently, we need
to maintain the relative scheduling order of buffered packets
with future packet arrivals, which will be implemented during
the push-in operation. The main idea of our approach is to
assigning coflows to a single queue as long as buffer space
is available. In order to enable prioritization of coflows,
we therefore partition a single queue into multiple virtual



priority bands, each one having a dedicated priority level and
a certain buffer space. As long as there is space available at
a given priority level, coflow packets matching that priority
level can be inserted appropriately.

Packet reordering may only happen when the end-host
increases the priority level of a given coflow. If there are still
packets enqueued at the switch for the same flow at lower
priority levels, the newly arriving packets are served first,
leading to reordering. On the contrary, when new packets
have a lower priority, there will be no reordering as packets
waiting at higher priority levels will be served first. In order
to avoid packet reordering due to end-host triggered coflow
order update, we first identify the coflow priority by parsing
the DSCP field in the packet header

The insert operation has to ensure that packets with highest
priority are inserted at the first priority band of the queue,
and packets with lower priority at lower priority bands.
This makes sure that packets with higher priority are always
served first implementing a strict priority queuing policy. In
order to avoid that a change in coflow priorities may lead to
packet reordering within a flow, we need to check to which
coflow a packet belongs to. If a Sincronia triggered reorder
increases the priority of coflow Cj , a packet may arrive at
a switch with higher priority and several packets of the same
coflow Cj may wait for transmission at a lower priority level.
In this case, we temporarily do not use the higher priority
as indicated by the end-host reordering but rather insert the
newly arriving packet after packets of the same coflow Cj .
This avoids reordering and makes transport layer transparent
to priority changes. The drawback is a delayed response to
priority changes in the switch.

Our packet scheduler needs to store (1) the bounds of
priority bands, and (2) for each coflow the lowest priority
band that has packets waiting to be served (Figure 5. When
a packet with priority pi that belongs to coflow Cj reaches
the switch, the scheduler thus checks the position of the last
packet enqueued at priority level pi and the position of the
last packet enqueued for coflow Cj and calculates the rank
of the packet as in Equation 1.

rank=max(pi,Cj)+1 (1)

pCoflow uses ECN to signal congestion to the end-host
transport layer [23], [24]. When using a single queue with
multiple priority bands and a single ECN marking threshold
may lead to marking mostly lower priority packets which
may lead to coflow starvation. To prevent this effect, pCoflow
uses multiple ECN marking thresholds, one per priority band.
If during enqueue we detect that the number of packets
enqueued for a given priority pi is larger than the ECN
threshold for the given band, we set the ECN bit.

Although the minimum and maximum marking threshold
of each priority level can be adjusted to react earlier to
congestion and start marking packets before reaching the
maximum threshold [25], congestion control algorithms can
take several RTTs to adjust the sending rate after receiving
ECN notification. Therefore, queue sizes may temporarily

exceed the defined ECN thresholds. Dropping packets may
be necessary when using transport protocols that do not react
to ECN or if we want to guarantee a certain buffer space
for each priority. However, enforcing packet drop reduces
queue elasticity. pCoflow enables adaptive queue sizes by
dynamically allowing priority bands to increase and shrink. It
integrates such dynamic resizing with ECN marking to signal
end-points to reduce their rate.

E. Implementation Feasibility

With today’s switches, only a limited number of scheduling
approaches is available whose parameters can be controlled
by network operators. However, using programmable packet
schedulers allows to implement custom scheduling disciplines
tuned to application requirements. Indeed, using the push-in
first-out (PIFO) scheduling abstraction [12], where packets
can be pushed into an arbitrary position but always dequeued
from the head, several scheduling approaches can be
implemented on programmable data-planes such as P4 [11].

To implement our approach, we can leverage the PIFO
abstraction [12], which allows enqueued packets to be pushed
in arbitrary positions, given by the packet rank, while being
dequeued from the head. PIFO assumes that packet ranks
increase continuously within a flow and dynamic reordering
of already enqueued packets is not supported. Consequently,
we need to consider three main issues (i) extracting the coflow
priority from the packet header; (ii) mapping packets to correct
priority bands and computing the rank; and (iii) updating
priority band bounds. For (i), we read the priority bits from
the IP header ToS field. Figure 5 illustrates our approach.

