
Daniel Spiekermann, Jörg Keller:
Encapcap: Transforming Network Traces to Virtual Networks.
In: Proc. 7th IEEE Conference on Network Softwarization (NetSoft 2021),
Tokyo, Japan, June 28 - July 2, 2021. , IEEE 2021, pages 437-442.
DOI: 10.1109/netsoft51509.2021.9492602

© 2021 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Encapcap: Transforming Network Traces to Virtual
Networks

Daniel Spiekermann
Faculty 1 - Criminal Sciences
Polizeiakademie Niedersachsen

Oldenburg, Germany
Daniel.Spiekermann@polizei.niedersachsen.de

Jörg Keller
Faculty of Mathematics and Computer Science

FernUniversität in Hagen
Hagen, Germany

Joerg.Keller@FernUni-Hagen.de

Abstract—Valid and complete network captures are a valuable
source when detecting network based attacks and adversarial
data exfiltration techniques like covert channels or performing
network forensic investigation Also in training, testing, bench-
marking and algorithm development, the availability of pre-
recorded, entire packet captures is eminent. Such a packet
capture contains the entire packet stream with all incoming
and outgoing network packets recorded over a defined period
of time. Whereas a large number of recorded packet captures
with well-known protocols from physical networks exists, the
number of available files focused on virtual networks is low. Yet,
virtual networks are taking on an ever greater role in modern
environments. The creation of such network traces is a time-
consuming and error-prone task, and the inherent behaviour
of virtual networks eradicates a straight-forward automation
of trace generation in comparison to common networks. In
this paper we analyze relevant conditions of modern networks
which hamper the generation of valid test captures and propose
Encapcap, a tool that transforms given network packets stored
in a capture file to virtual network packets. This improves
the process of generating real-life packet captures for testing
or training in virtual networks. We evaluate Encapcap with
several experiments to demonstrate its correctness, usefulness
and applicability.

Index Terms—virtual networks, packet generation, packet
transformation

I. INTRODUCTION

The analysis of packets in modern networks is a complex
and time-consuming task. Such analyses aim to identify at-
tacks, anomalies and unwanted behaviour inside the network,
help to troubleshoot the environment and are a valuable
resource in digital investigations of suspicious events in the
environment. A common way to perform this is a process
of capturing, recording and analyzing the network packets.
The capturing and recording of the data is done in an online-
phase which creates a capture file with all or at least with
all relevant network packets. This file is later analysed in an
offline phase, in which the investigator uses different tools
to extract relevant information like IP addresses, conversation

This work is supported by project SIMARGL (Secure intelligent methods
for advanced recognition of malware, stegomalware & information hiding
methods, https://simargl.eu), which has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant
agreement No. 833042.

details or suspicious behaviour. A network conversation is
defined as the traffic between two specific endpoints and sum-
marizes aspects like bytes sent and received, port addresses
or the duration of flows [1]. The increasing performance of
modern networks hamper this mostly manual analysis, so
modern implementations use machine learning algorithms to
filter or classify network packets in order to detect anomalies
or outliers. The training of these algorithms is based on
captured network data of the productive network. As shown
in [2], changes inside virtual networks have an impact on the
detection rate of the algorithms. Therefore, possible changes
in the infrastructure demand for a new training of the model,
based on new data. Unfortunately, the creation of a new data-
set is a time-consuming and error-prone task. Every mistake
when creating the new data-set might confuse the algorithm
and distort the results.

