
Leveraging the 5G architecture to mitigate
amplification attacks

Matteo Repetto
CNR - IMATI

matteo.repetto@ge.imati.cnr.it

Alessandro Carrega
CNIT - S3ITI

alessandro.carrega@cnit.it

Guerino Lamanna
Infocom Srl

guerino.lamanna@infocomgenova.it

Jaloliddin Yusupov
Turin Polytechnic University in Tashkent

jaloliddin.yusupov@polito.uz

Orazio Toscano, Gianmarco Bruno, Michele Nuovo, Marco Cappelli
Ericsson Telecomunicazioni

{name.surname}@ericsson.com

Abstract—Volumetric (Distributed) Denial of Service attacks
remain one of the major threats for any organization, capable
of saturating most Internet access links through the usage of
botnets and amplification techniques. The only effective mitiga-
tion mechanism today is the redirection of the network traffic
towards scrubbing centers; this protects the Internet pipe of the
victim, but does not prevent wasting resources in other parts of
the network.

In this paper, we leverage the cloud-native design of the
5G architecture to monitor traffic statistics at the edge of the
network, which are then processed by a powerful Analytics
ToolKit (ATk). Our work is based on the framework designed
by the ASTRID project, which allows to automatically change
the inspection probes while chasing a better balance between
the granularity of the collected data and the overhead. We
demonstrate our approach for an NTP amplification attack; the
ATk is first trained with historical data and then used to detect
deviations from the expected traffic profile, by switching between
normal/warning/alert states. Our preliminary results show that
it can correctly distinguish between periodical fluctuations of
requests and attacks and tolerate a few data losses.

Index Terms—eBPF, syscall tracing, stegomalware, covert
channels, detection.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks have often

hit the headlines in the last years because they were able

to saturate the Internet pipe of even larger organizations

(e.g., GitHub).1 To reach the necessary amount of traffic,

“amplification” techniques are often used that exploit hundreds

or thousands of buggy or misconfigured servers on the Internet.

The typical attack pattern is shown in Fig. 1. It starts from a

botnet of compromised nodes, which query a large number

of servers while spoofing the IP address of the victim; such

servers send to the victim responses that are far larger in

size than the original messages that triggered them, hence

generating the amplification effect.

There are many Internet protocols where small queries may

trigger larger responses. Those exploited for DDoS amplifi-

cation attacks use the UDP transport protocol, because this

1https://www.wired.com/story/github-ddos-memcached/.

Fig. 1: Typical attack pattern for volumetric DDoS with

amplification.

makes easier to spoof the IP address of the victim. Well-known

examples include the Network Time Protocol (NTP) and the

Domain Name System (DNS); however, the problem extends

to other servers and protocols as well (Memcache, SIP, LDAP,

RIP, SNMP). The relevant parameter is the “amplification

factor,” namely how many times the response is bigger than

the original query; it may range from a few to thousand times,

as shown in Table I.

While the detection of a volumetric DDoS is trivial, ef-

fective mitigation is almost impossible for the victim, because

these attacks saturate its Internet link. Today, the most effective

defensive mechanism consists in diverting all traffic from the

Internet to an external scrubbing center in case of attack

[1]. This limits the impact to the time needed to detect

the saturation and divert packets; typically a few dozens of

minutes are required at most. However, such approach needs

to model the capacity of the scrubbing center some times

more than the biggest expected attack (e.g., four to ten), hence

resulting in large resource overprovisioning, which should

be continuously increased as the attackers can increase the

volume of their attacks.2

2Less than two years after the unprecedented 1.35 Tbps DDoS attack
experienced by GitHub, AWS reported to have defeated against a 2.3 Tbps
attack in February 2020, which almost doubled the previous volume. During
the same period, Imperva reported one of its client to have experienced a 500
million packets-per-second attack, which represents the most intensive DDoS
attack against network infrastructure in the history of the Internet.978-1-6654-0522-5/21/$31.00 ©2021 IEEE

443

20
21

 IE
EE

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
8-

1-
66

54
-0

52
2-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
15

09
.2

02
1.

