
Strengthening SDN Security:
Protocol Dialecting and Downgrade Attacks

Michael Sjoholmsierchio Britta Hale Daniel Lukaszewski Geoffrey G. Xie

Naval Postgraduate School

October 20, 2020

Abstract—Software-defined networking (SDN) has become a
fundamental technology for data centers and 5G networks. In
an SDN network, routing and traffic management decisions are
made by a centralized controller and communicated to switches
via a control channel. Transport Layer Security (TLS) has
been proposed as its single security layer; however, use of TLS
is optional and connections are still vulnerable to downgrade
attacks. In this paper, we propose the strengthening of security
assurance using a protocol dialecting approach to provide addi-
tional and customizable security. We consider and evaluate two
dialecting approaches for OpenFlow protocol operation, adding
per-message authentication to the SDN control channel that is
independent of TLS and provides robustness against downgrade
attacks in the optional case of TLS implementation. Furthermore,
we measure the performance impact of using these dialecting
primitives in a Mininet experiment. The results show a modest
increase of communication latency of less than 22%.

Index Terms—Network security, Software-Defined Networks,
Protocol Dialect, Transport Layer Security

I. INTRODUCTION

In contrast to traditional IP data networks, software-defined
networks (SDNs) centralize network control functions such as
routing to a programmable decision element – the controller.
This enables the separation of the control functions (which
we collectively referred to as the control channel) from the
data channel functions that forward actual user packets. The
controller provides a single platform for programming and
orchestrating network control functions to respond to user
traffic demands based on a network-wide view of current
network state [1]. Devices operating in the SDN data channel
(called switches) simply accept and enforce decisions (in the
form of new flow rules) provided from the controller via the
control channel. The separation of control channel and data
channel enables streamlined network administration, fine-grain
flow-level security enforcement [2], resource adaptability [3],
and scalability [4]. SDNs have become a fundamental tech-
nology for data centers and 5G networks [5], where resource
efficiency and application performance requirements are more
stringent than traditional data networks.

SDNs come with two interfaces for a controller to in-
teract with other network components [6]. The northbound
interface is a controller software platform-specific application
programming interface (API) for a unified communication
model with deployed network control applications (traffic
engineering, access control, etc). For example, the ONOS

Fig. 1: Overview of SDN Network.

controller software [7] is able to support and orchestrate
a wide range of network control functions while using a
distributed software architecture to enhance fault tolerance.
The southbound interface is used to support exchange of
control messages between a controller and switches in the
same network and is currently carried out by the standard
OpenFlow protocol [6]. OpenFlow runs over TCP and is
the only means for a controller to communicate with SDN
capable switches regardless of the vendor, making OpenFlow
the exclusive standardized protocol used by the SDN control
channel.

The control channel carries all decisions and commands for
packet forwarding, switch configuration settings, and security
operations from the controller to the switches. Correspond-
ingly, network interface state updates and packet forwarding
decision requests are relayed from switches to the controller.
Thus, we refer to the controller and switches as SDN de-
vices, while hosts are considered as external to the SDN
network and include endpoint devices such as clients/servers
not participating in OpenFlow communications. The basic
SDN configuration is shown in Fig. 1. Given the increased
importance of SDNs and the critical role of the control channel
to these networks, security of the SDN control channel is
critical.

Currently, Transport Layer Security (TLS) protocol is the
only recommended security solution for protecting the SDN
control channel OpenFlow traffic, and it is only considered
on an optional basis [6]. TLS, if enabled, provides a layer of
authentication and confidentiality. There are two main chal-

1

ar
X

iv
:2

01
0.

11
87

0v
1

 [
cs

.N
I]

 2
2

O
ct

 2
02

0

lenges of implementing TLS with OpenFlow. First, because
TLS is optional and not a requirement, not all commercial
SDN switch vendors and controller platforms provide native
support of TLS [6]. Secondly, TLS is vulnerable to downgrade
attacks [8]–[10]. Downgrade attacks are able to trick the
communicating partners in the initial TLS handshake phase
to adopt a potentially vulnerable protocol version or weaker
ciphersuites (i.e. version downgrade and ciphersuite down-
grade attacks). Such an attack would leave command data,
such as flow rules, vulnerable to modification before being
implemented by a switch.

The IETF has worked to develop solutions to address
downgrade attack issues, e.g., [11]. However, use of new TLS
versions can require time for wide deployment, particularly in
SDNs, and are still only provided on an optional basis. In this
paper, following the defense-in-depth principle, we investigate
a complementary solution using a novel protocol dialecting ap-
proach. Protocol dialecting is an emerging network operation
technique that aims to specialize the communication syntax
and semantics of a standard networking protocol for the pur-
pose of enhancing network security [12], [13]. The addition of
a dialect also requires no action or modification of the protocol
standard that it is added to. Modifications to existing protocols
to achieve new goals form the roots of protocol dialecting.
This practice of experimenting with existing or optional fields
of a protocol to signal a desired behavior is not new. The
standard TCP protocol has incorporated multiple extensions
through the use of the TCP Option field, to include window
scaling, fast open, and timestamps. For instance, the creation
of the Multipath TCP protocol takes advantage of the root
TCP protocol by adding in a Multipath Capable option [14].
The TCP 3-way handshake can now provide a signal that the
user wishes to establish multiple TCP connections with the
server, and fall back to normal TCP behavior if the option is
not supported.

It might seem straightforward to add new security checks
for specific purposes. The novelty of this work lies largely in
the combination of the new features and security layers with
existing security solutions (such as TLS) in a principled way.
We demonstrate the addition of novel security features that
may be used separately or in conjunction with the optional
TLS, and demonstrate management of additional complexity
to network operations.

Our contributions are as follows:

1) We formulate high level criteria and a methodology
for systematically designing and evaluating a protocol
dialect.

2) We design and evaluate two security derivatives (poten-
tial dialecting solutions) that can be used to dialect the
OpenFlow protocol. We present the security rationale
for the derivatives to achieve another layer of per-
message authentication that is independent of TLS, and
as such, enhance the defense of some TLS versions
against certain attacks. We further present experimental
results to show that deploying the derivatives will likely

incur a modest increase of communication latency.

3) We conceptualize a new form of policy-based network-
ing by extending the protocol dialecting functionality at
a SDN device into a policy enforcement proxy (PEP).

4) We simulate a downgrade attack and demonstrate how
the designed and implemented dialect could be used
to detect and prevent such attacks against a Mininet-
emulated SDN environment.

As a direct consequence of our third contribution, an op-
erator could leverage the proxies for optionally defining and
enforcing security-oriented policy for specific protocols, e.g.,
by mandating the use of TLS or permitting only specific TLS
versions for the SDN control channel. A PEP is used as the
implementation method for our experiment; however, protocol
dialects are not limited to use of proxies.

The paper is organized as follows. In Section II, we ground
the work with an overview of the protocol dialecting concept,
a systematic design methodology, a description of TLS down-
grade attacks, and a review of related work. In Section III,
we present the design of two derivatives for dialecting the
OpenFlow protocol that add a layer of message authentication
which may optionally be used in conjunction with TLS.
Section IV details the security rationale for our design and
Section V describes results from our Mininet experimentation
with the derivatives. Finally, we discuss limitations and poten-
tial extensions of this work in Section VI and offer concluding
remarks in Section VII.