Not only in the field of machine learning, but also in
different use cases there is a need of high-quality network
packet captures, which is a raising challenge in nowadays
research and development area. Different use cases like edu-
cation and training, tool testing, performance measurement or
troubleshooting demand capture packets in different formats
and protocols. This is needed not only in the field of infor-
mation security, but also in digital investigation. The creation
of these test data is a critical problem not only in network
forensics, but in nearly every branch of digital investigation
[3]. There are different packet captures as well as data-sets
publicly released. Most of these files are limited in scope.
Either they contain only a small number of packets, e. g. for a
special protocol investigation, or they are flow-based captures.
Various network captures with a bigger number of packets
are available, but typically they are limited. There are also
other examples of digital forensic test data like test images,
SQLite databases, machine learning data-sets with images or
textual data. Nonetheless, the overall diversity of these corpora
is insufficient for many of the aforementioned use cases. [4]
analysed 715 digital forensic articles published between 2010
and 2015 and discovered that many of the associated data-sets
used in these experiments are not publicly available. Existing
packet capture tools do not cover the specialties of virtual
networks, such as VM migration or protocol changes inside
the environment.978-1-6654-0522-5/21/$31.00 ©2021 IEEE

Our main research contribution is Encapcap, a tool for:
• Creation of valid packet capture filessuited for virtual

networks, based on existing data-sets from physical net-
works.

• Dynamic encapsulation with different virtualization pro-
tocols like NVGRE, VXLAN and GENEVE.

• Simulating effects of inherent virtual network behaviour
like VM migration or protocol changes.

Our tool uses Scapy to parse and write original and trans-
formed trace files, resp., but the logic to represent the virtual-
ized network and compute transformations and actions within
that network is original contribution of Encapcap.

The remainder of this article is structured as follows. In
Section II, we provide background information on network
virtualization, packet capture generation, and discuss related
work. In Section III, we present Encapcap to transform
packet traces from physical to virtual networks, and how to
apply it to different parts. In Section IV we report on our
experimental results, evaluate the proof-of-concept and discuss
open challenges, while Section V presents conclusions and an
outlook to future work.

II. BACKGROUND

A. Virtual protocols

Modern environments heavily base on dynamic and flexible
infrastructures to fulfill the demands of users and services.
In the past the environments were mostly static, but due to
increased enquiries for an easy and customizable usage of
the infrastructure, virtualisation came apart. At the beginning,
virtual machines (VM) were used, but these systems require
an adaptable and programmable environment to play to the
strengths. With the evolution of virtual network protocols
a flexible and dynamic connection of network devices got
possible. Whereas VLAN as the first implementation of such
a protocol allows the use of 4096 different logical sub-
nets1, modern implementations like Virtual eXtensible LAN
(VXLAN), Generic Networking Virtualization Encapsulation
(GENEVE) or Network Virtualization using Generic Routing
Encapsulation (NVGRE) facilitate more than 16.000.000 dif-
ferent subnets2. The separation of the different networks is
done with a special field in the header, which identifies an
isolated subnet under the administration of a single customer.
By this, subnets can be spread all over the physical infrastruc-
ture. If a host wants to communicate with a host located in
the same subnet, but on a different compute host, the network
packet is encapsulated as shown in Figure 1. The new header
fields of the encapsulation protocols add information for the
transport [5].

The encapsulation process is done by a tunnel endpoint
(TE). The TE residing on the other compute node removes
the additional headers and forwards the original packet to the
intended destination.

1Size of tag-field of VLAN is 12 byte, which led to 212 = 2096 values.
2The protocols use a 24 bit sized header field, which creates 224 =

16.777.215 subnets.

Fig. 1. Encapsulation of network packets.

B. Related Work on Packet generation

A lot of network traffic captures are publicly available,
software vendors like Netresec3 and Wireshark4 provide packet
captures as well as different web pages5. The number of files
is high, but mostly the number of captured packets is too small
for any advanced usage. Different researchers provide the
download of huge data-sets, partly with additional information
like labels or statistics. Mostly the available network captures
are labeled data-sets containing only flows without a full
packet capture like CTU-13 [6] or UGR’16 [7]. These files
have a high value in the field of machine learning, but the use
for packet trace transformation is limited. Data-sets with a full
packet capture are CICDDoS2019 [8], CSE-CIC-IDS 2018 [9]
and INSecS-DCSl [10], but there is no publicly available data-
set with different virtual protocols. A common technique is
the replay of the network packets inside a virtual environment
with tools like tcpreplay, TCPivo [11] or OFRewind [12]. The
tools provide a great flexibility in repeating captured network
captures, but focus on the implementation or evaluation of
high-performance networks. In contrast to these, a forensic
purpose like [13] focus on the replay as accurately as possible.
Because of this, none of the tools is able to create virtual
network captures. In addition to this, the tools listed in II-B
are powerful, and provide the creation of different network
captures with VXLAN, but do not provide a flexible generation
of network packets with virtual encapsulation based on a given
network capture.