94
92

54
5

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

Protocol/Server Amplification factor

Memcached 10,000 to 51,000

NTP 556.9

CharGEN 358.8

QOTD 140.3

RIPv1 131.24

CLDAP 56 to 70

LDAP 46 to 70

DNS 28 to 54

Quake Network Protocol 63.9

TFTP 60

SSDP 30.8

MSSQL 25

Kad (P2P) 16.3

Portmap (RPCbind) 7 to 28

SNMP 6.3

Steam Protocol 5.5

NetBIOS 3.8

BitTorrent 3.8

Multicast DNS (mDNS) 2 to 10

TABLE I: Amplification factor for some Internet protocols and

servers.

Mitigation of an amplification attack is challenging, because

packets come from legitimate sources and carry valid data.

Stopping it at its root would be possible in theory, by applying

safe configurations to servers, blocking unnecessary ports,

activating anti-spoofing filters; however, this is difficult to

achieve in practice, because it depends on each organization

that connects servers and devices to the Internet. With the ad-

vent of 5G technology, the number of (vulnerable) connected

devices will increase, giving attackers more opportunities

to create large botnets and to find vulnerable servers for

amplifying their attacks. However, the same 5G architecture

offers unprecedented opportunities to integrate monitoring and

inspection functions at the edge, which can be used to detect

and mitigate DoS attacks before they are amplified.

In this paper, we describe our solution for detecting am-

plification attacks through an Analytics Toolkit (ATk). Our

approach builds on the framework developed by the ASTRID

project, which was conceived a few years ago [2]. Our

solutions is based on the identification of anomalies in the

traffic statistics with respect to historical patterns; we combine

coarse-grained traffic measurements and deep-packet inspec-

tion, which are used as preliminary indicators and for confir-

mation, respectively. The main innovations of our work consist

in the following aspects:

• we leverage the cloud-native design of the 5G architecture

to deploy the monitoring probes and analytics engine

without any modification to the original standard;

• we switch between three different states (business-as-

usual/warning/alert) that correspond to different mea-

surement sets, pursuing a better balance between the

granularity of the inspection process and the computing

overhead;

• measurements are collected from multiple access net-

works and correlated, in order to improve the likelihood

of detection and reduce the number of false positives.

Our results show that the ATk can distinguish between

periodic fluctuations of requests and anomalies. The overhead

for collecting the measurements is also quite limited, and the

overall framework does not introduce relevant delays in the

overall detection process.

The rest of this paper is organized as follows. We revise

related work in Section II. We briefly introduce the ASTRID

framework in Section III, and explain how the ATk operates

in a closed control loop. In Section IV we give a quick

understanding of the 5G architecture and how the ASTRID

framework is applied to it; then, we discuss the scenario for

the NTP amplification attack in Section IV-C. We describe the

implementation of the ATk and its business logic in Section V.

We provide preliminary functional validation and performance

analysis in Section VI. Finally, we give our conclusion in

Section VII.

II. RELATED WORK

After the amplification DDoS attacks hit the headlines

around 10 years ago, several researchers have started inves-

tigating the pattern and impact over the global Internet [5],

[6]. Due to the difficulty to monitor the public Internet, the

interest has often focused on the prevention of these attacks

[7]. However, some authors tried to identify relevant features

in historical data [8].

More recently, the advent of Software-Defined Networking

has revived the interest in detection, especially by applying

machine learning techniques that use generic network features

like the size of packets, duration of the connection, etc. [9]–

[13]. Since the training is not trivial with real traffic, reinforce-

ment learning was also investigated that learns directly from

traffic [14].

Some authors also explicitly considered the geographical

dimension of the problem [15]. However, we argue that SDN

is not capillary used in practice, especially in larger telco’s

networks. Finally, beyond the analysis of network traffic, there

are also authors that consider logs for the configuration of

firewall rules [16].

