
To All Intents and Purposes: Towards Flexible
Intent Expression

Mehdi Bezahaf, Eleanor Davies, Charalampos Rotsos, Nicholas Race
Schoole of Computing and Communications

Lancaster University
firstname.lastname@lancaster.ac.uk

Abstract—Intent-based networking provides an efficient mech-
anism to manage complexity in network management. The
paradigm allows users to express their network requirements,
and an autonomic framework translates them into a network
configuration. Existing efforts focus primarily on modeling con-
nectivity intents for end-users. Nonetheless, in order to deliver
autonomic behavior in network management, an intent system
must support a wider range of network management processes
and model human-to-human interactions, essential for network
operation. Furthermore, such interactions may involve non-
technical users and require the design of novel interfaces, sup-
porting free-text and conversational intent expression. Towards
this goal, we present an intent architecture that supports novel
network management intents, such as network path rerouting
and applying periods of ’service protection’. The paper includes
details of our prototype implementation that is capable of
deploying such intents in under five seconds in a large mininet
topology.

I. INTRODUCTION

Network management complexity in recent years has in-
creased as a result of the exponential growth of global Internet
traffic and the size of network infrastructures. New network-
ing paradigms, such as Software Defined Networking (SDN)
and Network Function Virtualization (NFV), offer potential
improvements in the ability of network operators to manage
infrastructures, through the use of network programmabil-
ity [1]. Alongside the promise offered via the introduction of
programmability, it is also essential to develop flexible policy
expression mechanisms, capable of capturing user network
requirements and mapping them into a network configuration.

Intent-based networking (IBN) [2] is a novel network
paradigm that automates the process of network configuration.
Users can describe their functional goals using a high-level
API or language and the intent system will adapt the network
configuration to deliver these goals. As a result, the opera-
tor management complexity is reduced and the abstraction
level of objectives is increased. Autonomic behavior can be
achieved by enabling intelligence, using machine learning
(ML)/optimization algorithms, in the intent translation process,
and compute an optimal network configuration, given the
operation status of the infrastructure (e.g. topology, traffic
matrix).

Currently, several intent-based network data models and op-
timization frameworks have been proposed in the literature [3],

[4], [5], [6]. Relevant frameworks allow users to express
their network intents using domain-specific languages (DSL)
or APIs and translate them automatically into appropriate
network configurations.

The adoption of a fixed syntax and vocabulary for the
expression of network intents simplifies the translation task
and enables several added-value properties for the intent
framework, including verifiability, automatic adoption, and fast
service delivery. Nonetheless, these benefits can also signif-
icantly hinder the usability of intents, particularly by users
who have limited technical knowledge. In order to take full
advantage of these benefits, users must become familiar with
the syntax of the programming language or data models. Users
must also develop familiarity with programming thinking and
understand networking concepts to master the semantics of
language primitives.

The importance of this challenge will increase especially
as the application domain of network intents expands. For
example, network configuration represents only a fraction of
the coordination required to deliver a service by an ISP, which
involves several human processes, including logistics and
billing. Integration of such processes requires the expansion
of existing intent languages with new semantics and the
introduction of mechanisms to efficiently translate ambiguous
user input into intents. Existing intent systems exclusively
target connectivity intents.

In this paper, we argue that true autonomic operation for
future networks must integrate human processes through the
definition of new intent primitives, beyond simple matters
of connectivity. To reduce the complexity of network intent
expression, new user interfaces should be designed to reduce
the cognitive load for non-technical users and efficiently
handle ambiguity in user input. To support this objective,
we present an intent system with novel intent primitives.
The system exposes these intents via a conversational intent
expression interface using off-the-shelf Artificial Intelligence
(AI) and Natural Language Processing (NLP) tools and can
interact with several online services, like Slack and Google
Assistant. Finally, our architecture can automatically translates
user intents into network configurations.