Besides capturing live packet traces, network packet traces
can be generated synthetically. The generation of network
packets is defined as the result of time-stamped series of pack-
ets arriving and departing from particular network interfaces
with realistic values [14]. This process is performed in various
disciplines like IT-security [15], network troubleshooting [16],
educational and training [17], [18], testing [19] and network
forensic investigation [2], [20]. The generated network cap-
tures provide a valid way to repeat different tasks in order to
train, simulate, troubleshoot or learn from the results. Different
tools allow design and creation of network packets. Common
tools are Cisco TRex6, Ostinato [21] and Genesids [22].

[23] describes six different techniques to generate network
packets or traffic collection:

1) Use of real networks

3https://www.netresec.com/?page=pcapfiles
4https://wiki.wireshark.org/SampleCaptures
5Cf. e.g. https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-NB15-Datasets/ or https://www.kdd.org/kdd-cup/view/kdd-cup-1999/
Data.

6Details can be found at https://trex-tgn.cisco.com.

2) Create a honeynet
3) Use of a network simulator
4) Existing traffic dumps
5) Use of network traffic generators
6) Combining the aforementioned techniques.

In the field of digital investigation, the use of valuable test
data is a perpetual challenge [24]. [25] describe the use of
purchased second hand hardware to collect different user data.
Unfortunately, network data is volatile and not stored on
hardware after the transmission, thus purchasing old hardware
is not a reasonable approach. Unfortunately, these works do
not consider virtual networks.

III. PACKET TRACE VIRTUALIZATION

A. Challenges

Virtual networks differ from physical networks in various
aspects which have to be handled during the transformation.
Virtual networks provide a high dynamic to fulfil different
demands of modern networks like migration or on-demand
changes in the infrastructure, often initiated by user cus-
tomization. A common process in a virtual environment is the
migration of the internal virtual machines (VM). This is done
to provide benefit for load-balancing and high availability.
Such a migration changes the internal structure of the network
by adding or deleting tunnel endpoints, routing tables, IP
addresses and existing firewall rules [26]. Another difference
to traditional hardware-based networks is the possibility to
change used protocols on-the-fly. This protocol swap is done
to implement additional features like TCP-offloading [27].

Because of this, the creation of packet captures with vir-
tual protocols and the aforementioned challenges is a time-
consuming task which is nowadays done in various testbeds.
The process of implementing such an environment is done in
various steps. [24] defines a significant planning as the first
step, along with discussions of trained personnel to preserve
the realistic scenario. The technical implementation bases on
the installation and configuration of VMs running on compute
nodes and the underlying network structure. On top of the
underlay network the different implementations for the overlay
networks (e. g. VXLAN, GENEVE, NVGRE) have to be
installed and configured. To capture network traffic, suitable
positions have to be determined, which have a huge impact on
the quality of the network capture [28]. After the implementa-
tion of all aspects, different scripts are needed that perform
actions which result in the network traffic to be captured.
After creating the packet capture file, the configuration of the
network has to be changed in order to capture a different
protocol. If dynamic aspects like VM migration is covered,
a reconfiguration of the entire environment is necessary.

B. Methodology

Based on a given network packet trace, we use Encapcap7

to transform the captured data of a non-virtualized network to
a packet capture with virtual network packets.