III. THE ASTRID FRAMEWORK

The ASTRID framework was born to decouple detection

and analytics services from the implementation of virtualized

services (both hosted in virtual machines and containers), and

to allow more flexibility in the design and operation of security

processing pipelines.

Fig. 2 shows a simplified view of the ASTRID software

architecture, tailored to the specific processing pipeline created

444Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

LCP
Context

Manager Programs

ASTRID

Monitoring

Agent(s)
Kafka

LogstashElasticsearch

ATK

Security

Controller

Kubernetes
ASTRID

Adapter

Virtual Function

Business

Logic

(Docker container)

ASTRID container

ASTRID

Platform

Virtualization

Environment

Cloud infrastructureCloud/physical infrastructure

Fig. 2: Simplified view of the ASTRID software architecture.

for the ATk. In the ASTRID framework, an external software

orchestrator is used to deploy a virtual service, starting from

a descriptive template; in our work, we used Kubernetes for

this purpose. The only requirement for the service deployment

process is to include ASTRID agents within each virtual

function; this is quite easy for Kubernetes, since ASTRID

agents are already delivered as Docker containers. Several

monitoring and inspection agents have been integrated in

the architecture, including plain Elastic beats, Logstash, and

purpose-specific agents developed by the project (mostly con-

sisting in inspection tools within the Polycube3 framework that

run eBPF programs). A special kind of agent, named Local

Control Plane (LCP), acts as common control point to all other

agents, including support for different configuration methods

(yaml files, REST APIs, command line).

The framework also assumes that a management API is

exposed by the service orchestrator; this interface is used to

collect information about the current service topology and

its configuration.4 In this case, we developed an ASTRID

adapter for retrieving all the necessary information which is

not provided by the plain Kubernetes management APIs.

It is worth noting that ASTRID does not envision any

interaction with the underlying infrastructure: this is a specific

design choice, that allows to support multi- and cross-cloud

deployments in a transparent way, as well as externalization

of security services.5

The architecture builds on and extends the well-known and

proven Elastic Stack, by collecting events and measurements

on a Kafka bus and delivering them for real-time processing

(the ATk in our work) and internal storage (Elasticsearch).

Events generated by the ATk are again published on Kafka,

but using a different topic, and consumed by the dashboard

(not shown in the picture, since it is not relevant in this work),

Elasticsearch, and the Security Controller. The latter is a rule

management system based on Drools that takes control and

management actions based on internal policies associated to

the specific detection service. The definition of policies follows

an Event-Condition-Action pattern, which triggers one or more

action when an event occurs, if some context conditions are

3https://polycube.network/.
4The main target for ASTRID are elastic cloud services that can change

at run-time according to orchestration policies (e.g., scaling, backup, redun-
dancy).

5The lack of visibility over the physical infrastructure of course affects the
threat model for the framework.

satisfied. Finally, a Context Manager provides the abstraction

of the whole system, including the description of the service

topology and its configuration, the list of available agents

and network parameters of the LCP, parameters that can be

changed for each agent, eBPF programs available, etc. It

exposes a common REST interface for changing the config-

uration of local agents deployed within the virtual service,

independent of specific protocols and syntax.

Differently from existing commercial and open-source tools,

the ASTRID architecture allows more flexibility in combining

together different agents and analytics engines, following a

programming model that supports both streaming and off-

line analysis. This allow the creation of custom processing

pipelines, as the one for the ATk used in this work. The

detailed description is available in technical documents [3].

IV. INSPECTING PACKETS IN THE 5GC

Beyond the delivery of faster and broader air interfaces, 5G

introduces a ground-breaking approach in the internal network

architecture [4]. Even if a similar distinction to 4G between

the access and core parts still exists, the new standard reflects

the main advances in software-defined networking and moves

to a cloud-native approach for the core, where each functional

entity is now modeled as a (virtual) Network Function (NF).