Priority Pos_queue

1 2

2 5 6

3 6 7

Priority
Coflow_ID Priority

1 1

2 2

3 3

Coflow

22 22 2233 33 21 11 11

21
Coflow Priority

Switch

End-Host

Pos=max (2,5)+1 = 6 Dequeue

Coflow_ID Packets

1 2

2 0

3 0

Enq_Packets_Prio_1
Coflow_ID Packets

1 0

2 3 4

3 0

Enq_Packets_Prio_2 Enq_Packets_Prio_3

...

Coflow_ID Packets

1 0

2 0

3 2

Fig. 5. pCoflow Queue with coflow and priority tracking

Mapping: We use registers Priority to store the bound
information for each priority band. Assuming p priority
bands, we use a register to encode the end of priority band
pi. For each coflow, we track the lowest priority band that
still has packets enqueued in register array Coflow. If there
is no packet enqueued for a coflow, we set the priority to 0.
For calculating the PIFO rank at insert and avoid reordering,
we first check Coflow to determine, which lowest priority
band has packets enqueued (e.g. 2 in the example). Then,
we look up the position of the last packet in this band using



Priority, which returns 5. We compare this with the rank
of the last packet in the priority band that corresponds to the
priority marked in the packet header (as the priority is one, the
lookup returns 2). Equation 1 returns rank=max(2,5)+1=6
which is used for PIFO insert operation.

Update: As in [10], we aim to map each coflow to the given
priority band if the current order of the coflow is less than
p− 1, else we map it to band p. To avoid reordering when
packets are enqueued at priority pi and new packets for the
same coflow arrive having higher priority, pi−k, we track
which bands have packets enqueued for each coflow using
one register array Enq_Packets for each priority band. We
update Coflow as follows. On enqueue of a packet at the
end of priority band pi, we update priority band bounds of
all lower priority bands pi+k (e.g. if pi==2 we will update
bounds of bands 2, 3, 4...). We update Enq_Packets
accordingly (e.g. indicating that priority band 2 has now 4
packets waiting for coflow 2). If there is no packet waiting to
be transmitted in any queue (Coflow returned 0), we update
Enq_Packets using the priority band corresponding to the
packet priority. On dequeue, we update Enq_Packets for
the priority band we dequeued from and coflow id. If after
the dequeue there are no more packets in the current priority
band, we sweep the remaining lower priority bands to find
the lowest priority band that has still packets waiting and
update Coflow for the given coflow id. If there are no more
packets waiting, we set Coflow to zero. Finally, we also
update Priority of the priority band corresponding to the
packet that has been dequeued and all lower priority bands.
To track the ECN marking threshold, we use counters per
priority band. If we detect that an insert leads to more packets
than allowed according to the ECN threshold for a given
band, we mark the ECN bit. In our example (Figure 5), if the
ECN threshold is set to 2 packets, when the packet belonging
to coflow 2 and priority 1 arrives at the switch, the counter
associated to priority 1 will return 2, and the ECN bit is set.

Remarks: Note, pCoflow downprioritizes temporarily all
coflow packets if there are other packets waiting at lower
priorities, which maybe not necessary. However, a more fine-
granular per flow decision would require per flow tracking,
which may lead to excessive switch resources. Note, that all
sweeping operations through the multiple priority bands can
be implemented as nested if-else statements as the number
of bands is determined at compile time. As pCoflow does
not require to maintain per-flow state (just per priority band
and coflow), the required state variables is reasonably small.
Increasing the priority bands p leads to more fine granular
prioritization but requires more switch resources. Note, the
scheme cannot be implemented on state-of-the-art hardware
such as Tofino because registers in egress is not available in
ingress, which however could be solved by packet recirculation
at the expense of higher complexity. PIFO on the other hand
supports not more than around 1000 flows [12]. A variant of
our scheme supporting a fixed-size priority bands with limited
reordering could be implemented using SP-PIFO [26].