7This is an acronym of ”Encapsulating Pcap”

As discussed in Section II the use of existing captured
files is one of the most relevant techniques, but the results
are typically static with a simple rewriting of the packets
[23]. Because of this, we combine the static transformation
of given capture files with dynamic change of values to create
more realistic packet capture files, which covers the flexi-
bility and dynamic with constantly recurring changes in the
infrastructure of virtual networks. This demands for a deeper
packet analysis of the existing capture file. An appropriate
transformation has to cover aspects of involved systems like IP
addresses, MAC addresses, packet flow and, when modifying
further values, the existing standards like RFCs.

Encapcap bases on Python3 in combination with scapy
8 2.4.4. Scapy is used to parse the original pcap file and
to extract relevant fields like IP addresses. After analysing
these information, Encapcap uses scapy to create a valid
network packet capture file which is written to disk. The
configuration of Encapcap is done with arguments submitted
via the command line and parsed at start. Encapcap needs at
least three parameters to start. - -file defines the input pcap file
with the original data. - -net defines the network to be used as
internal network. The last parameter needed by Encapcap is
the intented type of encapsulation. Based on this information,
Encapcap determines relevant packets for encapsulation. With
parameter - -geneve, Encapcap is started to create an encapsu-
lation with the GENEVE protocol, the parameter –vxlan will
create a VXLAN-encapsulation header, –nvgre will result in a
NVGRE-based pcap file. The result of the transformation will
be stored in a new file with the prefix of the encapsulation
protocol followed by the old name. The example below creates
a new capture file named geneve anomalies.pcap from input
file anomalies.pcap using GENEVE encapsulation:

>>> encapcap.py
>>> --file anomalies.pcap
>>> --net 192.168.10
>>> --geneve

The first step of Encapcap is to analyze the packet capture
to retrieve information of the conversations, endpoints and
protocols. Based on this information, a set of relevant IP
addresses is created. This set contains all systems which have
to be handled during the transformation. As a protocol for the
connection of VMs running in different layer3 domains, the
internal address scope is important. Therefore, Encapcap uses
a HOME parameter when started to detect and encapsulate
only packets which are transmitted between devices of this
network. The encapsulation process adds additional header
information to the packets as shown in Figure 1.

These additional header information depend on various as-
pects of the conversation of two systems. Based its configura-
tion, Encapcap detects parameters like source and destination
of the conversation and adds the correct header information.
If this process fails, the resulting network packet contains
invalid packets, which might impede or hamper the subsequent

8Details can be found at https://scapy.net.

analysis. Especially analyses with deep packet inspection,
network troubleshooting or performance investigations might
be confused when processing such malformed capture files.
Encapcap pays attention to standards like ISO/IEC 10039 and
the addressing scheme of MAC addresses with a special focus
on the correct usage of group addresses.

Encapcap provides the use of static or randomized values
to create a realistic content, the control of the insertion of
these values is done by various parameters given when starting
the transformation process. By this, repeated transformation of
packet captures can be identical or varying, based on the de-
cisions and intended purpose of the creation. The randomized
values cover fields such as IP and MAC addresses or port
numbers used.

After analyzing the network packets and implementing
the correct encapsulation, Encapcap is able to simulate the
dynamic changes of a virtual network. When a VM is migrated
inside the virtual environment, it is moved to another compute
node of the environment, and tunnel endpoints are created to
provide a connection between the involved compute nodes
hosting the communicating VMs. The parameter - -migrate
commands Encapcap to change the MAC and IP addresses
of the encapsulating packet, which simulates the result of a
migration of a VM. This change starts at a random time after
40% to 60% of the processed packets. The migration of a VM
in production environment depends on various circumstances,
and is mostly unpredictable. We used the aforementioned
values to simulate a migration, which results in a balanced
number of network packets before and after the migration.
This separation creates a usable packet capture, otherwise
the capture file might be unbalanced, which might result in
unwanted aftereffects. The following example illustrates this:

>>> encapcap.py --file test.pcap
>>> --net 10.0.0.
>>> --vxlan
>>> --migrate

Will simulate migration
Will use 36:3A:B5:42:D2:85 with

IP 192.168.0.18 as additional systems
Will use E8:CB:6B:DB:AB:42 with

IP 192.168.0.248 as additional systems
Will start after 55% of processed packets

The result of this simulation is a change of the IP addresses
of the encapsulation during the packet flow in the packet
capture. The following listing shows the change of the outer
header information from subnet 172.16.0.x with the tunnel
endpoint 172.16.0.132 and 172.16.0.183 to new IP addresses
in subnet 192.168.0.x9. The internal IP addresses 10.0.0.2 and
10.0.0.12 remain unchanged during the entire transformation
process, because these are the IP addresses used in the original
packet capture.