II. PRELIMINARIES

The concept of protocol dialecting, as well as its use as
a network security solution, has been applied to a relatively
small number of networking protocols. In this section, we pro-
vide a brief overview of the technical area and a formulation
for systematically designing and evaluating a protocol dialect.
We also detail the steps of a downgrade attack against TLS
to substantiate the claim that TLS by itself has limitations in
securing SDN control channels. Finally, we review prior work
that is closely related to our proposal.

A. Protocol Dialecting

Protocol dialecting aims to allow an operator to specialize
operation of a networking protocol beyond the standard
configuration options, potentially on a per-network basis. In
today’s data network operation, it is common to use open-
source implementations of standard protocols such as DNS,
HTTPS, and OpenFlow. Therefore, such networks share the
same software vulnerabilities and cannot escape from the
dreadful reality of “break one [network], break them all”.
By adding network-specific protocol behaviors, the premise
of protocol dialecting is to force potential attackers to spend
significantly more resources to decipher specific details of
the protocol specialization and to meet customized security
needs of an organization. The goal of the particular dialecting
approach presented here is to cause an attacker to spend more

2

Fig. 2: 6-step Methodology for Designing and Evaluating a Protocol Dialect.

time and resources compared to networks with only TLS, as
well as to enable per-message authentication secrets.

Typically, a protocol dialect employs multiple underlying
sub-solutions for customizing the operation of a protocol. Each
of the sub-solutions is referred to as a dialecting derivative in
this paper. Derivatives can take many forms. In reported use
cases, some researchers have proposed to change a protocol’s
messaging semantics (e.g., re-purposing of fields and private
options) and timing (e.g., artificial delays, duplicates, or omis-
sions of messages) [12], [13]. Direct modifications of protocol
semantics and timing have the additional benefit of amplifying
the presence of attack traffic, in the same way that a visitor
who doesn’t speak the local dialect would stand out when
speaking to a roomful of locals. In one of our derivatives, we
follow this precedence and require no message modification; in
the second derivative we consider modifications to the format
and semantics of OpenFlow messages. The first derivative adds
security into existing data packets using a normally random
packet field, while the second derivative provides security as
a wrapper around the entire unmodified packet.

B. Toward Systematic Development of Protocol Dialects

Protocol dialecting must be friendly to network operators
to ensure that its implementation does not greatly increase
network management complexity. We observe that two factors
are critical to controlling the complexity. First, most network
operators do not have the programming or security back-
ground required for safely modifying protocol software, even
if the source code is available. Automated tools for creating
protocol dialects from original binaries is highly desirable.
Alternatively, plug-and-play proxy software with minimum
configuration requirements can be deployed between devices
to alter protocol behaviors without the need to modify protocol
binaries. The use of proxy software reduces the requirement
of tailoring to the underlying protocol being modified and can
be protocol agnostic. Second, protocol dialects should not ad-
versely affect the effectiveness of current network monitoring
tools. This means that modifications made to the OpenFlow
packets or wrappers do not modify the OpenFlow protocol
and can be removed prior to analysis by a monitoring tool.
The resulting traffic flows should not cause significant manual
re-configurations of intrusion detection systems.

From the above observations, we propose these two criteria
for properly evaluating the effectiveness of a protocol dialect:

1) Security benefits. The protocol dialect must provide net
security benefits in that it enables significantly improved
security protection without introducing new vulnerabil-
ities that could weaken the security properties of the
original protocol implementation.

2) Deployment costs. The expertise, time, and resources
required of the network manager to deploy the protocol
dialect must be at a similar level to that in a typical
deployment of the original protocol implementation.
Similarly, deployment of the protocol dialect must not
significantly increase network communication overhead.

Next, we present a methodology for systematically designing,
testing, and deploying a protocol dialect to ensure meeting
both criteria. The methodology consists of six distinct stages
as illustrated in Fig. 2.

Central to our methodology are two iterative processes
specifically designed to mandate that both aforementioned
evaluation criteria are considered. The process in the left
half of Fig. 2 evaluates the security benefits and deployment
cost primarily through formal modeling and analysis while
refining assumptions about the targeted deployment scenarios.
Ideally, the dialect provides a general solution with sufficient
flexibility to work with networks of varying size, topology, and
services provided. Assumptions must explicitly, and precisely,
characterize resource and time constraints, threat model, and
strengths and weaknesses of available security solution build-
ing blocks. These assumptions will likely go through several
rounds of validation and refinement before they actually match
operational reality as demonstrated in Fig. 2.

The iterative process shown in the right half of Fig. 2
requires that the network operator prototype all major dialect
deployment and management steps and experimentally eval-
uate how these steps may impact the performance assurance
results derived from the security and cost analyses. In par-
ticular, potential impacts on the performance of authorized
traffic flows and on the effectiveness of network monitoring
tools should be measured and analyzed to guide selection and
refinement of dialect implementation and management. Some
negative impacts can be overarching and not correctable by
implementation or management changes alone; such issues
necessitate re-designing some of the dialect’s basic elements,
i.e., returning to Step 1 of the methodology. An example of
an implementation limitation, which requires a step back to
design, would be timing requirements of devices that are no

3

longer satisfied due to the addition of deep packet inspection
and security checks. In this case, the design required fast
functioning security algorithms and packet inspection to not
add excessive time delay.

Inspiration for the the dialect design process begins with
the selection of a security concern by an organization, leading
to the selection of a security mechanism and its associated
options. This design process is similar to SP 800-37 Rev 2.
Risk Management Framework for Information Systems and
Organizations select stage [15]. In this stage, one or more
derivatives are designed and created for testing. Examples
of desirable security objectives include confidentiality and/or
authenticity. For this research, we selected authenticity as the
primary security objective.

C. Downgrade Attacks Against TLS

Downgrade attacks are relatively well-known and are
documented in Common Vulnerabilities and Exposures
(CVEs)1 [9], [10], [16]. If such an attack was to occur between
an SDN switch and controller, control channel messages would
be vulnerable. For example, an attacker could send flow table
updates to the switch in order to alter routing rules, or alter
data statistics sent from a switch to the controller. As SDN
devices become geographically spread, the use of TLS will be
more important compared to physically secured data centers
that may not use TLS, and consequently the implications of
downgrade attacks on TLS for SDNs gain prominence. There
are a variety of downgrade attacks available [9], and even the
mitigations introduced with TLS 1.3 do not prevent a version
downgrade (such as to TLS 1.2) [10].

As an example, consider a version downgrade on TLS 1.2.
Since the initial ClientHello handshake message is unauthen-
ticated, a man-in-the-middle (MitM) attacker can downgrade
the TLS version. This is illustrated in Fig. 3. The attacker
could simultaneously downgrade the advertised ciphersuite
options, leading to the establishment of a TLS session that
is susceptible to a range of attacks.

D. Related Work

We summarize related work on three fronts: (i) efforts that
explore a similar approach of system specialization, (ii) efforts
that aim to improve SDN security using alternative approaches,
and (iii) efforts for mitigating TLS downgrade attacks.

System Specialization. Broadly speaking protocol dialect-
ing and code debloating [17]–[19], can be classified as system
specialization techniques. Notably, two recent papers, one
on application program interface (API) specialization (Shred-
der [20]) and the other on side-channel authentication [21],
illustrate the utility of system specialization in providing an
additional layer of security protection and bolstering a defense-
in-depth model.

The Shredder system reduces the attack surface for an
attacker to perform code reuse attacks by limiting the available
function calls of an API (e.g., the binary of a C++ library) to

1CVE-2016-0800, CVE-2018-12404, CVE-2018-19608, CVE-2018-
16868, CVE-2018-16889, and CVE-2018-16870.