Specifically, this paper has the following contributions:
• We present an intent system architecture capable of

translating user free-text input into appropriate network
configurations.978-1-6654-0522-5/21/$31.00 ©2021 IEEE

Recognise
generate

Report

User

Translate
Refine

Abstract

Intent

Plan
Render

Configure
Provision

Validate

Analyze

Monitor
Observe

Infrastructure

2

1

3

Fig. 1: Intent systems control loops.

• We demonstrate the ability of our system to capture novel
intent use-cases (service protection, path rerouting) and
to deploy them in less than 5 seconds.

For the remainder of this paper, we discuss related literature
(§ II) and motivate our system (§ III). Furthermore, we present
our architecture and describe our prototype implementation
(§ IV). Finally, we demonstrate our system in operation
and measure the incurred processing latency (§ V), before
concluding our work (§ VI).

II. RELATED WORK

An intent system organizes intent processing using three
planes: the User, the Intent, and the Infrastructure, depicted
in Figure 1. These planes coordinate through three control
loops, to ensure intent fulfillment and provide feedback to the
user. [7] An initial control loop (loop 1) is established between
the user and the intent layer, designed to capture and verify
user intent details. The intent layer uses a separate control
loop (loop 2) to adapt the network configuration, based on
monitoring information from the infrastructure, and fulfill the
intent goals. This control loop uses network telemetry informa-
tion to measure the available network resources and validate
the feasibility of each intent. This control loop can be static
or dynamic, depending on whether the intent framework re-
evaluates intent fulfillment post-deployment. Finally, a control
loop (loop 3) exists between the user and the intent layer,
which abstracts monitoring information and the intent state
and provides useful feedback to the user.

Research efforts on IBN have primarily focused on the
design of the second control loops from Figure 1. Merlin [4] is
an early attempt to express network policies using a declarative
language and map them into an SDN configuration. PGA [3]
is a policy framework for OpenFlow networks, providing
conflict-free intent composition using graph theory. Chopin [5]
is an intent framework for SDN networks, which supports the
expression of connectivity intents with QoS. Propane [8] is
a declarative language, allowing the mapping of connectivity
intents in legacy network control protocols, such as BGP.
Robotron [9] is an intent-based management system used
to manage the Facebook network infrastructure. At its core,
Robotron uses a data model to track both policy specification,
as well as, the device inventory of the underlying infrastruc-

Fig. 2: Our system architecture employs a micro-service
approach and splits the translation process into several stages.
Intent deployment is driven by three basic control loops

ture. Network operators can use this model to automate the
policy translation into appropriate device configuration, by
developing vendor-specific drivers. Relevant efforts focus on
the delivery of connectivity intent and lack any insights on
how additional management processes can be automated via
an intent framework.

In terms of the first and the third control loop, and the
design of user interfaces for IBN, research has been somewhat
limited. Alusdais and Keller [10] presented the first attempt
to design a system to extract user intent from verbal input.
The system uses NLP tools to parse and translate text into
NBI calls to a network controller. NILE [11] is a user-
friendly intent language, offering automatic deployment of
connectivity intents with middlebox support. The platform is
open-source and provides a conversational interface through
the Google Assistant service. In parallel, the system uses a
simple and extensible intent expression language, which is
user-friendly. Bezahaf et al. [12] present an intent framework
that self-adapts deployed intents and sends feedback to the user
about new intent updates. Understanding the design of these
interactions and developing mechanisms that put the user-in-
the-loop, can open up new approaches in the design of IBN
systems, which improve automation by asking user for precise
feedback to reduce ambiguity and simplify intent delivery.

III. CAPTURING USER INTENT

Research on IBN systems has predominantly focused on
supporting connectivity intents through autonomic network
management systems. However automatic network configura-
tion reflects only a fraction of the functionality of a modern
ISP. Service delivery requires the coordination of several
processes within an ISP. Such processes require human-to-
human interaction to translate input from non-technical users
into changes to device configuration or online workflow pro-
cesses. The adoption of programming languages and network-
specific data models to abstract network intents, makes these
interaction ‘interfaces’ inaccessible for non-technical users

(a) Dialogflow processes syntax-free user
input and extracts key terms.