This evolution is not limited to the nomenclature and the

delivery of software instances instead of hardware appliances,

but it also encompasses a sharper distinction between the

control and user plane and a large transition from reference

points (N[0-9]) towards service-based interfaces (Nxxx), at

least in the control plane (see Fig. 3).

The service-based architecture facilitates both planning and

management of the whole infrastructure. On the one hand, it

allows more flexibility in placing NFs across centralized of-

fices and computing/storage resources at the edge, with better

support for latency-sensitive applications and user mobility. On

the other hand, multiple NFs instances can be deploed to create

different network “slices”, dedicated to vertical applications

or user groups. The description of the 5GC architecture falls

outside the scope of this paper; here, we only briefly elaborate

on the user plane, especially the User Plane Function (UPF),

which plays a crucial role in our approach.

In the 5G architecture, the user plane carries Packet Data

Units (PDUs) – Ethernet, IPv4 or IPv6 frames – from the

User Equipment (UE) to an external Data Network (DN), and

viceversa. A PDU Session is created between the UE and the

445Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

UE (R)AN UPF

AUSF AMF SMF

AFUDMPCFNRFNEFNSSF

DN

NafNudmNpcfNnrfNnefNnssf

Namf Nsmf

N1 N2 N4

N3

N9

N6

Control plane

User plane

Fig. 3: ETSI architecture for the 5G core (5GC). The UE and

AN are shown for reference, but they are not part of the 5GC.

UPF, which encapsulates PDUs and carries them through the

Access Network (AN); indeed, different tunnels are created

on the air and wired interfaces, with the AN relaying packets

in between. The UPF is therefore the outermost NF in the 5G

network that processes IP packets generated from or intended

to the UE; it is mostly conceived for packet steering to/from

multiple data networks, for anchoring in case of mobility, and

for QoS and traffic policies enforcement.

Even if this is not explicitly considered by the 3GPP

specification (not yet, at least), the UPF appears a perfect point

for traffic monitoring at the edge. As a matter of fact, UPFs are

software functions that can be easily replicated for scalability,

therefore they probably represent the only point in the 5GC

(and also the Internet) where packets can be inspected with

fine granularity.

A. Monitoring the 5GC virtual service

Overall, the 5GC can be described by a service template

as any other cloud service, and indeed there are already Ku-

bernetes implementations available.6 Therefore, the ASTRID

framework described in Section III can be used for attack

detection, by embedding agents in one or more VFs and

connecting them to the centralized platform. This is transparent

to the 5G architecture, because these agents do not affect the

internal protocols and are controlled by an external entity.

Further, the ASTRID platform can be an external standalone

component or deployed as additional function of the 5GC

template.

Fig. 4a depicts the expected architecture in this scenario,

limiting to a few functions for the sake of brevity. ASTRID

probes can be deployed both in the user plane and in the

control plane. The former can be used for packet inspection,

whereas the latter for log and event collection, software trac-

ing, and integrity verification. This brings the opportunity for

a large number of detection and analytics engines, addressing

the need for both trustworthy operation of the 5G network

itself and protection of the UE/DN.

6See, for example, Open5GS: https://open5gs.org/.

This deployment option best fits the original concept behind

the design of the ASTRID framework, so we follow it in our

work.

B. Integrating detection services in the 5GC

An alternative integration option is to deploy the ASTRID

platform as NF. This approach leverages the 5G service-

based architecture, and the possibility to integrate external

Application Functions (AFs) delivered by third parties for

specific control and management tasks. Without claiming to

define a complete and fully compliant solution, we sketch in

Fig. 4b an indicative example of how this can be implemented.

In this case, the ASTRID platform becomes part of the 5G

architecture, which should be extended with additional service

interfaces and reference points.

Detection and analytics services may therefore become an

AF, managed by either directly the telecom operator or an

external security provider. The monitoring and inspection ca-

pabilities of ASTRID agents may be exposed by an additional

service in the SMF (e.g., Nsmf Monitoring); in this case, the

ASTRID LCP would be deployed in the SMF rather than in

the same VF as the monitoring agents. An additional reference

point would be needed to collect data from agents with a

streaming pattern. As for all other NFs and services, also

the availability and location of the Nsmf Monitoring can be

discovered through the NEF.