Fig. 3: Illustration of TLS downgrade attack. Actions per-
formed by the MitM attacker are indicated in red. These
messages are unauthenticated in TLS1.2.

those actually used by applications of an organization [20].
The input parameter vector and value of each parameter for
permitted function calls can be further restricted to those com-
binations used by the same applications. That and similar code
debloating efforts [17]–[19] effectively restrict code execution
paths and values of variables, based on results from static
analysis or dynamic profiling of the code with respect to usage
by target applications. In comparison, our work is focused
on protocol-level semantics, including authenticity of control
messages and selection of protocol parameters, and thus does
not require code analysis or profiling. This is possible by the
use of wrappers or randomized packet fields of the OpenFlow
protocol.

Electromagnetic side-channel authentication [21] is a sim-
ilar concept to protocol dialecting in that it also aims to add
a new layer of authentication to the original communication
protocol without modifying data packet contents. This security
method relies upon physical layer modifications to add identity
features at the source and verification at the receiver of
the communication. Particularly worth noting is its ability
to add a unique end-point fingerprint that is operating on a
totally separate plane from that of the original protocol. In
comparison, the design explored in this paper aims to modify
protocol behaviors within the same plane.

SDN Security. Much prior research on SDN security has
been focused on verifying the consistency and accuracy of new
flow rules at the controller before deploying them to switches
(e.g., [22], [23]). Our work is complementary to this line of
research by providing control channel protection so that (i)
rules that have been properly verified will be less likely to be
modified without detection in transit before they reach their
destination switches, and (ii) network state updates received
by the controller are more likely to be authentic and thus,
the rule verification performed at the controller is more likely

4

based on accurate network state information.
Interestingly, the ConGuard work [24] shows that an ad-

versary can exploit race conditions among different software
threads of a deployed SDN controller to disrupt network
operation and even crash a controller. They demonstrated
this simply by generating a specific sequence of network
events from a compromised host without needing to breach
the SDN devices or control channel. Some of those attacks
leverage an absence of authentication on the control channel,
while others operate via replay attacks. Our protocol dialecting
solution enables early authentication while also preventing
replay attacks.

Mitigation of Downgrade Attacks. A countermeasure for
TLS downgrade attacks was proposed in RFC 7507 [25]. The
solution requires the client to signal a special ciphersuite value
called “Fallback Signaling Cipher Suite”, indicating to the
server that the server should generate an alert and abort the
connection if its highest supported protocol version is higher
than the version indicated by the client. Unfortunately, this
solution cannot defend against the (MitM) attacker considered
in this paper. The attacker can remove the special signaling
value from the initial client message.

Additional guidelines for TLS software implementations
aiming to reduce potential vulnerabilities to protocol down-
grade attacks are provided in RFC 7525 [26], but while such
provisions reduce vulnerability, they have been shown not to
eliminate it [10]. This research offers a layered method for
verifying that no changes have been made to TLS packages
sent between SDN control channel devices, especially during
the initial handshake; this includes authenticating relayed
ciphersuite settings or version number, through a defense-in-
depth approach.

III. DIALECTING OPENFLOW

In this section we describe in detail how we make use of
the six-step methodology presented in Section II-B to design,
implement, and evaluate two different OpenFlow dialecting
solutions. We refer to these solutions as OpenFlow derivatives
in the remainder of the paper. Each solution provides a
different method for including additional layers of security.
The methods we select include (i) a wrapper modification and
(ii) a direct packet modification within the constraints of the
protocol.

In addition to the two high-level criteria introduced in the
beginning of Section II-B, we also seek to minimize changes to
the normal communication process of the SDN control channel
devices in order to minimize additional network management
complexity required for deploying the proposed OpenFlow
derivatives. To this end, we consider a class of derivatives,
which we term inline solutions, that re-purposes existing
OpenFlow messages for new security checks. These checks
are then performed by the inline proxies with the potential for
switch or controller code modification as well.

Furthermore, we make two simplifying design assumptions
as follows: (i) clocks of SDN devices are always synchronized
within 100 milliseconds, and (ii) pre-shared keys are securely

deployed a priori between the controller and each switch.
The clock synchronization can be achieved by deploying the
Network Time Protocol (NTP) in the network or attaching
GPS hardware to each SDN device. The requirement of pre-
shared keys clearly introduces additional network management
complexity. However, we observe that it occurs only once for
each control channel device pair. Moreover, while pre-shared
keys are assumed for simplicity in testing purposes, a suitable
key exchange and management could be instituted via another
dialecting derivative.

A. Protocol Analysis

Protocol analysis consists of a thorough examination of the
standard operation of the base communication protocol (i.e.
OpenFlow) for the purpose of creating protocol derivatives.
We follow an information security approach in this analysis,
identifying baseline adversarial capabilities and protocol goals.

Threat Model. We consider an attacker who can monitor all
communications, delay, intercept, replay, and replace arbitrary
control messages between the controller and switches. We
assume a strong threat model to simulate a network spread out
across geographical areas and to not limit potential advantages
of the attacker. We assume that the attacker’s purpose is not
to instigate denial-of-service attacks, but to breach the SDN
control channel. We further assume that the attacker has no
means to directly compromise software, storage, and data
structures running on the controller and switches without first
compromising the control channel. This also means that we
assume no SDN device has been compromised directly on the
network.

While this threat model under-estimates the scope and
severity of some existing and future attacks against the SDN
control channel, it supports a proof-of-concept for protocol
dialecting as a promising new direction for protecting SDN
networks, while not being over-aiming for an all-encompassing
solution. Thus, this work serves as an initial step toward a
comprehensive solution based on protocol dialecting.

OpenFlow Message Features and Protocol Patterns. In
the next step, while developing in-line solutions, we focus
on identifying (i) the prevailing protocol patterns between
the controller and a switch and the critical messages used
in each pattern, and (ii) header features of these messages
with potentially reusable fields. We pay particular attention
to the latter; for example, a field that is normally random
can allow for modification without requiring changes to the
protocol specification. Such fields may be modified, still within
the bounds of the OpenFlow standard, to provide packet space
for inclusion of authentication tags.

OpenFlow protocol communication is conducted between
the controller and each participating switch, in an identical
point to point fashion. The primary two communication pat-
terns of each such connection are illustrated in Fig. 4. When
TLS is not being used, the protocol begins with (unauthenti-
cated) OpenFlow Hello messages sent non-interactively from
the switch and controller [6]. These messages are used to
determine the highest version of OpenFlow that each party

5

(a) OpenFlow without TLS.

(b) OpenFlow with TLS.

Fig. 4: OpenFlow Communication comparison with/without
TLS. Encrypted communication messages follow structure of
messages without TLS.

can support. Next, the controller will send a Features Request
message to establish configuration parameters for the switch,
such as buffer size and number of tables supported [6].
Following channel configuration, the switch and controller will
conduct a liveliness check based on a pre-defined interval
(e.g. 5 seconds)using a ping-like mechanism via a pair of
Echo Request and Echo Reply messages.

When TLS is enabled, the switch will begin communica-
tions with the controller by performing a TLS handshake. Fol-
lowing the handshake, the switch and controller will perform
the same setup procedures conducted as above, but this time
the messages are encrypted, as illustrated with shaded arrows.