Define intent fwdIntent:
do action(’route’)
for target(’traffic’)
from endpoint(’h1’)
to endpoint(’h7’)
following path (’s1’,

’s8’, ’s12’)

(b) Intent expression using NILE.

{api_key: "test_key",
routes:[{

key: "intent1",
route: [

"00:00:00:00:00:01/None",
"of:0000000000000001",
"of:000000000000000c",
"00:00:00:00:00:07/None"]

}]}

(c) Intent deployment using the ONOS RestAPI.

Fig. 3: An example of a network intent transformation from human language to a NILE language statement and an ONOS
API call.

since they increase the cognitive load. In parallel, domain-
specific language (DSL) elements have a risk of users ulti-
mately causing a misconfiguration. Programming requires high
levels of precision and programming languages exhibit more
structure in comparison to natural language. Inexperienced
users find it difficult to transform the mental plan of an intent
into the required level of precision of the intent DSL [13] and
can introduce inaccurate expressions.

In order to motivate the discussion on the need for richer
intent primitives, for the rest of this section we discuss the
requirements of two business intents for ISPs and describe a
series of user challenges.

a) Traffic rerouting: Traffic rerouting is a common pro-
cess within ISPs. Such requests can be triggered by planned
maintenance tasks, e.g. route upgrade, or as a result of
exceptional circumstances, e.g. a link failure. Although recent
technologies, like MPLS-TE or PCE-based TE, provide au-
tomatic rerouting for some exceptional circumstances, several
maintenance tasks require human intervention to drain traffic
from a link, or even manually configuring an alternative path.
In parallel, ISPs must specify future maintenance windows
and plan in ’pen and paper’ the impact of the re-routing
process. During planned maintenance, re-routing will normally
be applied for a longer period than the actual duration of the
upgrade, in order to factor in any possible delays. Furthermore,
because rerouting is a manual process, maintenance windows
must be planned ahead of time and may be affected by external
factors, such as hardware delivery times.

An intent system can significantly reduce the impact of
an upgrade to service delivery. Infrastructure engineers can
signal the start and the end of the reroute intent, without the
need for a network engineer to plan and apply the operation.
Nonetheless, the user must specify several details for the
reroute intent, including the details of the affected devices and
the severity of the re-route intent, e.g. should the system aim
to fulfill QoS guarantees.

b) Service protection: A major event, such as the
Olympic Games, can have a potentially dramatic impact on the
traffic observed across network infrastructures. During such
events, network operators will typically avoid making any

network changes, to reduce the likelihood of an impact on
their service whilst a high-profile event is underway. These are
known as ”service protection periods”. Currently, ISPs rely on
quite simple mechanisms, such as e-mail and mailing lists, to
announce such protection periods within their organization. It
is the responsibility of network managers, during maintenance
planning, to check the relevant e-mail mail lists and ensure that
no conflicts occur.

Intents have the potential to be of significant benefit, by
enabling the automatic enforcement of such operations. Local
managers can input service protection intents, that postpone
any network changes by other intents. These intents are
extremely useful for non-technical local managers who lack
the necessary technical expertise to enforce such policies.
Such intents require the specification of several parameters,
including the scope of their policy, and require mechanisms
that can describe the impact of the policy change.

IV. ARCHITECTURE

Our architecture aims to fulfill two primary goals. We
want to develop support for new management intents, beyond
connectivity, and to explore novel mechanisms to capture
intents from non-technical users. To meet these goals we
have adopted a multistage translation process, supported by
an intermediate intent model. The intermediate intent model
remains human-friendly and ensures sufficient structure that
allows easy translation into a set of low-level policies [14].The
system consists of three service, depicted in Figure 2: (i)
the Interface, which performs the initial analysis of the user
input and communicates feedback on the intent state, (ii) the
Translation, which is responsible to validate and translate user
input into the intermediate representation and to generate user
feedback, and (iii) the Build, which managed the network
infrastructure and translates NILE intents into the network
configuration.