172.16.0.132,10.0.0.2 172.16.0.183,10.0.0.12
192.168.0.18,10.0.0.2 192.168.0.248,10.0.0.12

9The simulated tunnel endpoints have the IP addresses 192.168.0.18 and
192.168.0.248.

Encapcap calculates random IP addresses of the tunnel
endpoints based on RFC 1918 [29] to create realistic packet
captures.

Whereas a traditional network and the deployed hardware
remain mostly unchanged for a period of time, virtual net-
works provide a great flexibility and allow changes of the
environment during run-time. This provides a change of the
deployed protocols as well as user customization. Encapcap
is able to handle these aspects and allows the change of the
virtual network packet by command. The following listing
shows the frame number and the protocols available in the
frame. Thus, there is a change between packets with indices
6 (using VXLAN) and 7 (using GENEVE).

6 eth:ethertype:ip:udp:vxlan:eth:
7 eth:ethertype:ip:udp:geneve:eth:

Whereas some changes are relevant in case of packet trans-
formation, other values should not change in order to reduce
possible errors when the traffic is analyzed. Timing parameters
like time-stamps, time-to-live or the delta of packets should
not change, as well as the internal payload or ports and IP
addresses. These are therefore maintained in Encapcap.

IV. EXPERIMENTAL RESULTS

The most critical aspect in the generation of network packets
is the correctness of the data. Especially in the field of machine
learning the use of valid and appropriate test data is crucial
for the effective detection of unwanted traffic.

To validate our approach, we use various network packet
traces which are publicly available. We submit the relevant
information about the internal network structure with the - -
net parameter. We assume that only packets defined by the
subnet are encapsulated with the relevant information.

A. Anomaly detection

The detection of anomalies or novelties is an important part
of modern network security. Whereas anomaly detection is part
of unsupervised learning, the analysis of the novelty is part of
supervised learning. As shown in [2], virtual networks have
an impact on the detection of anomalies, because the changes
in the network might confuse the algorithms. Therefore, the
models have to be trained again to learn aspects of virtual
networks and their inherent dynamic [30]. If this training is
done without a valid data-set, the quality of the analysis might
be low. To evaluate Encapcap in the field of machine learning
with a focus on the creation of data-sets, we analyze a given
packet capture with benign and malicious network traffic. We
use Decision Trees, Logistic Regression and Naive Bayes as
algorithms for classification of the data. The original data-
set contains 699.218 network packets, and we use the sklearn
train test method()10 to split the data into a training and a
test data-set with a rate of 70% for training and 30% for
testing. As shown in Table I, the trained models achieve a
prediction rate of > 99% based on a given data-set. We first

10Details can be found at: https://scikit-learn.org/stable/modules/generated/
sklearn.model selection.train test split.html.

analyzed the prediction rate based on common network traffic,
e. g. without any virtual network protocols in the capture file.
We stored the model (named old model in Table I) for the
subsequent analysis of the network data after the transfor-
mation with Encapcap. After the transformation, the network
capture contains the same payload, but now encapsulated with
virtual network information. We performed the same analysis
as before, now the prediction rate is significantly lower, which
might be critical in productive environments.

TABLE I
PREDICTION RATE IN PERCENTAGE

Algorithm Old model Transformed,
old model

Transformed,
new model

Decision Tree 100 39,83 99,98
Naive Bayes 99,98 27,68 99,97
Logistic Regres-
sion

99,99 86,61 99,97

Afterwards we trained the algorithms with the transformed
packets11, which results in a good prediction rate of 99%.