We make two observations regarding the OpenFlow mes-
saging patterns. First, a switch-specific exchange of Hello
messages is required for the controller to establish communi-
cation with each switch, and another switch-specific periodic
exchange of Echo messages is used for maintaining the
connection. Given their importance and pervasiveness, these
messages are good candidates for dialecting to provide addi-
tional security features. Second, when TLS is used, content of
OpenFlow messages are meaningful at the receiving end only
after the outer TLS encapsulation is properly removed. This
implies that if dialecting of OpenFlow messages is carried
out before TLS functionality at the sending end, i.e., based
on plain-text fields of OpenFlow messages, TLS and/or SDN
parts of switch software must be dialected. Dialecting kernel
level switch software may incur significant management com-

plexity in a network deploying switches of different models
and worse, from different vendors. This motivates a wrapper
variant of dialecting to operate for every message sent between
devices, which does not depend on the OpenFlow message
format.

B. Dialect Design

The dialect design stage affects all future stages. For this
reason, it is important to consider how the choices made will
impact key stages such as security and implementation, and
revisit design choices during those stages. Derivative design
choices important to this stage include security objectives,
cryptographic algorithms, and key generation and manage-
ment.

From the protocol analysis stage, we identify two pos-
sible derivatives to add message-level authentication that is
independent of TLS security features. These are implemented
sequentially in our testing.

Derivative 1 Design. Derivative 1 (D1) modifies data within
the bounds of the protocol, but re-purposes the 32-bit Trans-
action ID (xid) field of the initial OpenFlow Hello exchange
as a hash-based message authentication code (HMAC). This
allows for immediate authentication of packets before TLS is
established.

The D1 Hello message format is shown in the left part of
Fig. 5. The transaction ID field of each OpenFlow Hello mes-
sage is normally randomly generated at both the controller and
switch, thus amiable to re-purposing. The HMAC verification
is performed by the proxies at both the controller and switch
to prevent malicious commands and data from reaching the
SDN devices.

The available 32-bit transaction ID field is well below
recommended MAC length levels [28]. This issue is unsur-
prising when considering dialecting with re-purposed existing
header fields; however, it raises a design question of ensuring
security even under a limited bit field that can easily be brute-
forced. To accomplish this, we effectively limit the HMAC
lifespan by ”killing off” keys from memory after a pre-
determined interval so that the MAC verification cannot take
place after the security window is exceeded. More specifically,
we utilize a Hash-based Key Derivation Function (HKDF) [29]
to derive two uni-directional keys from the switch-controller
pair-specific pre-shared key and the BLAKE2b [30] hash
algorithm for computing HMACs. New keys are then derived
sequentially in a ratcheted fashion (the current key is used to
derive the next key), with each key having a lifespan of 1
second. Our calculations to justify selection of a 1 second key
lifespan are based on average collision resistance of 232 bits/2

and an average Python test time to create a 32-bit MAC of
10−4 seconds. This yields an average of 6.5 seconds necessary
to find a collision.

It should be noted that D1 cannot be used indefinitely
without potentially interfering with the OpenFlow standard.
When the controller or switch exchange multiple messages
with the corresponding more flag set, follow-up messages are
required to utilize the same xid field [6]. Under D1, this field

6

Fig. 5: Illustration of Dialecting of Existing OpenFlow Messages to Support the New Derivatives. D2 outer (blue) shading
indicates the derivative while the inner (green) shading indicates the TLS wrapper. Adapted from [27].

is overwritten for each message and, since the contents of
the message are different, the xid field will contain a different
MAC for the subsequent messages. This is not an issue during
setup of the initial connection, however, as each message does
not use the more flag.

Derivative 2 Design. While D1 is native to the OpenFlow
protocol, it only adds protection to the initial communication
between the controller and switch for the reasons stated
above. Conceivably, we could expand the protection while
using a similar strategy to dialect Echo messages. However,
with Derivative 2 (D2), we chose to develop a more com-
prehensive solution covering all OpenFlow messages. There
is no limitation on using both D1 and D2 to reduce initial
communication forgeries and per-packet protection following
the initial OpenFlow Hello.

Furthermore, D2 is designed to allow inter-operation with
TLS. To avoid management complexity associated with di-
alecting kernel level switch software, we define D2 as message
wrapper as follows. A 512-bit HMAC tag is appended to
encrypted data packet before sending, as illustrated in the right
part of Fig. 5. The communicating ends accept an OpenFlow
message as valid only if it passes the HMAC check. D2 is
protocol agnostic and can be added to a variety of protocols
(e.g. various versions of TLS or when TLS is not enabled)
because it does not manipulate any internal fields or data in
the packets.

We use the HKDF and BLAKE2b algorithms for key
derivation and MAC computation for both D1 and D2, with
two differences. First, in D2, the HMAC length is increased to
512 bits. The length can be further increased based on network
security requirements. Second, under the extended MAC tag
length we no longer bound the key lifetime, but still require
per-message keys as well as unique keys for each sender.
We use a unidirectional sequence number (i.e. one sequence
number per sender, incremented per message) as part of the
hash input to combat replay attacks.

For instance, once the TLS handshake has completed,
the switch and controller initialize independent (derivative)
sequence numbers. These numbers are included in the HKDF
function and incremented after each message. In the event an
attacker attempts to replay a previous message, the receiv-
ing side will attempt verification using the correct sequence
number and detect an error, resulting in a dropped packet. In
our experiment we set the receiver to drop the packet and
connection completely if an error associated with a validation
code was detected. Since re-establishing the switch-controller
connection requires relatively little time, we select to recreate
the setup of the switch versus simply dropping such error
packets and keeping the connection.

A summary of the options selected for D1 and D2 are shown
in Table I.

TABLE I: Derivative D1 & D2 Security Selections

Derivative Security Options Selected Options
Information Security Objective HKDF

Replay Protection D1 1-Second MAC Lifetime
D2 Unidirectional Sequence Number

Algorithm HMAC
Sub-Algorithm BLAKE2b

C. Security and Cost Analysis

The security and cost analysis stage is an intermediate
analysis step to ensure that these objectives have been met. An
organization’s requirements determine if the added security is
sufficient, as well as the impact on overhead and system delay.
The addition of security solutions causes the use of additional
processing power, memory, and time. If a given organization’s
security requirements and cost constraints are not met during
this intermediate analysis, then the dialect designer must return
to stage 1. If the security and cost objectives have been met,
then the designer may continue in the process to determine
the implementation method.

7

We defer the analysis of our design choices to its own
section (Section IV).

D. Implementation Method
We observe that there are important considerations in se-

lecting an implementation method for our OpenFlow deriva-
tives. One option we considered was to borrow from code
debloating work [17]–[19] and extend some of the existing
automated tools that manipulate binaries directly to support
adding new functionality to existing OpenFlow software. This
approach looks attractive at first because it would enable
rapid deployment of derivatives without requiring much code
development effort by the operator. However, upon closer
examination, we found major limitations with it. The tools
operate at granularity of loops and function calls, thus lacking
the ability to rapidly prototype, enforce high-level security
policies, and be compatible with a variety of protocols.

Deployment via Policy Enforcement Proxies. Based on
these observations, and to enforce high-level security policies
such as select versions of TLS or a certain ciphersuite, and to
speed up evaluation of the derivatives, we choose to create
a new software component called the policy enforcement
proxy (PEP). This method is compatible with Mininet as our
independent system for testing and measurement without using
multiple physical systems, and allows for testing to occur only
with one machine.

