
Improving Intent Correctness
with Automated Testing

Paul Alcock, Ben Simms, Will Fantom, Charalampos Rotsos, Nicholas Race
School of Computing and Communications, Lancaster University
{p.alcock1, b.simms, w.fantom, c.rotsos, n.race}@lancaster.ac.uk

Abstract—Intent-based networking (IBN) systems have become
the de-facto control abstraction to drive self-service, self-healing,
and self-optimized capabilities in service delivery processes.
Nonetheless, the operation complexity of modern network
infrastructures make network practitioners apprehensive
towards adoption in production, requiring further evidence for
correctness. In this paper, we argue that testing, verification
and monitoring should become first-class citizens in reference
IBN architecture, in order to improve the detection errors
during operations. Towards this goal, we present an extension
for an intent architecture that allows IBN system to validate
the correctness of network configuration using realistic network
emulation. Furthermore, we present an intent use-case that
ensure correct operation in hybrid networks.

Index Terms—Network Testing, Network Emulation, CI/CD,
IBN, Intent-based Networking

I. INTRODUCTION

In recent years, the network community has undergone a
major transformation to cope with increasing global demand
for network connectivity. In an effort to improve the efficiency
of service delivery processes, network vendors have developed
automated capabilities for self-provisioning, self-healing and
self-optimization. Intent-based networking (IBN) has emerged
as the de facto design approach to guide the development of
new high-level interfaces. Research efforts [1], [2], [3] in intent
modeling have demonstrated the ability of IBN systems to de-
liver highly-desired management capabilities, including strong
policy fulfillment guarantees, user-friendly interfaces, and pol-
icy composition with automatic conflict resolution. In parallel,
standardization bodies, like the ETSI ZSM [4] and the TM Fo-
rum [5], are actively exploring the design of reference network
architectures and information models for IBN systems.

IBN adoption is limited in production however, as network
operators remain skeptical about the paradigm’s effectiveness
for day-to-day autonomic network management and the
value such systems can offer for service delivery. Since
the emergence of early network technologies, network
management has been a human-centric process, with
management processes delivered by experienced network
managers, using pen and paper. Operators are hesitant to
transfer control of these processes to automated systems
and intelligent algorithms, fearing the impact of non-human
driven decisions on network resilience.

Automation hesitancy can be explained by a number
of factors. Firstly, AI/ML models, the building blocks of
automation systems, remain predominantly probabilistic

and thus best-effort. This becomes increasingly challenging
as shifting behavioral patterns can drastically change the
accuracy of a model [6]. Detecting such dataset shifts, requires
the deployment of dedicated monitoring mechanisms, while
detection is not instantaneous [7], [8]. Secondly, modern IBN
systems exert control across several technological and admin-
istrative domains in order to deliver high-level management
intents. A key element in converging control across domains is
the use of data models, like YANG, and remote management
interfaces, like NETCONF. Although efforts are under way to
develop interoperable YANG models, such as the OpenConfig
model suite [9], network operators must still utilize vendor-
specific model extensions in order to take full advantage
of vendor equipment features. This in turn increases model
complexity and can result in errors translating models to device
configurations. Finally, although programmable technologies
have evolved and reached production in the last decade, several
parts of the network still rely on legacy devices with support
for programmability (e.g. SDH, SONET switch), which remain
external to the automation control systems. IBN system must
support error detection mechanisms beyond their operational
scope to ensure operational correctness. Ultimately, network
operators are apprehensive that IBN systems will become
another network feature to continually monitor and manage.

Despite this hesitancy, automation is becoming the norm
for managing systems in several computing domains. Cloud
computing systems can deploy code updates in the production
systems in a matter of minutes/hours with strong correctness
guarantees, and minimal user involvement. Additionally,
automated systems utilize cross-layer monitoring systems,
which assist operators in quickly detecting and localizing
the root cause of failures in production systems. Supporting
these capabilities required the cloud community to make
drastic changes to their operational culture, delegating several
service management tasks to CI/CD pipelines. Deployment
processes use multi-stage testing suites to validate code and
configuration correctness, simultaneously monitoring the
system to collect and analyze large amounts of runtime data.
This is a stark contrast to the common “fire and forget”
approach of modern network management. In this respect,
IBN systems can outperform human-driven approaches, since
several decisions are generated using logical process which
depend on the operational state of the system (e.g. topology,
resource discovery, traffic matrix).

In this paper, we argue that effective adoption of IBN



systems in production networks depends on the inclusion of
automated testing throughout the intent lifecycle, providing
operators with strong correctness guarantees for generated
configurations. Relevant tests can use a wide range of
validation tools available to modern network technologies
(verification, simulation, emulation) to validate several
configuration aspects. To meet these requirements, this paper
introduces an extension on the intent lifecycle model devel-
oped by the IETF NMRG group architecture, which integrates
automated configuration testing in the intent control loop. The
proposed test stage will enhance the existing validation process
with the ability to verify configuration changes in the target
network environment. Furthermore, we present our efforts
to integrate a testing mechanism with an open-source intent
manager [10]. The testing mechanism uses the open source
NEAT network testing framework [11], which uses realistic
device models and network emulation to validate device con-
figuration correctness. The proposed testing platform utilizes
connectivity intent requirements to automatically generate
testing suites tailored to the network configuration, and can
deliver integration testing between legacy and programmable
devices. We believe that intent standardization processes
should further this design philosophy and introduce multi-
stage verification processes in reference architecture designs.