The process is initialized with the user describing its intent
input (either by typing or over voice) to the Interface service.
The user input is processed and the keywords capturing the
user’s intent are extracted. The extraction process identifies the
required network operation (e.g. route), as well as, the relevant

parameter (e.g. network endpoints, path), and a translation
process creates an intent compatible with the intermediate
intent model. The resulting intent is sent back for user val-
idation and the user can re-state its intent in order to correct
any translation errors. This is the first loop in the intent life-
cycle and requires human involvement. If the user accepts the
mapping, the resulting intent is deployed to the network by
the build process through an SDN controller, by the second
control loop.

The second loop is managed by the Translation service.
It validates that the processed intent represents the user re-
quirements, via the Interface service, and ensures that the
intent can be fullfilled by the Build service. Once the intent
is validate, the Translation service send the intent to the Build
service for deployemnt. Feedback from the build system helps
the system to refine the intermediate language translation for
future requests. The third loop is manage by the Build service
and provides useful feedback to the user regarding the state of
the intent (e.g. deployment errors, failures). All three loops in
the life-cycle of intents are important to validate the mapping,
to self-learn, and report back to the user.

Intent Processing Pipeline: Our system adopts a micro-
service approach, implementing each processing stage as a
standalone service, and re-uses a series of off-the-shelf soft-
ware and services to realize our intent layer and the language
processing functionalities. Individual services interact through
a well-defined API and an example of the transformations
supported by our system is depicted in Figure 3.

The Interface service is implemented using the Google As-
sistant platform. The service is implemented as an application
in the Google Assistant ecosystem, it allows users to access
intents via a wide range of devices and transmit user input to
a web service for processing.

User input is processed using Dialogflow [15], an NLP
service from Google. Dialogflow allows developers to seam-
lessly design and integrate multi-platform conversational user
interfaces with web services. The platform models user inter-
actions using flows and state machines. User interactions are
modeled as flows of state machines and each state requires
the extraction of specific information elements. To effectively
extract the required information, the user must provide several
input examples and label in each example the information that
needs to be extracted. For example, the sentences “reroute
traffic between h1 and h7, through s1,s2, and s12” and
“redirect flows between h1 and h7, using s1, s2 and s12”
should generate a JSON object with h1 and h7 as the path
endpoints and the forwarding path should contain the devices
s1, s2, and s12. Using this dataset, Dialogflow trains an
extraction model to automate input parsing, specific to the
application. Finally, we configure the Dialogflow service to
forward output data to the Translation service.

The Translation service of our system transforms the JSON
data from Dialogflow into an intent representation. Further-
more, the Translation service validates the intent parameters
and notifies the user via Google Assistant if the requested
intent cannot be fulfilled (e.g. nodes do not exist, path is

not possible). We employ an intent definition language that
extends the syntax of the NILE language [11] to represent
intents. NILE is an intent language designed to capture con-
nectivity and middlebox intents and offers a human-friendly
syntax. Our system extends the syntax of the language and
adds support for new actions (i.e., service protection, reroute)
and intent management statements. Specifically, we extended
the compiler to parse intent statements that contain action

and following statements. Actions allow users to manage
installed intents (e.g. re-route, protect), while following allows
users to specify path preferences when defining connectivity
intents. Because the NILE language remains human-friendly
and rather high-level, extending the parser was easy and
involved minor modifications in the language specifications.
The Translation service runs as a Heroku instance [16].
An example output of the translation process is depicted in
Listing 3b, when processing the output from Figure 3a.

Finally, the Build service of our pipeline translates NILE
intents into SDN NBI (ONOS) RestAPI calls. Our imple-
mentation uses a Heroku instance running a Python service
and uses PLY(Python Lex-Yacc) [17], a Python Lex and
Yacc parser, to automate the translation. For the sake of this
paper, the deployment is mainly done through the ONOS
controller [18]. Listing 3c depictes an example API call to
ONOS, that fullfils a re-route intent.

Due to our architecture focus, our prototype implementation
offers some intent validation and optimization functionali-
ties. The Build service performs basic connectivity and end-
point name validations, while the intent deployment algorithm
adopts a first-fit approach. If an intent cannot be fulfilled,
then appropriate feedback will be sent to the user via the
Interface service. The modular design of our system allows
easy integration of advanced optimization algorithms and we
aim to explore as future work how to connect the user with
planning and validation decisions.