IV. EVALUATION AND RESULTS

We implemented our scheme in the NS2 simulator and used
coflow traces for comparing our scheme against different con-
figurations. Topology: We use a 3-tier Fat-tree topology with
k=4. All links have a capacity of 40Gbps, except links connect-
ing 64 servers to the ToRs, which have a capacity of 10Gbps.
Each of the 8 ToRs has 8 servers connected that send coflows
according to a given trace. Servers run a client application with
the Sincronia shim layer that informs the Sincronia coordinator
about the coflow information such as coflow id, number of
flows and sources, and destination for each flow. It receives
the coflow ordering and tags coflow priorities and coflow IDs.
Coflow Scheduler: We use the online Sincronia algorithm
from [10] to order coflows. We immediately recompute the or-
der upon each coflow arrival and departure. As in [10], we map
coflow order to the Diffserv option and use 8 priority levels.
Workload: We use [27] to create a coflow trace having the
same characteristics as the Facebook trace from [10]. The
trace contains 150 coflows, which are composed of 2086 total
flows. In total, the Intra-pod traffic was 32.8 GB and the Inter-
pod traffic 25.4 GB. We increase the workload by reducing
inter-coflow arrival rates. As in [14], [28], we group coflows
into short if the longest flow of a coflow has less than 5MB.
A coflow is classified as narrow if it has less than 50 flows
leading to four categories: Short and Narrow (SN), Long and
Narrow (LN), Short and Wide (SW) and Long and Wide (LW).
Network Layer Load Balancing: We compare Equal-Cost
Multi-path (ECMP) and HULA [9]. HULA is a flowlet-based
load-balancing scheme that forwards flowlets over the least
congested path. Fowlet gap is set to 500µs and probing
interval is set to 200µs [9].
Transport Protocol and Queue: We use DCTP [29] with
standard retransmission time-out of 3 RTTs and an RTO of
200us as in [30]. As baseline (deRED), we use 8 strict priority
(SP) queues, each one holds [31] max. 500 packets. Each phys-
ical queue contains a single virtual RED queue (min_th=200,
max_th=400) that starts marking ECN at min_th=200 with
a given probability and the scheduler maps flows to queues
given by the Diffserv field. When using pCoflow, the single
queue has 8 priority bands of aggregated size. Each priority
band starts marking packets at min_th=200 per band.

Results for BigSwitch: The first question we try to answer
for pCoflow is, if it is better to drop the packets once the
maximum number of packets per priority band is exceeded or
allow to borrow space from lower priority bands? Figure 8
compares pCoflow_Drop, which drops packets once the limit
for a band is reached (500) with pCoflow_ECN which adap-
tively adjusts queue bands, when using Sincronia for priority
ordering. Dropping packets once the threshold is exceeded
avoids coflow starvation by not allowing packets from other
priorities to take queue space reserved for other priorities. On
the other hand, allowing coflows to temporary exceed their
reserved queue space enables flows to steadily reduce their
sending rate. Although this decision may temporarily lead to
coflow starvation, we note that coflows can only take more



10 20 30 40 50 60 70 80 90
Load (%)

100

200

300

400

500

600
Av

er
ag

e 
CC

T 
(m

s)
dsRED
dsRED_Sincronia

pCoflow 
pCoflow_Sincronia

Fig. 6. Average CCT for BigSwitch

10 20 30 40 50 60 70 80 90
Load (%)

150

200

250

300

350

400

450

Av
er

ag
e 

FC
T 

(m
s)

dsRED
dsRED_Sincronia

pCoflow 
pCoflow_Sincronia

Fig. 7. Average FCT for BigSwitch

10 20 30 40 50 60 70 80 90
Load (%)

100

120

140

160

180

200

220

240

260

Av
er

ag
e 

CC
T 

(m
s)

pCoflow_ECN 
pCoflow_ECN_Dropping

Fig. 8. pCoflow Queue ECN vs ECN-Dropping

10 20 30 40 50 60 70 80 90
Load (%)