The adaptation of existing models for traditional networks to
highly dynamic virtual networks is faced with different issues.
Because of this, existing implementations are not usable for
the reconfiguration of trained models to achieve a fast and
simplified use. Thus, the training of the deployed machine
learning algorithm and the evaluation of the data-sets are
mostly done in productive networks.

B. Network-based attacks

The detection of malicious network packets is not limited
to machine learning algorithms. Web application firewalls and
intrusion detection systems (IDS) have to be able to analyse
various network protocols to detect unwanted payloads. As
discussed in [31], virtual protocols change the position of
strings inside the stream which might confuse the analysing
systems. Encapcap allows the quick analysis of such changes
as shown in the following listing.

xxd cleartext.pcap |grep Hel
00001c00: 6c6c 6f20 776f 726c &Hello worl
xxd geneve_cleartext.pcap |grep Hel
00002914: 6c6c‘....&Hell

We send a clear text message Hello World! from one host
to another, intercept the communication and store the packets
in the file cleartext.pcap. After transforming this capture file
with Encapcap, the shift of the starting position of the string
is detectable12, which helps to adjust the configuration of
firewalls and IDS.

C. Covert channels

The detection of network-based covert channels is a com-
plex task in modern networks [32]. Available countermeasures

11The labels of the packets remain unchanged.
12The position in the intercepted traffic is at offset 0x1c00, while the

position in the virtual transformation is at offset 0x2914.

as discussed in [33] depend on the detection of the covert chan-
nel [34]. The detection of covert channels in virtual networks
is discussed in [35] with a special focus on the possibilities of
the virtual protocols. Encapcap supports the analysis of these
covert channels by providing a fast and reliable generation of
different captures from physical networks, which can be used
to detect possible covert channels.

D. Software testing

[36] noted that the production of error-free protocols or
complex process interactions is essential to reliable commu-
nications. The quality of new software tools depends on the
quality of available data for developing and testing. Especially
when new protocols arise, tools need to be updated and
adjusted to detect, disassemble, analyze and classify the new
protocol information. Without knowing internal structures of
the protocol, this process is hampered and results in an error-
prone task with a high number of trial-and-error approaches.

[37] discuss often underestimated issues of packet genera-
tion and criticize a lack of accuracy in the generation of the
network packets. Encapcap encapsulates given network traffic
in a predefined manner, which ensures the level of accuracy.
In addition to this, the transformation is under full control of
the user, which provides a high level of flexibility considering
the original structure of the packets.

E. Education and training

A critical part in the fields of information security and digi-
tal investigation is the preparation of involved personnel [38].
The training and education bases on the availability of usable
training material, test data and use cases. In combination with
the aforementioned aspects, the education and training benefit
from the creation of various virtual protocol captures without
the need of complex test scenarios as discussed in Section
III-A. The simplified generation of virtual network packets
improves the diversity of training data of packet captures is
needed in training of beginners as well as experts.

V. CONCLUSIONS

This paper proposes Encapcap, a tool for creating network
packet traces with virtual packet encapsulation based on ex-
isting capture files. Different use cases, which demand for
a flexible and on-demand creation of predefined, but partly
randomized network traffic captures, exist in various fields
like information security, digital investigation and network
troubleshooting.

The creation of valid data for testing, learning or developing
tools in all of the aforementioned branches is a complex, error-
prone and time-consuming task. The generation of network
data might be an easy process, but the creation of virtual
network data is hampered by different challenges which derive
from the high flexibility of these networks. Especially the
customizability and migration processes are typical in modern,
highly virtualized networks. Encapcap is able to manage
these challenges and simulate an appropriate behaviour. The
predictability of the results increases because of the knowledge

of the origin network traffic, which is transformed to a virtual
capture. Our future research is focused on the expansion of our
tool, which helps researchers to add more encapsulation like
Point-to-Point-protocol (PPP) or Encapsulated Remote SPAN
(ERSPAN).