At a preliminary analysis, it seems that this approach fits

well the need for monitoring the UE traffic in the UPF, but its

application to monitoring of other NFs is not straightforward.

Anyway, we do not further consider it in our work.

C. NTP amplification use case

One relevant use case for 5G is the Internet of Things

(IoT), which is expected to drastically increase the number of

connected devices to the Internet. However, we argue that this

will also enlarge the amount of potentially vulnerable nodes,

because of the typical weak security posture of IoT devices,

hence offering attackers the opportunity to create huge botnets.

In this respect, packet inspection at the network edge is an

effective strategy to mitigate the attack before they propagate

to and are amplified on the Internet, hence saving resources

both in the 5GC as well as on connected data networks.

Among the broad set of Internet servers that can be ex-

ploited for amplification, we select the Network Time Protocol

(NTP) because it has one of the largest amplification factors

and a huge number of public servers; indeed, NTP is among

the top emerging network attack vectors.7 However, our ap-

proach can be applied by other protocols as well, by simply

changing the configuration of the monitoring agent.
The NTP attack is based on sending a command called

monlist to an NTP server; the server returns the addresses

of up to the last 600 machines that it has interacted with.

The request packet is only 234 bytes long, but the response

may sum up to several dozens of kilobytes, depending on the

number of returned addresses.

7See https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-2020.

446Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

UPF

AMF SMF

PCFNRF

Context

Manager

Kafka

LogstashElasticsearch

ATK

Security

Controller

ASTRID Platform

LCP

ASTRID

Agent(s)

LCP

ASTRID

Agent(s)

LCP

ASTRID

Agent(s)

5GC Virtual Service

Telecom operatorSecurity provider

(a) The ASTRID platform monitors the virtual service.

AF
(ASTRID)

UPF

AMF SMF

PCFNRF

...ATKSecurity Controller

ASTRID

Agent(s)

LCP

5GC Virtual Service

Telecom operator

Kafka Context Manager

N4

N?

Nsmf

Nastrid

(b) The ASTRID platform integrated in the 5GC.

Fig. 4: Alternative options for creating detection and analytics services for the 5GC.

Fig. 5: The use case for NTP amplification attack.

Fig. 5 shows a simplified representation of the use case

investigated in this paper. We monitor NTP packets in the UPF

of the 5GC network, as described in Section IV. We switch

between two kinds of measurements, depending on the current

context:

• a coarse-grained indication: the number of NTP packets

seen;

• a fine-grained indication: the number of NTP packets

containing the monlist command.

The second parameter is more suited for the purpose of

detecting the amplification attack; however, it needs deep

packet inspection and that usually entails slower processing.8

The next Section describes how the ATk processes the two

measures and switches between them at run-time, chasing an

optimal balance between the overhead of the inspection and

accuracy of the detection.

V. THE ANALYTICS TOOLKIT

The Analytics ToolKit (ATk) is the component responsible

for analyzing quasi real-time data, performing estimations

based on historical time-series and finding anomalies. It is

therefore a general-purpose tool, which can be applied to a

plurality of attacks. Its behavior can also be easily adapted to

8The number of NTP packets can be easily computed by hardware appli-
ances based on the destination port of UDP packets. The detection of monlist

packets requires a software approach, since it cannot be generalized for any
protocol.

d a t a

s ta tus

Fig. 6: ATk architecture.

multiple use cases, through the rich REST-based configuration

API.9

The implementation of the ATk is compliant with the

ASTRID framework. Its internal architecture is shown in Fig.

6 and based on two microservices: the proxy and the engine.