The PEP implementation method is shown in Fig. 6, with
more detailed D1 and D2 functionality expanded in Fig. 7.
A pair of proxies sit between each switch and the controller,
and consequently do not have access to the TLS keys used
by the switch or controller. For each OpenFlow message, the
proxy assigned to the sending device intercepts and dialects
messages, without decrypting them, as shown in Fig. 5. It then
sends the dialected message to the peer proxy. The receiving
proxy verifies the derivative and performs other checks as
required by the security policy. For this work, we installed
at the PEPs two sample security policy rules, regarding the
TLS protocol version and ciphersuites, respectively. We see
other possibilities for security policy rules, e.g., rate limiting
of flow requests and link state updates from a switch as a
countermeasure to denial-of-service attacks. We also expect
that the PEPs can be extended to enforce and regulate other
protocols and features besides OpenFlow and TLS, as dis-
cussed in Section VI.

Fig. 6: Proxy Implementation Method.

E. Dialect Management
This stage involves the support systems and methods that

will allow for PEPs to operate long-term and in day-to-day

Fig. 7: Policy Enforcement Proxy Design. This figure demon-
strates the logical setup of the proxy and how data is managed
between functions.

operations. Attributes important to dialect management include
ease of management, installation difficulty, and scalability.

To maximize security, design of OpenFlow derivatives
should require an independent key management system. In
this work, we assume that TLS runs between the switch
and controller, while D2 is proxy-to-proxy. This separation
means that compromise of the end device does not necessarily
imply loss of derivative keys (on the proxy), or vice-versa.
Conceivably, to reduce the deployment cost, the operator
may choose to reuse the same physical infrastructure as for
storing TLS keys. In such a scenario, we recommend to
minimally use virtualization techniques to establish a logical
partition between the different key computing, storage, and
communication resources used for the derivative and TLS.
Even with such precautions, it should be noted that security of
reuse of such a physical infrastructure for both the derivative
and TLS is dependent on the absence of compromise of the
end devices.

F. Implementation Testing

Implementation is the last stage of our protocol dialect
process. Implementation testing consists of testing security
properties and the availability of the system or protocol with
the included dialect. Before this testing can occur, control
tests of normal operation are performed and later used as
a testing baseline following dialect integration. The commu-
nication latency and other types of overhead added due to
the addition of a dialect are then measured and calculated to
ensure that availability of the system meets the organization’s
requirements. For clarity of presentation, we defer the details
of our testing efforts to Section V.

IV. SECURITY BASIS

In this section we take a closer look at the security of D1
and D2, based on the design choices discussed in Section III.
We did not conduct a formal security proof of the composition

8

of D1 and D2, leaving that to future work, but provide justifi-
cation arguments for the design security through comparison
to prior work.

A. Formalizing Design Choices

In the following discussion, we assume use of both D1
and D2 in a sequential format. Prior to implementation of D1
and D2, a pre-shared symmetric key, generated at random, is
established and delivered out-of-band (OOB).2 It is assumed
that keys used between a controller and switch are not reused
for any other controller/switch pair. Following the initial key
distribution, each side generates uni-directional keys (UDK)
for D1 and D2 according to Fig. 8 and Fig. 9, where Kab

indicates the symmetric key used to protect data from a to b
and || indicates concatenation.

Fig. 8: D1, D2 Key Derivation. KDF represents the key
derivation function, TSa indicates the timestamp for party a,
Kab indicates the symmetric key used uni-directionally between
a and b, and sid represents the session identifier which we
calculate as sid = D1 MAC Switch||D1 MAC Controller.

Fig. 9: D1, D2 Key Usage. Horizontal flows indicate (po-
tentially) non-interactive messages such that ordering is not
enforced. Angled flows indicate interactive messages with
enforced ordering. SNa indicates sequence number for party
a, TSa indicates the timestamp for party a.

2This may occur as an OOB key distribution. However, there is the
potential to embed a full key exchange in a prior run of D2; we leave this as
future work.

As seen in Fig. 9, the proxies will initially exchange D1
messages potentially non-interactively (the OpenFlow protocol
does not mandate an order to the Hello messages) [6]. The
freshness value incorporated in our design is based on implicit
timestamps (rounded to seconds). This has implied assump-
tions that the controller and switch have the same clock time,
which is reasonable with embedded hardware clocks. Although
such synchronization constitutes a potential point of failure,
the timestamp could be computed based on the completion of
the TCP handshake to limit clock de-synchronization.

Packets arriving during the same second should pass D1
MAC verification, while those arriving outside of the time
window will fail verification. Note that we do not employ
timestamp values simply to inhibit replay attacks; as noted
earlier, the MAC length is limited in D1 by the 32-bit header
field and as a result is liable to forgery attacks. Consequently,
it is necessary to limit the viable lifespan of the MAC, which
is performed via the key lifespan window. Any packet received
outside of this window will have a different key used in the
D1 MAC calculation step. Therefore, if an attacker attempts to
replay any messages, they must be replayed within the same
time window in order to pass the MAC verification step.

Note that we use the transcript D1 MAC values of the initial
flows to provide continuity to the communication between D1
and D2, essentially employing these as a session identifier.
This links protection of the initial D1 security layer to later
layers.

B. D1 Security

The security goal of D1 is to establish that the proxies in-
volved possess the correct keys and perform MAC verification
of the OpenFlow messages. Thus D1 acts, in part, as a mutual
authentication protocol with associated data. We reference [31]
for in-depth analysis methods which may be applied to such
composed protocols with associated data. An attacker’s goal of
breaking entity authentication during D1 is largely dependent
on breaking the security of the MAC, necessitating the use of
a short MAC lifespan through validity windows, due to the
MAC output length used during D1.

As a justification of the authentication properties of D1,
we draw to comparison with a previously analyzed protocol,
the repaired ISO/IEC 9798-4:1999 Mechanism 5.2.1 two-pass
mutual authentication protocol (referred to as ISO 9798-4-3
by Cremers et al.) [32], [33]. The comparison is shown in
Fig. 10. We specifically note and justify the following.

a) Check Function: ISO/IEC 9798-4:1999 Mechanism
5.2.1 specifies the use of a cryptographic check function, with
reference to those given in ISO/IEC 9797. This includes our
choice of a MAC algorithm. From this point on we will assume
that the cryptographic check function is a MAC.

b) Uni-Directional Keys (UDK): Cremers et al. [32]
incorporate identities into the check function of ISO/IEC
9798-4:1999 Mechanism 5.2.1 to show direction of flows,
hence avoiding reflection attacks arising from use of a single
symmetric key. D1 embeds this in the derivation process of the
UDKs. Each key derivation contains identifiers for the sender

9

and the receiver. This prevents messages sent by the switch to
be accepted by the switch, e.g. a reflection attack. Furthermore,
the control plane of an SDN limits communication from a
switch only to the controller (switches will not communicate
with other switches). When UDKs are used, such as described
above, the identities are no longer a necessary input to the
cryptographic check function [33].

c) Text Fields: Textx values in Fig. 10 correspond to the
OpenFlow Hello messages sent by D1. Unlike in the original
ISO/IEC 9798-4:1999 Mechanism 5.2.1, we do not allow for
variable selection of data for these fields: it is pre-determined.
Consequently, we also avoid the associated potential protocol
flow syntax errors [32].

d) Timestamps: The repaired ISO/IEC 9798-4:1999
Mechanism 5.2.1 explicitly sends timestamps (TSx) which
it uses as inputs to the MAC. D1 uses a form of implicit
timestamps, which are used in key derivation for the MAC vs.
input into the protocol data fields. By using implicit times-
tamps, D1 conforms as closely as possible to the OpenFlow
standard. Moreover, implicit use is enabled as the switch and
controller have shared knowledge of the timestamps.

e) Flow Ordering: The repaired ISO/IEC 9798-4:1999
Mechanism 5.2.1 protocol [32] uses a flow tagging value to
ensure messages are correctly interpreted according to their
order in the protocol, e.g. “Flow1” and “Flow2”. We require
that D1 proxies enforce ordering, where the protocol flow
generated by the switch will always be interpreted as the first
flow, while the protocol flow from the controller will be held
to be the second.

f) Protocol Version Confirmation: As in [32],
we explicitly send the authentication protocol version
(“9798− 4− 5.2.1”) used in D1.