REFERENCES

[1] J. H. Baxter, Wireshark essentials. Packt Publishing Ltd, 2014.
[2] D. Spiekermann and J. Keller, “Impact of virtual networks on anomaly

detection with machine learning,” in 6th IEEE Conference on Network
Softwarization (NetSoft), 2020, pp. 430–436.

[3] S. Garfinkel, “Forensic corpora: a challenge for forensic research,”
Electronic Evidence Inf. Cent. 1e10, 2007.

[4] C. Grajeda, F. Breitinger, and I. Baggili, “Availability of datasets for
digital forensics–and what is missing,” Digital Investigation, vol. 22,
pp. S94–S105, 2017.

[5] M. Mahalingam, D. G. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2 networks over
layer 3 networks.” RFC, vol. 7348, pp. 1–22, 2014.

[6] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” computers & security, vol. 45, pp.
100–123, 2014.

[7] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garcı́a-Teodoro,
and R. Therón, “Ugr ‘16: A new dataset for the evaluation of
cyclostationarity-based network idss,” Computers & Security, vol. 73,
pp. 411–424, 2018.

[8] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset
and taxonomy,” in International Carnahan Conference on Security
Technology (ICCST). IEEE, 2019, pp. 1–8.

[9] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSp, 2018, pp. 108–116.

[10] N. Rajasinghe, J. Samarabandu, and X. Wang, “Insecs-dcs: a highly
customizable network intrusion dataset creation framework,” in 2018
IEEE Canadian Conference on Electrical & Computer Engineering
(CCECE). IEEE, 2018, pp. 1–4.

[11] W.-c. Feng, A. Goel, A. Bezzaz, W.-c. Feng, and J. Walpole, “Tcpivo:
A high-performance packet replay engine,” in Proceedings of the ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible
Network Research, ser. MoMeTools ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 57–64. [Online].
Available: https://doi.org/10.1145/944773.944783

[12] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “Ofrewind:
Enabling record and replay troubleshooting for networks,” in USENIX
Annual Technical Conference. USENIX Association, 2011, pp. 327–
340.

[13] J. Parry, D. Hunter, K. Radke, and C. Fidge, “A network forensics tool
for precise data packet capture and replay in cyber-physical systems,”
in Proceedings of the Australasian Computer Science Week Multicon-
ference, 2016, pp. 1–10.

[14] K. V. Vishwanath and A. Vahdat, “Realistic and responsive network
traffic generation,” in Proceedings of the 2006 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 111–122. [Online].
Available: https://doi.org/10.1145/1159913.1159928

[15] S. Ghazanfar, F. Hussain, A. U. Rehman, U. U. Fayyaz, F. Shahzad,
and G. A. Shah, “Iot-flock: An open-source framework for iot traffic
generation,” in 2020 International Conference on Emerging Trends in
Smart Technologies (ICETST). IEEE, 2020, pp. 1–6.

[16] Y. Li, R. Miao, M. Alizadeh, and M. Yu, “DETER: Deterministic
TCP replay for performance diagnosis,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), 2019,
pp. 437–452.

[17] V. Padman and N. Memon, “Design of a virtual laboratory for infor-
mation assurance education and research,” in Workshop on Information
Assurance and Security, vol. 1, 2002, p. 1555.

[18] J. Son, C. Irrechukwu, and P. Fitzgibbons, “Virtual lab for online cyber
security education,” Communications of the IIMA, vol. 12, no. 4, p. 5,
2012.

[19] A. G. Voyiatzis, K. Katsigiannis, and S. Koubias, “A modbus/tcp fuzzer
for testing internetworked industrial systems,” in 20th conference on
emerging technologies & factory automation (ETFA). IEEE, 2015, pp.
1–6.

[20] V. Corey, C. Peterman, S. Shearin, M. S. Greenberg, and J. Van Bokke-
len, “Network forensics analysis,” IEEE Internet Computing, vol. 6,
no. 6, pp. 60–66, 2002.