The proxy interfaces the internal logic with external com-

ponents, by reading/writing from/to the common message bus

and by exposing the REST configuration API. Therefore,

it implements a data adaptation function. In particular, the

proxy aggregates the data published asynchronously by the

each monitoring agent j (probe) located in the set of network

nodes N at each time instant t: coarse grained measurements

(namely, volume of NTP packets) denoted by f
j
t , and fine-

grained measurements (namely, volume of monlist requests)

denoted by d
j
t . In general, f

j
t and d

j
t can be arrays, though

in this use-case they are scalars. Nodes are grouped into

a set of A areas Ai, based on their geographical location

(Ai ⊆ N ,
⋃

i

Ai = N ∀i = 1, . . . , A).

The engine includes a battery of N = |N | estimators,

each one processing the data from a different node, which

work under the control of the Estimator Manager. The latter

implements the main detection logic. It forwards f
j
t collected

by the proxy to the j-th estimator, which computes the forecast

based on what it learned in the past; the result is then returned

to the Estimator Manager for changing the current status and

9Astrid analytic toolkit API: https://github.com/astrid-project/
analytic-toolkit-apis.

447Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

BAU WARN ALARM

Fig. 7: ATk state diagram.

performing correlations between different nodes (see below).

Finally, both the current status and correlations are pushed to

the proxy and published on the Kafka bus.

Each estimator j is responsible to predict the value f̂
j
t

expected at time t, by using the previous T values (from t−1
downto t − T). Their implementation makes use of standard

ARIMA (AutoRegressive Integrated Moving Average) models

provided by Python statsmodel library. The larger T , the more

daily, weekly and seasonal patterns can be captured by the

estimators. A benefit of the current architecture is that the

number of estimators, which are the most computationally

heavy functions, can scale horizontally with the number of

nodes and/or use-cases to keep the ATk responsive without

consuming unnecessary cluster resources.

The behavior of the ATk is governed by the state machine

shown in Fig. 7. The three states reflect normal (BAU),

suspicious (WARN) and attack conditions (ALARM). The state

machine is then re-evaluated every ∆t, by comparing the

current measurement f
j
t with the estimation f̂

j
t computed from

the previous T values.

The ATk persists in BAU as long as
∣

∣

∣
f
j
t − f̂

j
t

∣

∣

∣
≤ δf ,

where δf is a fixed threshold, otherwise it switches to the

WARN state. To start the process, a time-series with T “clean”

measurements must be available, i.e. coming from nodes

which are not under attack, in order to learn the periodic

behavior. During operation, the new measurements f
j
t are

continuously added to the time-series to continue training;

however, real values are replaced by their estimation f̂
j
t when

the state is not BAU, to prevent overfitting.

In the WARN state, fine-grained measurements d
j
t are also

collected to improve the accuracy of the detection. These

values are compared with two thresholds δd and δid that

account for individual deviations and correlated variations in

area Ai, respectively. The ATk switches and remains in the

ALARM state when either one node exceeds the threshold δd
or p nodes in the same area Ai exceed the threshold δid, in

both cases this should happen for H consecutive evaluations.

This can be formally described as:

∃j ∈ N : dji ≥ δd ∨

∃Ai (i = 1, . . . , A) :
∣

∣

∣
{j ∈ Ai} : djt ≥ δid

∣

∣

∣
≥ p

∀i = t, t− 1, . . . , t−H (1)

The first equation allows to identify attacks that go through

a single node; the second equation is more suitable for very

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

BAU

WARN

ALRM

T
ra

ff
ic

 v
o
lu

m
e

[p
k
ts

/m
sg

]

Time [m]

Node1
Node2

Node3
Node4

Node5
Node6

Node7
Node8

Node9
Attack

ATK status

Fig. 8: Measurements reported by the network probes and ATk

state.

distributed attacks, which affect a plurality of nodes of the

same area with smaller deviations.

VI. NUMERICAL EVALUATION

We set up an experimental testbed to carry out functional

and performance validation. We used the latest releases of

the ASTRID framework and ATk available from the project

repository.10 All components are built as Docker images, and

Helm charts are available for automatic deployment with

Kubernetes.