With consideration of the above points a)–f), we map D1
to the repaired ISO/IEC 9798-4:1999 Mechanism 5.2.1, which
achieves mutual authentication of party A and B [32]. Thus,
D1 acts as a pre-shared key mutual entity authentication
protocol for the subsequent D2 derivative in addition to
providing authentication of the additional data fields, namely
the OpenFlow Hello messages.

C. D2 Security

The PEP logic requires that D1 is completed before starting
D2, and therefore mutual authentication has already taken
place. On the completion of D1, the switch and controller
proxies create UDKs used for D2. The security goal of D2
is to provide an authentication layer for the remainder of
the controller/switch session. In this case, the authenticated
“data” is in fact the actual OpenFlow packet. Keys for this
derivative are derived as presented earlier and shown in Fig. 8.
In particular, D2 keys are derived from those of D1 and are
computed over the transcript of D1 messages sent, thereby
binding D2 to the earlier entity authentication and ensuring
both parties commit to the transcript of D1.

D2 makes use of a 512-bit MAC that allows for a longer
MAC lifetime than D1. Additionally, D2 incorporates se-
quence numbers into the MAC calculation step as seen in

(a) Repaired ISO/IEC 9798-4-5.2.1.

(b) D1.

Fig. 10: Comparison of repaired ISO/IEC 9798-4 Mechanism
5.2.1 two-pass mutual authentication protocol to D1. Note
that ISO/IEC 9798-4:1999 Mechanism 5.2.1 uses a generic
check function, with a MAC as one possible instantiation; it
is represented here as a MAC. The Flow1 (resp. Flow2) value
corresponds to a protocol flow position indicator introduced by
[32]. TSS (resp. TSC) is incorporated into the derivation of Ksc
(resp. Kcs). Ksc and Kcs also address the directional separation.
OpenFlow Hello messages constitute the authenticated text
Textx (note that in ISO/IEC 9798-4:1999 Mechanism 5.2.1,
it is not required that all text fields are the same).

Fig. 9, which increment for each new packet sent under a given
key. Sequence numbers are thus uni-directional to each sender.
Notably, this limits the potential for replay of messages by an
attacker, which is of particular concern in an SDN due to the
controller sending configuration commands to the switch. If an
attacker was able to replay an old configuration command, then
the switch could be induced to start routing traffic improperly
or the update may result in erratic network behavior.

V. EXPERIMENTAL EVALUATION

In this section we present results from our experimentation
on the D1 and D2 derivatives in a testbed built with the
Mininet SDN emulation software [34]. The testbed topology
with the PEPs is shown in Fig. 11. The raw packet data as
well as timing statistics were captured using the Wireshark
tool [35].

Fig. 11: Mininet Testbed Typology

10

A. Mitigation of Downgrade Attacks

First, we perform a simulation of an attack scenario, val-
idation that the operation of the derivative against a TLS
version downgrade attack. We assume that an attacker can
modify packets at will between the controller and the switch.
Therefore, it is the responsibility of the receiving proxy to
enforce that the modified packet by the attacker does not make
it to the end point device.

Fig. 12: Timing Diagram of Downgrade Attack Simulation.
The initial Hello messages exchanged by the proxies are
OpenFlow Hello messages. D1 MAC / D2 MAC corresponds
to the MAC performed during that derivative as seen in Fig. 9.

The method for the attack simulation is shown in Fig. 12.
In this experiment we modify the data in the first message
of the TLS handshake (i.e., the switch’s ClientHello) from
TLS version 1.2 to 1.0 before the message is delivered to the
PEP for the controller. Two versions of the attack were carried
out. The first version consisted of modifying the TLS version
number without changing to the MAC tag. The second version
modified the TLS version number while also changing the
MAC tag (i.e. to simulate the attacker ”guessing” the MAC).
In both cases, the receiving PEP rejected the attack packet by
flagging the wrong D2 MAC value. The PEP then sent an alert
to the controller so that the controller could terminate the TLS
handshake.

We note that it is straightforward to add logic to the PEPs to
ensure that the ciphersuite advertised by each party conforms
to the IETF guidelines [25], [26]. For brevity, we omit such
experiments.

B. Estimation of Communication Overhead

After verifying that the derivatives can be used to stop a
TLS downgrade attack, we conduct a series of experiments
to quantify the communication overhead from using the D1
and D2 derivatives. Baseline experiments without utilizing
the PEPs were performed, and to examine the impact of
TLS on communication latency, some experiments were also
conducted without turning on TLS. Specifically, we conducted
a total of 90 tests for three different types of experiments as
summarized in Table II.

By default, TLS is disabled in Mininet which allows for
the observation of traffic and the protocol. Therefore, we per-
formed timing first without the PEPs added to the system. The

TABLE II: Summary of Overhead Measurement Tests

Experiment Type Number of Runs
Baseline 30
TLS Enabled 30
TLS Enabled and Using D1 & D2 30

average time to establish a connection between a controller
and switch was measured to be 5 seconds. To perform control
testing with TLS required a generic setup and the establish-
ment of certificates [36]. Enabling TLS with Wireshark also
requires the use of the preinstalled ovs-testcontroller as well
as an OVSSwitch. The average time to establish a connection
with TLS was measured to be 9.33 seconds.

In the next step of the experiment, delays with and without
TLS were measured from the first OpenFlow Hello to the
first OpenFlow Echo Request message. This measurement
was taken because it demonstrates the complete process to
setup a new connection between the switch and controller.
The OpenFlow Echo Request message signifies that all setup
actions have completed and the SDN devices are switching to
a liveliness check state [6].

A summary of the average connection time measurements
and the average percentages of latency increase due to TLS
and the derivatives are shown in Table III. In both dialecting
cases, PEPs where used. The overhead added by the derivatives
without using TLS was minimal. Using TLS alone signif-
icantly increased the connection latency, by an average of
about 87%. Then, deploying the derivatives on top of TLS
further increased the latency by an average of approximately
22%. This larger overhead increase (compared to the the case
without using TLS) can be attributed to the larger packet sizes
of TLS and corresponding MAC processing. Still, we consider
the connection latency increase over TLS to be moderate,
unlikely to impact network availability.

TABLE III: Summary of Average Connection Latency

TLS Using Average Overhead
Enabled D1 & D2 Latency
No No 5.00 sec. Baseline
No Yes 5.01 sec. 0.0%
Yes No 9.33 sec. New Baseline

(87% beyond no security)
Yes Yes 11.37 sec. 22% beyond TLS

(127% beyond no security)

C. Reproducing the Experiments

The virtual machine, scripts, packages, and Mininet used
to perform all experiments can be found open-source at
https://tinyurl.com/teqedac. The virtual machine provided con-
tains bash scripts to perform all the experiments described in
this paper. The administrator account password is set to ”de-
fault” for modification and running all experiments. Running
each experiment only requires commands in a command line
interface.

11

VI. DISCUSSION

In this section we discuss some of the limitations and
potential extensions of this work.