V. EVALUATION

In this section, we demonstrate the capabilities of our intent
system on network management. Initially, we demonstrate
the ability of our system to interact with users and manage
a large emulated network. Furthermore, we evaluation the
impact of our implementation on management latency, using
two representative intent use-cases. As future work, we plan to
design user studies to further understand the user-friendliness
of the system interface and understand its impact on the user
cognitive load.

s

A. Experimental setup

Due to the micro-service architecture of our system, our
testbed is distributed across three location. The Interface ser-
vice runs in a Google cloud instance. The Translation and the
Build services run on remote Heroku cloud instances. Finally,
we run a Mininet instance in a server in our local datacenter,
to emulate the topology of a large ISP infrastructure. The

Fig. 4: Simplified topology of the BT 21CN network

TABLE I: Experimental Environment.

Setup Details/Version

Server DELL Intel(R) Xeon(R) Silver 4110 CPU
2.10GHz, 32GB DDR4 RAM

Mininet Version: 2.3.0d6
ONOS Version: v1.15

Open vSwitch Version: 2.9.8

distributed design of our testbed emulates realistically propa-
gation latencies in a real-world scenario. Table I summarizes
different details and versions of our setup.

Our topology follows the architecture of the 21CN BT
network, depicted in Figure 4. The 21CN network is organized
in five network layers: the Premise, the Access, the Metro, the
Core, and the iNode layers. The Core layer uses a full mesh
topology, to allow inter-connectivity between all areas of BT’s
network. The Metro layer is responsible for inter-connectivity
between nodes in a smaller geographical region, such as a city,
and is responsible for connectivity between the Core section
and Access layers. There are often multiple paths between
access nodes and the core for redundancy. Finally, the access
layer connects customers to BT’s network. In our evaluation,
we use Mininet and OpenVSwitch, while all switches in the
access, metro, and core network (from s1 to s12) are controlled
by a single ONOS instance.

To demonstrate the capabilities of our system we emulate
two intent scenarios: (i) a Service Protection Period (SPP)
intent, which ensures that no upgrade or maintenance is going
to be applied on a certain connectivity intent for a specific
period, and (ii) a traffic engineering intent, where the user can
ask for traffic rerouting between two nodes.

B. Intent Use-cases

As shown in Section IV, the intent goes through different
stages during its life-cycle. In this section, we measure the
processing latency of each stage in the context of two different
use cases (discussed in Section III). For both use cases, the
intent goes through the same stage sequence (Figure 5):

Fig. 5: Intent Execution Timeline.

TABLE II: Intent completion time in the traffic engineering
use case.

Stages Delay Module

Stage 1 384.4ms Interface
Stage 2 239.4ms Communication
Stage 3 1.05ms Translate
Stage 4 98.35ms Communication
Stage 5 397.6ms Interface
Stage 6 313.43ms Communication
Stage 7 3157.55ms Build
Stage 8 109.22ms Communication

Total 4701ms N/A

1) The input intent gets dissected to keywords by the Inter-
face service. Figure 3a shows an example of this stage in
the case of traffic engineering.

2) The keywords are sent to the Translation service.
3) The Translation service transforms the user input into a

NILE intent. The result will look like the example in
Listing 3b.

4) A detailed description of the translated intent is sent back
to the Interface service for user validation.

5) The user can validate if the generated intent matches its
input.

6) If the user validates the generated intent, then a NILE
intent is sent to the Build service.

7) The Build service parses the intent and translates it into
a low-level configuration for deployment (ONOS NBI
API).

8) Once the configuration is successfully installed, The
Build service generates a notification that is printed on
the user’s screen by the Interface service.

Please note that all gray areas in Figure 5 represent the
necessary delay for communication between each module. We
refer to it as communication delay.