For packet inspection we used the Dynmon agent11 (a

service of the Polycube framework), which provides a com-

mon control plane for running different eBPF programs and

collecting their measurements. We also developed policies for

the Security Controller; they are used to push two differ-

ent eBPF programs to Dynmon: one collects coarse-grained

measurements, and the other one also includes fine-grained

measurements, as described in Section IV-C.

The testbed implements the scenario depicted in Fig. 5, with

9 UPFs connected to the same DN; they represent the nodes

monitored by the ATk. These nodes are grouped into 3 non-

overlapping areas. The ATk was trained offline with a wave

profile, which is representative of typical daily variations.12

At this stage, we only focus on the ATk and the ASTRID

framework, so we didn’t deploy a working 5G network but

replaced UEs with software Traffic Generators (TGs).

We carried out a preliminary evaluation by running all TGs

with the same traffic profile, which was repeated several times.

A subset of 3 TGs emulated a small botnet that generates

monlist packets; attacks were simulated periodically through

Nodes 1, 4 and 9.

Fig. 8 shows the measurements reported to the ATk and how

its internal state evolves during the simulation, together with

10https://github.com/astrid-project/astrid-framework.
11https://polycube-network.readthedocs.io/en/latest/services/pcn-dynmon/

dynmon.html.
12The whole profile is generated in around one hour, to keep the simulation

time acceptable.

448Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

Operation CM Polycube Total

Add coarse-grained meas. 0.0221 2.3792 2.4013

Remove coarse-grained meas. 0.1628 0.0296 0.1924

Add fine-grained meas. 0.0502 2.4033 2.4535

Remove fine-grained meas. 0.1726 0.0302 0.2028

TABLE II: Breakdown of the delay (in seconds) to push an

eBPF program to the network agent.

the attack profiles. Since the same generation profile was used

for all nodes, the graphs largely overlap. Even if the attacks

were quite limited in size (the number of queries was below

those generated during peak periods) and could be confused

with the wave behavior, the ATk correctly generated an alarm

only when the anomaly occurred, with a small delay due to

the hysteresis of the algorithm.

Beyond the operation of the ATk engine itself, some delays

can be introduced by the ASTRID framework, while changing

the configurations of the network agents. We therefore inves-

tigated in details the composition of this delay, by splitting

it into two components: processing introduced by the Context

Manager (CM) and configuration of the local agent (Polycube).

Table II shows that the delay is rather limited, around a couple

of seconds, and have a marginal impact on the timescale of

the ATk. Overall, the major impact is due to loading the

eBPF program into the kernel, because this operation implies

compilation and code verification. Oddly, the CM is slower in

the removal process; this is due to the internal implementation

that stores the current configuration in Elasticsearch and needs

more time to remove an element. Finally, each message sent

on the kafka bus is rather small (around 100 bytes), so the

communication overhead is negligible.

VII. CONCLUSION

In this paper, we have proposed a concrete application

of the ASTRID framework to detect amplification attacks in

virtualized 5G networks. Our approach does not require any

modification to the 5G architecture and protocols, but it only

needs the addition of simple agents. This could be easily done

in Kubernetes-based deployments by including an additional

container within the same POD of the UPF function. This sim-

plifies the portability across following releases and upcoming

architectures, hence realizing a good separation of concerns

between network management and security processes.

Preliminary performance analysis shows that small delays

are introduced by the framework itself, which have a negligible

impact on the specific detection process. By combining vol-

umetric measures with deep packet inspection we can easily

monitor large distributed infrastructures, and scale well with

the number of users and access networks. Future work will

investigate more in detail the effectiveness and accuracy of

the detection with more representative traffic profiles and

attack patterns, also including the identification of correlations

between different areas.

ACKNOWLEDGMENT

This work has received funding from the European Com-

mission, Grant Numbers: 786922 (ASTRID) and 833456

(GUARD).