A. Limitations

While we have focused on downgrade attacks, it is unknown
whether or not this solution is effective in mitigating other
types of attacks against TLS in SDNs. As discussed in
Section II-D, we observe that dialecting proxies can infer the
associated network events from received OpenFlow messages
even in an encrypted form [37]. The intelligence gained from
such inference could be helpful in mitigating other forms of
attacks targeting TLS.

Dialect deployment cost evaluation in this work constitutes
initial testing only, with attention to qualitative arguments. To
properly evaluate the cost and compare it to that of the standard
operation of OpenFlow and TLS necessitates a rigorous quan-
tification of major cost factors. This includes the management
complexity associated with generating and protecting the pre-
shared keys and re-configuring incumbent network monitoring
tools. We leave this quantification to future work.

Finally, our experimentation uses a simplistic testbed topol-
ogy. While this topology allowed for quantification of relative
latency overhead, there may be factors that only manifest
in a more sophisticated topology. For example, when the
controller needs to talk to many switches at the same time,
the proxy on the controller could become a performance
bottleneck. Consequently, performance evaluation under large
topologies should be considered before deployment. Use of a
low level programming language such as C/C++ to prototype
the performance critical parts of the proxy logic, is another
future extension.

One could ask about the security-cost trade-off of the
D1 and D2 derivatives. After all, if TLS requires a key
exchange for each new connection between a given switch
and controller, are we not doubling the set-up efficiency cost to
also obtain a shared derivative key and cannot we not simply
upgrade to a newer version of TLS? In answer to this, we
highlight the point-to-point and defense-in-depth approach to
our solution.

a) Initial Set-Up Cost: Once an initial pre-shared key is
obtained, a new D1 key is not required for subsequent sessions,
but rather can be derived from the last D2 key in use. Thus the
derivative keys are consistently ratcheted forward over time.
The first D1 key in use could potentially be derived for a
TLS pre-shared key. In this case, the first controller-switch
communication would be protected only by TLS, while in
subsequent sessions D1 would protect the TLS handshake.
Alternative methods for obtaining a pre-shared D1 key are
also possible, allowing for a great deal of flexibility.

b) Reliance on TLS: While TLS relies on a public
key backbone infrastructure, our derivatives do not, and are
adaptable to different infrastructures, such as identity-based
cryptography, or underlying protocols. Depending on orga-
nizational need, TLS may not even be the ideal underlying
protocol. Moreover, updating all SDN devices to, say, TLS

1.3, may not be feasible dependent on network agility. Once
a protocol is implemented, especially over a wide, distributed
network, small modifications to data packets (such as in D1)
may be significantly more viable than a syndicated upgrade.

c) Defense-in-Depth: Protocol dialecting is explicitly
about adding a security layer to an existing protocol, versus
a new stand-alone solution. In this case, we look at an added
layer of authenticity to protect initial handshakes and mitigate
downgrade attacks. Network goals vary, and it is not always
feasible to update to a specific protocol, even if there is
one that provides for all organizational needs. Consider a
case in a larger network with various network proxies: in a
traditional design, security options are limited to end-to-end
security (no packet visibility at proxies) or proxy-to-proxy
security (devices must trust proxies not to alter data). With
a dialecting approach, one could add end-to-end authenticity,
while accepting proxy-to-proxy TLS to allow for visibility.
Thus, our efficiency analysis is of note in that it demonstrates
the relative feasibility of such layered solutions.

B. Extensions

1) A General Security Framework Based on PEPs: We
observe that protocol dialecting is particularly suited for iden-
tifying attackers in a zero trust model network that assumes
all devices, even hosts inside the enterprise firewall, may be
malicious [38]. That is, all traffic on the network is assumed
to be unsafe unless properly verified. With a protocol dialect,
the operator can deem only the dialect traffic to be trusted
between corresponding devices. In this light, a PEP can be
viewed as a potential platform for performing all security
functions such as access control, intrusion detection, and
content filtering, at different levels of granularity (per protocol,
per device, or per service). A dialect presents a method to add
security to protocols that have limited security options and
features, or are lacking particular security guarantees desired
by administrators.

Using PEPs to safeguard enterprise security policy can be
more flexible than the current device centric solutions because
it allows the operator to separate security policy definition and
enforcement from other detailed device configuration tasks and
furthermore, rapidly deploying new security policies. In other
words, PEPs can be the basis of a unified policy framework
for enterprise security.

We recognize that many technical challenges remain to
turn this vision of policy framework into effective solutions.
Among them are (i) the need for a flexible dialecting solu-
tion that can accommodate various protocols and enterprise
applications in one integrated system, and (ii) the need for
an operator-friendly policy definition language and associ-
ated automation tools for deploying and configuring PEPs.
Furthermore, we provide an early caution against overuse of
PEPs, such as in careless combinations of various security
policies and dialecting. While PEPs can enable the benefits
mentioned above, overuse can lead to a single point of failure
as well as presenting a vulnerability to the system through
misconfiguration or contradictory policies. Endpoint security

12

– on devices such as the SDN controller and switch – remains
critical. Notably, dialecting does not rely on PEPs, but can be
facilitated by them.

2) New Derivative for Key Management: Our design of
the two dialecting derivatives (D1 and D2) assumes that
each switch side PEP possesses a pre-shared secret with the
controller side PEP. To allow dynamic replacement of the
shared secret, we envision an option of a third derivative
(D3) that introduces a new type of OpenFlow Experimenter
message [39] to carry out key management functions between
two communicating PEPs.

D3 may operate inline with current OpenFlow sessions.
Since it is desirable to separate PEP operation from that of
TLS, i.e. TLS and dialect keys are independent and stored on
different devices (SDN device vs. PEP), D3 key negotiation
cannot take place directly between the switch and controller.
In one solution, the controller side PEP and switch side PEP
may use the respective controller and switch as relays for the
negotiation. Alternatively, D3 may operate independently from
OpenFlow sessions, establishing a channel between each pair
of communicating PEPs that may be used to negotiate new
keying material.

Note that it D3 could potentially rely on the same certificates
used in TLS for initial negotiation, and thereafter ratcheting
keys forward in a continuous key agreement (similar to how
D2 keys are derived from D1 keys). While this does not supply
key separation from TLS at first use, the security benefits grow
over time; compromise of the long-term private key later on
would effect TLS session handshake negotiations, but not the
derivative. We leave such key exchange derivative options and
their analysis as future work.

VII. CONCLUSION

In this research, we have shown it is feasible to leverage
protocol dialecting to add another layer of per-message au-
thentication into the OpenFlow protocol that is independent
of TLS.

A key benefit of this additional message authentication is
that through its enforcement during the TLS handshake, the
SDN control channel is more robust to TLS downgrade at-
tacks. Additionally, the dialecting solution incurred a moderate
increase of communication overhead, less than 22% over TLS,
as measured on a Mininet testbed.

We view protocol dialecting as a general and effective
solution for deploying and enforcing enterprise security policy
on a per-protocol basis. Protocol dialecting also supports the
industry-led movement toward zero trust access control mod-
els [38]. This work raises interesting new research questions
such as how to develop a cross-protocol dialecting framework
and how to ensure that the resulting dialects continue to work
with current network monitoring and analysis systems.

REFERENCES

[1] A. Greenberg et. al, “A clean slate 4D approach to network control and
management,” ACM Computer Communications Review, vol. 35, no. 5,
Oct. 2005.

[2] M. Casado et al., “Ethane: Taking control of the enterprise,” in Proc.
ACM SIGCCOM 2007, Koyoto, Japan, Aug. 2007.

[3] M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data center
networks,” in Proc. USENIX NSDI 2010, San Jose, CA, Mar. 2010.