[21] B. R. Patil, M. Moharir, P. K. Mohanty, G. Shobha, and S. Sajeev,
“Ostinato-a powerful traffic generator,” in 2nd International Conference
on Computational Systems and Information Technology for Sustainable
Solution (CSITSS). IEEE, 2017, pp. 1–5.

[22] F. Erlacher and F. Dressler, “Testing ids using genesids: Realistic
mixed traffic generation for ids evaluation,” in Proceedings of the
ACM SIGCOMM 2018 Conference, ser. SIGCOMM ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 153–155.
[Online]. Available: https://doi.org/10.1145/3234200.3234204

[23] I. Kotenko, A. Chechulin, and A. Branitskiy, “Generation of source data
for experiments with network attack detection software,” in Journal of
Physics: Conference Series, vol. 820, no. 1. IOP Publishing, 2017, p.
012033.

[24] X. Du, C. Hargreaves, J. Sheppard, and M. Scanlon, “Tracegen: User
activity emulation for digital forensic test image generation,” Forensic
Science International: Digital Investigation (09 2020). Proceedings of
DFRWS APAC, 2020.

[25] C. Moch and F. C. Freiling, “Evaluating the forensic image generator
generator,” in International Conference on Digital Forensics and Cyber
Crime. Springer, 2011, pp. 238–252.

[26] D. Spiekermann and T. Eggendorfer, “Challenges of network forensic
investigation in virtual networks,” Journal of Cyber Security and Mo-
bility, vol. 5, no. 2, pp. 15–46, 2016.

[27] R. Kawashima and H. Matsuo, “Implementation and performance anal-
ysis of stt tunneling using vnic offloading framework (cvsw),” in 2014
IEEE 6th International Conference on Cloud Computing Technology and
Science, 2014, pp. 929–934.

[28] D. Spiekermann, J. Keller, and T. Eggendorfer, “Improving lawful
interception in virtual datacenters,” in Central European Cybersecurity
Conference 2018. ACM, 2018, p. 8.

[29] Y. Rekhter, R. G. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear, “Address allocation for private internets,” Internet
Requests for Comments, BCP 5, February 1996. [Online]. Available:
https://tools.ietf.org/html/rfc1918

[30] D. Spiekermann and J. Keller, “Unsupervised packet-based anomaly
detection in virtual networks,” Computer Networks, vol. 192, p.
108017, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1389128621001286

[31] D. Spiekermann and T. Eggendorfer, “Towards digital investigation
in virtual networks: A study of challenges and open problems,” in
11th International Conference on Availability, Reliability and Security
(ARES), Aug 2016, pp. 406–413.

[32] W. Mazurczyk and S. Wendzel, “Information hiding: challenges for
forensic experts,” Communications of the ACM, vol. 61, no. 1, pp. 86–
94, 2017.

[33] J. Kaur, S. Wendzel, and M. Meier, “Countermeasures for covert
channel-internal control protocols,” in 2015 10th International Confer-
ence on Availability, Reliability and Security. IEEE, 2015, pp. 422–428.

[34] M. A. Elsadig and Y. A. Fadlalla, “Network protocol covert channels:
Countermeasures techniques,” in 2017 9th IEEE-GCC Conference and
Exhibition (GCCCE), 2017, pp. 1–9.

[35] D. Spiekermann, J. Keller, and T. Eggendorfer, “Towards covert channels
in cloud environments: a study of implementations in virtual networks,”
in International Workshop on Digital Watermarking. Springer, 2017,
pp. 248–262.

[36] P. Zafiropulo, C. West, H. Rudin, D. Cowan, and D. Brand, “Towards
analyzing and synthesizing protocols,” IEEE Transactions on Commu-
nications, vol. 28, no. 4, pp. 651–661, 1980.

[37] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?” IEEE Communications Magazine, vol. 48, no. 9, pp.
158–165, 2010.

[38] B. D. Carrier and E. Spafford, “Getting physical with the digital
investigation process,” Int. J. Digit. Evid., vol. 2, 2003.