100

200

300

400

500

600

700

Av
er

ag
e 

CC
T 

(m
s)

dsRED_ECMP
dsRED_Hula
dsRED_Sincronia_ECMP
dsRED_Sincronia_Hula

pCoflow_ECMP
pCoflow_Hula
pCoflow_Sincronia_ECMP
pCoflow_Sincronia_Hula

Fig. 9. Average CCT for fat-tree topology

10 20 30 40 50 60 70 80 90
Load (%)

150

200

250

300

350

400

450

500
Av

er
ag

e 
FC

T 
(m

s)
dsRED_ECMP
dsRED_Hula
dsRED_Sincronia_ECMP
dsRED_Sincronia_Hula

pCoflow_ECMP
pCoflow_Hula
pCoflow_Sincronia_ECMP
pCoflow_Sincronia_Hula

Fig. 10. Average FCT for fat-tree topology

LN LW SW SN
Coflow category

0

500

1000

1500

2000

2500

Av
er

ag
e 

CC
T 

(m
s)

dsRED_ECMP
dsRED_Hula
dsRED_Sincronia_ECMP
dsRED_Sincronia_Hula
pCoflow_ECMP
pCoflow_Hula
pCoflow_Sincronia_ECMP
pCoflow_Sincronia_Hula

Fig. 11. Average CCT for coflows sorted by
category for 90% load

space in the queue whenever there is space left from other
coflows. In Figure 8), we observe that allowing coflows to
temporally exceed the priority band limit of 500 packets, we
can reduce the overall CCT. This is due to DCTCP which
reacts upon the ECN marking. All remaining experiments for
pCoflow are performed with adaptive queues and ECN mark-
ing. Figure 6 and Figure 7 show the average CCT and FCT
for different combinations of load-balancing with and without
Sincronia ordering. pCoflow improves both upon Sincronia
and when not using Sincronia. When not using Sincronia,
the benefits of pCoflow are attributed to the adaptive queue
size. pCoflow improves upon multi-level dsRED queues when
using Sincronia since we avoid reordering and leverage the full
capacity of the queue. At higher load, the benefits of pCoflow
are more pronounced, where the gap between our approach
and the vanilla SP multi-level dsRED queue is in the range of
15-25%. This might stem from the fact that at high loads the
traffic is more unstable, leading to more changes in priorities
and therefore more reordering. However, as Figure 7 shows,
by changing the insertion order of the packets, this can lead to
an increase in the tailing of some flows and therefore leading
to an increase of the FCT compared to the multi-level dsRED
queue for low loads. For network loads higher than about 70%,
pCoflow also reduces FCT compared to other approaches.

Fattree - Summary: Figure 9 and Figure 10 show the
average CCT and FCT for the Fattree topology. The lowest
CCT is achieved by pCoflow when used with HULA (see Fig-

ure 9). When using Sincronia, the difference between ECMP
and HULA is not significant since HULA probe packets are
used to identify least congested paths. Consequently, we map
them to the highest priority queue or band. This can lead to a
situation where low priority packets being forwarded to a more
congested path. Moreover, Facebook traffic is characterized by
having a one-to-many communication pattern, where a single
node receives data from different nodes in the network. At
low loads, the bottleneck might be located mainly on the links
between the ToR and the server and therefore load-balancing
plays a minor role. On the other hand, we can see that when
we do not use Sincronia, the effect of load-balancing is
more pronounced due to the congestion-aware load-balancing
by HULA. When using Sincronia, pCoflow combined with
HULA achieves a CCT reduction up to 27% compared to the
fixed dsRED multi-level queuing when used with HULA. On
the other hand, pCoflow can reduce CCT by 34% compared
to dsRED multi-level queues when used with Sincronia and
ECMP. Figure 11 analyzes the CCT for the 90% load case
for each coflow category. As expected, long and wide (LW)
coflows contribute to the highest CCT. This is because they
are the coflows that transport the largest data volume. In
addition, Sincronia benefits small coflows, as they have a
higher probability to be assigned to a higher priority band.
Surprisingly, the load-balancing scheme plays a less important
role for large flows than expected, which may be caused by
the unawareness of HULA of coflow properties. This leaves



room for an integrated design with pCoflow.