Figure 6 shows the Google assistant interface where the
user can interact with the system in both use cases. We can
see the different exchanges between the user and the system.
The interaction is initiated by the user expressing its intent
using either the keyboard or the microphone (Step 1). The
user input is processed by the Interface and the Translation
services and the resulting interpreted intent expressed in the
NILE language is printing on the screen (Step 2). It is worth
noting that this process exhibits a significant level of ambiguity
and the system relies on the user to detect and correct it. The

Fig. 6: User interface showing interactions with the system

user can confirm or discard the resulting intent and generate a
new one (Step 3). The final intent is sent to the Build service
for deployment and relevant feedback is printing on the screen
(Step 4).

C. Management Overhead Evaluation

The adoption of a multi-stage translation pipeline can in-
crease the latency of several management tasks. In this section,
we provide a detailed analysis of the latencies incurred on
each stage and evaluate the responsiveness of the system.
Table II shows the average delays in the traffic engineering
use case. From the results, we identify that stage 3 (transla-
tion) and stage 7 (build) are respectively the less and most
time-consuming stages. Typically, the translation is quite a
forward process, where the extracted keywords get mapped to
an intermediate language. Deployment, however, takes more
time as it needs to communicate with the SDN controller.
Stage 2 and Stage 6 represent the average necessary delay
(240ms ≈ 300ms) between the Interface service , hosted by
Google cloud, and the Translation and the Build service, both
hosted by Heroku cloud. Stage 4 and Stage 8 represent the
reverse path delay (100ms ≈ 110ms). The difference between
these latencies can be attributed to the fact that the Google
infrastructure provides better connectivity, in comparison to
Heroku.

Figures 7 and 8 represent the percentage of total time spent
on each service stage for the Traffic engineering and the SPP
intent use-cases, respectively. From the results, we highlight
that for both intents the delay spent in the Translation stage is
negligible in comparison to the other stages. We also highlight

Fig. 7: Breakdown of the percentage of the total time spent
in each service stage for a typical traffic engineering intent
use-case.

Fig. 8: Breakdown of the percentage of the total time spent
in each service stage for a typical service protection period
intent use-case.

the different latency profiles between the two intents. In the
traffic engineering intent, the Build stage takes 67.2% of the
total time, while in the service protection period, the respective
stage represents only 14.5% of the overall intent completion
time.

To better understand the latency differences between the two
intents, we compare in Figure 9 the overall intent completion
time for both use cases. The SPP use case took an average of
2.48s compared with the traffic engineering use case (4.70s)
to fulfill the intent. The major difference between the results
is the time spent deploying the new network configuration. In
our implementation, the deployment consists of parsing and
transforming the intermediate language to the ONOS API. In
the SPP use case, the ONOS API is a simple rule that blocks
any new intent during the service protection period. However,
in the traffic engineering use case, the deployment module has
to wait for the SDN controller to apply the new forwarding
rule in every switch of the path.

VI. CONCLUSION

IBN systems can drastically scale the management com-
plexity of modern network infrastructures. To increase the
adoption of IBN in production, an intent framework must
consider the expression of network intents beyond matters
of network connectivity alone. To cope with the semantics
introduced by new intent primitives and to make platforms
accessible to non-technical users, new interfaces are required
that allow users to interact with the network configuration and
express management requirements in a user-friendly manner.
In this paper, we introduced an architecture for an IBN

Fig. 9: Comparison of intent completion time: Traffic engi-
neering vs. Service protection period.

framework capable of capturing new intent primitives (i.e.,
path rerouting, service protection), and applying them across
an SDN infrastructure.

For our future work, we aim to add support for additional
business intents in our architecture. In parallel, we plan to
explore how our system can accommodate automation in the
validation and optimization of the deployment of business
intents. Additional services in our pipeline, offering integra-
tion with the telemetry system, can provide run-time intent
invariant validation and dynamic intent adaptation. In parallel,
we aim to explore how users can be included in the process of
intent validation and re-planning, either by describing invariant
relaxation preferences, or break ties when multiple solutions
are selected from the optimization algorithm. We believe that
new user interfaces for intent systems will provide new oppor-
tunities to put the user-in-the-loop and explore intent policies
from a novel perspective. Finally, designing user-friendly and
intuitive interfaces is crucial for the wider adoption of intent
frameworks and ambiguity is a major challenge, both in
terms of analyzing the user input, as well as communicating
feedback from our system. Using our intent system, we plan to
conduct a series of user studies targeting a wide range of users
(e.g. network managers, end-users, non-technical users), to
understand how users process network information and define
a set of design best practices.