REFERENCES

[1] Radware, “Cloud DDoS protection service: attack lifecycle
under the hood,” Technology Overview Whitepaper,, 2016.
[Online]. Available: https://www.radware.com/assets/0/314/6442477977/
2c6454b4-403b-45b1-ac58-dc628bc210b3.pdf

[2] S. Covaci, R. Rapuzzi, M. Repetto, and F. Risso, “A new paradigm to
address threats for virtualized services,” in IEEE 42nd Annual Computer

Software and Applications Conference (COMPSAC), Tokyo, Japan, Jul.
23rd-27th, 2018, pp. 689–694.

[3] M. Repetto, “Final astrid architecture,” The ASTRID Consortium,
Tech. Rep. D1.3, October 2020, v. 1.0. [Online]. Available:
https://private.astrid-project.eu/Documents/PublicDownload/79

[4] “5g; system architecture for the 5g system,” ETSI, Tech. Rep. TS 123
501 V15.3.0, September 2018, 3GPP TS 23.501 version 15.3.0 Release
15.

[5] J. Czyz, M. G. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. D. Bailey,
and M. Karir, “Taming the 800 pound gorilla: The rise and decline
of NTP DDoS attacks,” in Proceedings of the 2014 Conference on
Internet Measurement Conference (IMC ’14), Vancouver, BC – Canada,
November 2014, pp. 435–448.

[6] A. Wang, W. Chang, S. Chen, and A. Mohaisen, “Delving into internet
DDoS attacks by botnets: Characterization and analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2843–2855, December 2018.

[7] C. Rossow, “Amplification hell: Revisiting network protocols for ddos
abuse,” in In Proceedings of the 2014 Network and Distributed System

Security Symposium, NDSS, 2014.
[8] L. Cai, Y. Feng, J. Kawamoto, and K. Sakurai, “A behavior-based

method for detecting DNS amplification attacks,” in 10th International

Conference on Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), Fukuoka, Japan, Jul., 6th–8th, 2016, pp. 608–613.
[9] M. E. Ahmed, H. Kim, and M. Park, “Mitigating dns query-based

ddos attacks with machine learning on software-defined networking,”
in IEEE Military Communications Conference (MILCOM), Baltimore,
MD – USA, Oct., 23rd–25th, 2017, pp. 11–16.

[10] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in International Conference on Wireless Networks
and Mobile Communications (WINCOM), Fez, Morocco, Oct., 26th–
29th, 2016.

[11] Y. Zhauniarovich and P. Dodia, “Sorting the garbage: Filtering out
DRDoS amplification traffic in ISP networks,” in IEEE Conference on
Network Softwarization (NetSoft), Paris, France, Jun., 24th–28th 2019.

[12] M. Han, T. N. Canh, S. C. Noh, J. Yi, and M. Park, “DAAD: DNS
amplification attack defender in SDN,” in International Conference on

Information and Communication Technology Convergence (ICTC), Oct.,
16th–18th 2019.

[13] K. Özdin cer and H. A. Mantar, “SDN-based detection and mitigation
system for DNS amplification attacks,” in 3rd International Symposium

on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
Ankara, Turkey,, Oct., 11th–13th 2019.

[14] Y. Zhang and Y. Cheng, “An amplification DDoS attack de-
fence mechanism using reinforcement learning,” in IEEE Smart-

World, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big

Data Computing, Internet of People and Smart City Innova-

tion (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester,
United Kingdom, Aug., 19th–23rd 2019.

[15] V. Gupta and E. Sharma, “Mitigating DNS amplification attacks using
a set of geographically distributed SDN routers,” in International Con-

ference on Advances in Computing, Communications and Informatics
(ICACCI), Bangalore, India, Sep., 19th–22nd, 2018.

[16] A. S. Jose and A. Binu, “Automatic detection and rectification of DNS
reflection amplification attacks with hadoop mapreduce and chukwa,”
in Fourth International Conference on Advances in Computing and

Communications, Cochin, India, Aug., 27th–29th, 2014.

449Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on November 25,2021 at 08:25:43 UTC from IEEE Xplore. Restrictions apply.