V. RELATED WORK

There is extensive work related to scheduling coflows in data
centers. Most of these schemes including [10], [14], [13], [17],
[16] rely on prior knowledge about coflows (e.g. flow sizes,
server pairs). Coflow scheduling methods can be divided into
two groups: distributed schedulers and centralized schedulers.
Distributed schemes including [17], [18], [32] are executed on
each host where coflows are scheduled and sorted locally. On
the contrary, centralized schemes such as [13], [14], [15], [16]
rely on a central controller to order coflows. Indeed, having
a global view enables better scheduling decisions [33] while
facing a a large control overhead and, therefore, scalability
is an issue. Aalo [28] uses priority queues to classify coflows
according to the amount of data sent and does not need prior
knowledge. Sincronia [10] overcomes the main centralized
schedulers’ problems by avoiding per-flow rate allocation.
Sincronia achieves near-optimal average CCT and requires a
transport layer proritizing flows according to coflow orderings.
While most of the flows do not consider coflow routing,
Rapier [13] and [34] demonstrate that combining scheduling
and routing can lead to better performance.

VI. CONCLUSIONS AND FUTURE WORK

We presented pCoflow, an in-network support to coflow
scheduling. Our work integrates state-of-the-art end-host
coflow reordering approaches with in-network packet
prioritization performed in the switch. Our approach uses the
PIFO scheduling abstraction to build a coflow aware packet
scheduler which considers packet history during priority
scheduling. pCoflow therefore avoids excessive packet
reordering that potentially lead to wasteful restransmissions.
Our approach improves upon coflow completion time and
benefits from flowlet-based load-balancing schemes such as
HULA. As future work, we aim for an integrated design by
defining extensions and proper interactions between pCoflow
and flowlet-based load-balancing schemes such as HULA.

ACKNOWLEDGMENT

Parts of this work is supported by the Knowledge
Foundation of Sweden through the Profile HITS under Grant
No.: 20140037.

REFERENCES

[1] J. Dean et al., “MapReduce: simplified data processing on large clusters,”
in Communications of the ACM, Volume: 51, Issue: 1. ACM, 2008.

[2] M. Zaharia et al., “Spark: Cluster computing with working sets,” in Hot
Topics in Cloud Computing (HotCloud). USENIX Association, 2010.

[3] M. Isard et al., “Dryad: distributed data-parallel programs from
sequential building blocks,” in SIGOPS Operating Systems Review,
Volume: 41, Issue: 3. ACM, 2007.

[4] H. Kumar et al., “Machine Intelligence at the NOC,” in Ericsson Blog,
06 2018, [Online; accessed 21-April-2020].

[5] L. V. Le et al., “SDN/NFV, Machine Learning, and Big Data Driven Net-
work Slicing for 5G,” in 2018 IEEE 5G World Forum (5GWF), 11 2018.

[6] V. Nejkovic et al., “Big Data in 5G Distributed Applications,” in High-
Performance Modelling and Simulation for Big Data Applications:
Selected Results of the COST Action IC1406 cHiPSet, J. Kołodziej et al.,
Eds. Cham: Springer International Publishing, 2019, pp. 138–162.

[7] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Networked Systems
Design and Implementation (NSDI). USENIX Association, 2012.

[8] M. Chowdhury et al., “Coflow: a networking abstraction for cluster
applications,” in Hot Topics in Networks (HotNets). ACM, 2012.

[9] N. Katta et al., “Hula: Scalable load balancing using programmable
data planes,” in Symposium on SDN Research (SOSR). ACM, 2016.

[10] S. Agarwal et al., “Sincronia: Near-optimal Network Design for
Coflows,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2018.

[11] P. Bosshart et al., “P4: Programming Protocol-independent Packet
Processors,” vol. 44, no. 3. New York, NY, USA: ACM, jul 2014, pp.
87–95.