VII. ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
Next Generation Converged Digital Infrastructure (NG-CDI)
Prosperity Partnership project funded by UK’s EPSRC and
British Telecom plc.

REFERENCES

[1] M. Bezahaf, D. Hutchison, D. King, and N. Race, “Internet evolution:
Critical issues,” IEEE Internet Computing, vol. 24, no. 4, pp. 5–14, 2020.

[2] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani, “A survey on
intent-driven networks,” IEEE Access, vol. 8, pp. 22 862–22 873, 2020.

[3] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs to
express and automatically reconcile network policies,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 29–42. [Online].
Available: https://doi.org/10.1145/2785956.2787506

[4] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, ser. CoNEXT ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
213–226. [Online]. Available: https://doi.org/10.1145/2674005.2674989

[5] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using SOL,” in Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation, ser.
NSDI’16. USA: USENIX Association, 2016, p. 223–237.

[6] A. Mercian, F. Yrineu, J.-M. Kang, R. Amorim, S. M. Mahajani,
M. Sanchez, and S. Banerjee, “Network Intent Composition (NIC)
Feature Update and Demo: Intent Compilation, Lifecycle Management
and Automated Mapping,” http://sched.co/7RBY, 2016, presented in
OpenDaylight Summit 2016.

[7] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura,
“Intent-Based Networking - Concepts and Definitions,” Internet
Engineering Task Force, Internet-Draft draft-irtf-nmrg-ibn-concepts-
definitions-03, Feb. 2021, work in Progress. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/draft-irtf-nmrg-ibn-concepts-
definitions-03

[8] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-
level configurations,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 328–341. [Online]. Available:
https://doi.org/10.1145/2934872.2934909

[9] Y.-W. E. Sung, X. Tie, S. H. Wong, and H. Zeng, “Robotron:
Top-down network management at facebook scale,” in Proceedings of
the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
426–439. [Online]. Available: https://doi.org/10.1145/2934872.2934874

[10] A. Alsudais and E. Keller, “Hey network, can you understand me?”
in 2017 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2017, pp. 193–198.

[11] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville,
“Refining network intents for self-driving networks,” in Proceedings of
the Afternoon Workshop on Self-Driving Networks, ser. SelfDN 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
15–21. [Online]. Available: https://doi.org/10.1145/3229584.3229590

[12] M. Bezahaf, M. P. Hernandez, L. Bardwell, E. Davies, M. Broadbent,
D. King, and D. Hutchison, “Self-generated intent-based system,” in
2019 10th International Conference on Networks of the Future (NoF),
2019, pp. 138–140.

[13] J. F. Pane, C. Ratanamahatana, and B. A. Myers, “Studying
the language and structure in non-programmers’ solutions to
programming problems,” International Journal of Human-Computer
Studies, vol. 54, no. 2, pp. 237–264, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1071581900904105

[14] S. Alalmaei, Y. Elkhatib, M. Bezahaf, M. Broadbent, and N. Race,
“Sdn heading north: Towards a declarative intent-based northbound
interface,” in 2020 16th International Conference on Network and
Service Management (CNSM), 2020, pp. 1–5.

[15] Google, “Dialogflow - Lifelike conversational AI with state-of-the-art
virtual agents,” https://dialogflow.cloud.google.com.

[16] Salesforce, “Heroku: Cloud Application Platform,”
https://www.heroku.com.

[17] D. Beazley, “PLY (Python Lex-Yacc),” https://www.dabeaz.com/ply.
[18] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,

T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and
G. Parulkar, “ONOS: Towards an Open, Distributed SDN OS,” in
Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 1–6. [Online].
Available: https://doi.org/10.1145/2620728.2620744