[4] H. Kim and N. Feamster, “Improving Network Management with Soft-
ware Defined Networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[5] L. Cui et. al, “When Big Data Meets Software-Defined Networking:
SDN for Big Data and Big Data for SDN,” IEEE Network Magazine,
vol. 30, no. 1, pp. 58–65, 2016.

[6] Open Networking Foundation, “OpenFlow Switch Specification Version
1.5.1 (Protocol Version 0x06),” march 26, 2015.

[7] “Open Networking Operating System,” Last accessed May 17, 2020.
[Online]. Available: https://onosproject.org/

[8] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known attacks on
Transport Layer Security (TLS) and Datagram TLS (DTLS),” Internet
Requests for Comments, RFC 7457, Feb. 2015.

[9] E. S. Alashwali and K. Rasmussen, “What’s in a downgrade? a
taxonomy of downgrade attacks in the tls protocol and application
protocols using tls,” in Security and Privacy in Communication Net-
works, R. Beyah, B. Chang, Y. Li, and S. Zhu, Eds. Cham: Springer
International Publishing, 2018, pp. 468–487.

[10] NCC Group Research, “Downgrade Attack on TLS 1.3 and Vulnera-
bilities in Major TLS Libraries,” https://www.nccgroup.trust/us/about-
us/newsroom-and-events/blog/2019/february/downgrade-attack-on-tls-
1.3-and-vulnerabilities-in-major-tls-libraries/. Last accessed: Nov-2019.

[11] E. Rescorla, “The transport layer security (tls) protocol version 1.3,”
Internet Requests for Comments, RFC 8446, Aug. 2018.

[12] D. Xu, “Towards internets of dialect-speaking things,” Project Update,
TPCP PI Meeting, Jun. 2019.

[13] M. Mao, “Security assurance via protocol customization: Novel program
analysis and ML-based automation,” Project Update, TPCP PI Meeting,
Jun. 2019.

[14] C. Paasch, “Improving Multipath TCP,” Ph.D. dissertation, UCL,
London, Nov. 2014. [Online]. Available: http://inl.info.ucl.ac.be/
publications/improving-multipath-tcp

[15] R. S. Ross, “Risk Management Framework for Information Systems and
Organizations: A System Life Cycle Approach for Security and Privacy,”
National Institute of Standards & Technology, Gaithersburg, MD, Tech.
Rep. Sp 800-37 rev 2, Dec. 2018.

[16] N. Aviram et. al, “DROWN: Breaking TLS with SSLv2,” in Proc. 25th
USENIX Security Symposium, Aug. 2016.

[17] H. Sharif et. al, “TRIMMER: Application specialization for code
debloating,” in Proc. 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018.

[18] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-
wise compilation,” in Proc. 27th USENIX Security Symposium, 2018.

[19] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven
software debloating,” in Proc. 12th European Workshop on Systems
Security, 2019.

[20] S. Mishra and M. Polychronakis, “Shredder: Breaking Exploits through
API specialization,” in Proc. 34th Annual Computer Security Applica-
tions Conference, 2018.

[21] J. B. Perazzone et. al, “Cryptographic side-channel signaling and authen-
tication via fingerprint embedding,” IEEE IEEE Trans. on Information
Forensics and Security, vol. 13, no. 9, pp. 2216–2225, 2018.

[22] A. Khurshid et. al, “VeriFlow: Verifying Network-Wide Invariants in
Real Time,” in Proc. 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13), 2013.

[23] M. Reitblatt et. al, “Abstractions for network update,” in Proc. ACM
SIGCOMM Conference, 2012.

[24] L. Xu et. al, “Attacking the brain: Races in the SDN control plane,” in
Proc. 26th USENIX Security Symposium, 2017.

[25] B. Moeller et al., “TLS Fallback Signaling Cipher Suite Value (SCSV)
for preventing protocol downgrade attacks,” Internet Requests for Com-
ments, RFC 7507, Apr. 2015.

[26] Y. Sheffer et al., “Recommendations for secure use of transport layer
security (TLS) and datagram transport layer security (DTLS),” Internet
Requests for Comments, RFC 7525, May 2015.

[27] M. Sjoholmsierchio, “Software-defined networks: Protocol dialects,”
Master’s thesis, Department of Informational Sciences, Naval Postgrad-
uate School, 2019.

13

https://onosproject.org/
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp

[28] Q. Dang, R. M. Blank, C. F. E. Barker et al., “Nist special publication
800-107 revision 1 recommendation for applications using approved
hash algorithms,” 2012.

[29] H. Krawczyk et al., “Hmac-based extract-and-expand key derivation
function (HKDF),” Internet Requests for Comments, RFC 5869, May
2010.

[30] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: Simpler, smaller, fast as MD5,” in International Conference
on Applied Cryptography and Network Security. Springer, 2013, pp.
119–135.

[31] P. Rogaway and T. Stegers, “Authentication without elision: Partially
specified protocols, associated data, and cryptographic models described
by code,” in 2009 22nd IEEE Computer Security Foundations Sympo-
sium. IEEE, 2009, pp. 26–39.

[32] D. Basin, C. Cremers, and S. Meier, “Provably repairing the iso/iec
9798 standard for entity authentication 1,” Journal of Computer Security,
vol. 21, no. 6, pp. 817–846, 2013.

[33] “Information Technology - Security Techniques - Entity Authentication -
Part 4: Mechanisms using a cryptographic check function,” International
Organization for Standardization, Geneva, Switzerland, Standard, Jul.
2012.

[34] “Mininet: An Instant Virtual Network on your Laptop,”
http://mininet.org/. Last accessed: November, 2019.

[35] “Wireshark,” https://www.wireshark.org/, accessed: 2018-09-01.
[36] “SSL on Open vSwitch and ovs controller,” Apr 2014, accessed:

2019-06-02. [Online]. Available: https://github.com/mininet/mininet/
wiki/SSL-on-Open-vSwitch-and-ovs-controller

[37] S. A. Baset and H. G. Schulzrinne, “An analysis of the Skype peer-to-
peer Internet telephony protocol,” in Proc. IEEE INFOCOM, 2007.

[38] J. Kindervag, “Build Security Into Your Network’s DNA: The Zero Trust
Network Architecture,” Forrester Research Inc, pp. 1–26, 2010.

[39] Flowgrammable.org, “SDN Message layer,” http://flowgrammable.
org/sdn/openflow/message-layer/. Last accessed: November, 2019.

14

https://www.wireshark.org/
https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller
https://github.com/mininet/mininet/wiki/SSL-on-Open-vSwitch-and-ovs-controller

	I Introduction
	II Preliminaries
	II-A Protocol Dialecting
	II-B Toward Systematic Development of Protocol Dialects
	II-C Downgrade Attacks Against TLS
	II-D Related Work

	III Dialecting OpenFlow
	III-A Protocol Analysis
	III-B Dialect Design
	III-C Security and Cost Analysis
	III-D Implementation Method
	III-E Dialect Management
	III-F Implementation Testing

	IV Security Basis
	IV-A Formalizing Design Choices
	IV-B D1 Security
	IV-C D2 Security

	V Experimental Evaluation
	V-A Mitigation of Downgrade Attacks
	V-B Estimation of Communication Overhead
	V-C Reproducing the Experiments

	VI Discussion
	VI-A Limitations
	VI-B Extensions
	VI-B1 A General Security Framework Based on PEPs
	VI-B2 New Derivative for Key Management

	VII Conclusion
	References