[12] A. Sivaraman et al., “Programmable Packet Scheduling at Line Rate,”
in Special Interest Group on Data Communication (SIGCOMM).
ACM, 2016.

[13] Y. Zhao et al., “Rapier: Integrating routing and scheduling for coflow-
aware data center networks,” in International Conference on Computer
Communications (INFOCOM). IEEE, 2015.

[14] M. Chowdhury et al., “Efficient coflow scheduling with Varys,” in Spe-
cial Interest Group on Data Communication (SIGCOMM). ACM, 2014.

[15] Y. Li et al., “Efficient online coflow routing and scheduling,” in Mobile
Ad Hoc Networking and Computing (MobiHoc). ACM, 2016.

[16] M. Chowdhury et al., “Managing data transfers in computer clusters
with orchestra,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2011.

[17] S. Luo et al., “Minimizing average coflow completion time
with decentralized scheduling,” in International Conference on
Communications (ICC). IEEE, 2015.

[18] H. Susanto et al., “Stream: Decentralized opportunistic inter-coflow
scheduling for datacenter networks,” in International Conference on
Network Protocols (ICNP). IEEE, 2016.

[19] M. Alizadeh et al., “pfabric: Minimal near-optimal datacenter transport,”
in Special Interest Group on Data Communication (SIGCOMM). ACM,
2013.

[20] ——, “Data Center TCP (DCTCP),” in Special Interest Group on Data
Communication (SIGCOMM). ACM, 2010.

[21] ——, “CONGA: Distributed congestion-aware load balancing for
datacenters,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2014.

[22] S. Floyd, “TCP and Explicit Congestion Notification,” in Computer
Communication Review, Volume: 24, Issue: 5. ACM, 1994.

[23] H. Wu et al., “Tuning ecn for data center networks,” in Proceedings of
the 8th international conference on Emerging networking experiments
and technologies, 2012, pp. 25–36.

[24] W. Bai et al., “Enabling {ECN} in multi-service multi-queue data
centers,” in 13th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), 2016, pp. 537–549.

[25] Y. Zhu et al., “Congestion Control for Large-Scale RDMA
Deployments,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2015.

[26] A. Alcoz et al., “SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues ,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 59–76. [Online].
Available: https://www.usenix.org/conference/nsdi20/presentation/alcoz

[27] S. Agarwal et al., “Coflow workload generator,” https:
//github.com/sincronia-coflow, 2018.

[28] M. Chowdhury et al., “Efficient Coflow Scheduling Without Prior
Knowledge,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2015.

[29] M. Alizadeh et al., “Data Center TCP (DCTCP),” in Proceedings
of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM ’10.
New York, NY, USA: ACM, 2010, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851192

[30] A. G. Alcoz et al., “Sp-pifo: Approximating push-in first-out behaviors
using strict-priority queues,” in 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), 2020,
pp. 59–76.

[31] M. A. Qadeer et al., “Differentiated services with multiple random early
detection algorithm using ns2 simulator,” in International Conference on
Computer Science and Information Technology (ICCSIT). IEEE, 2009.

https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://github.com/sincronia-coflow
https://github.com/sincronia-coflow
http://doi.acm.org/10.1145/1851182.1851192


[32] F. R. Dogar et al., “Decentralized task-aware scheduling for data
center networks,” in Special Interest Group on Data Communication
(SIGCOMM). ACM, 2014.

[33] S. Wang et al., “A survey of coflow scheduling schemes for data center
networks,” in Communications Magazine, Volume: 56, Issue: 6. IEEE,
2018.

[34] H. Jahanjou et al., “Asymptotically optimal approximation algorithms
for coflow scheduling,” in Symposium on Parallelism in Algorithms
and Architectures (SPAA). ACM, 2017.


	I Introduction
	II Motivation
	III Design
	III-A Design Objectives
	III-B pCoflow Design Overview
	III-C End-host
	III-D In-Network Coflow-aware Scheduler
	III-E Implementation Feasibility

	IV Evaluation and Results
	V Related Work
	VI Conclusions and Future Work
	References