In the remainder of this paper, we discuss relevant
research efforts (§ II) and discuss the opportunities for
testing and verification in the intent life-cycle (§ III).
Furthermore, we elaborate on the testing extension in our
IBN architecture (§ IV), we describe the implementation of a
traffic drain intent with test-based verification support (§ V)
and conclude our paper (§ VI).

II. BACKGROUND

Current standardization efforts aim to govern automated
processes with a closed control-loop, enabling the network to
operate without necessary human input. IBN is a fundamental
component in this process as it enables the abstraction between
low-level network configurations and high-level user input.
However, several features of IBN remain open challenges,
limiting the development of autonomous use-cases. Nonethe-
less, a number of practical approaches have been explored in
previous work which aim to enable supporting functionality.
Janus [2] demonstrates a method of configuring networks
using a graph-based policy model to generate non-conflicting,
low-level network policies from an intent. Using PGA [1] as a
foundation, Janus extends PGAs support from access control
policies to include QoS and dynamic intent-based policies,
simultaneously using network resource information to inform
the composition of low-level policies; maximizing the number
satisfied whilst minimizing the number of path changes
resulting from runtime events (such as moving endpoints).

Over the past decade, there has been an increasing interest in
the domain of network verification and testing. Although they
share similar goals, network verification and network testing
describe distinct approaches to validating network configura-
tions. Network verification determines if a network complies
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Fig. 1: A reference model of a network intent lifecycle.

with a set of invariants; properties of the network which must
remain true throughout specified test cases. Formal methods,
such as model checking, SAT/SMT solving and symbolic exe-
cution are commonly employed as methods of validating both
online and offline configurations, usually on an extrapolated
network model, rather than the live network directly. Plankton
[12] is one example of a symbolic model checker, which uses
a representative network model and packet equivalence classes
to simulate network operations. Plankton is able to verify the
symbolic operation of OSPF, BGP and static routing, and
verify offline configurations. There have also been efforts to
verify live network configurations in real-time. NetPlumber
[13] speeds up the process of validating policy updates by
analyzing incremental changes rather than periodic snapshots,
using a rule dependency graph to evaluate the new change.
However, verification approaches primarily consider the design
of the network and cannot determine the validity of realized,
dynamic execution states. Network testing provides a valuable
complement to verification in directly validating the live net-
work itself, using network packets. Pairing the two approaches
allows configurations to be evaluated with a wider scope of
parameters and detect issues which occur in implementation or
at runtime. NetBOA [14] is an example of a black-box testing
tool, which aims to identify weak-spots in network configura-
tions for operational networks; using Bayesian Optimization to
identify the most challenging traffic loads for a given network
configuration. NetBOA is reliably able to determine near-
optimal traffic conditions for up to 3 configuration parameters.

Further development of robust monitoring and configuration
methods can enable IBN to facilitate use-cases which are
dependent on the output of current standardization efforts.
However, there is some work to be done in both areas
to guarantee that generated configurations are suitable for
complex network contexts, support suitable configuration
parameters and scale to relevant topology sizes. An initial step
applying these methods to intent-driven use cases is outlined
in Rothenberg et al. [15], which demonstrates an intent-based,
closed control-loop for converging service performance
towards an inferred quality of experience objective, however
this approach considers only QoS measures.



III. INTENT LIFECYCLE

To highlight the importance of testing and verification
in IBN systems, this section discusses the testing and
verification challenges for IBN platforms using the IRTF
intent lifecycle model [16], depicted in Figure 1. The
model uses four domains to effectively deliver intents. The
creation and deletion of intent is controlled by the user
domain, which includes both network administrators and ISP
clients. The delivery plan for an intent is defined by the
intent layer, which can translate intent objects into a set of
infrastructure configurations. Intent processing is supported
by a knowledge layer, containing information about the state
of the infrastructure, as well as, intelligent decision support
services, such as anomaly detection and traffic prediction. The
actual delivery of an intent is performed by the infrastructure,
which offers a range of management interfaces to deploy
network configuration changes on the infrastructure.

Between the four domains, three control loops are
established in order to fulfil intents and to refine configuration.
The first loop is established between the user and the intent
layer and is responsible to capture the parameters of the intent.
The opportunities for verification at this stage include initial
sanity checks, ensuring the viability of the intent and breaking
any semantic inconsistencies in user intent expression. In
parallel, preliminary checks are performed to detect conflicts
with other intents or network policies. A number of intent
systems have explored the applicability of modern NLP
and AI mechanisms to extract network intents from spoken
language [10], [3] and to reduce semantic variability.

The second loop involves the intent and the infrastructure
domain and ensures continuous intent delivery. The intent
layer defines the configuration changes required to fulfil the
intent requirements (e.g. create an MPLS LSP). These changes
are estimated using optimization algorithms under an assump-
tion of a single source of truth for the system and device
models are used to translate intents into technology specific
configurations. As a result, the new configuration is guaranteed
to meet requirements, subject the assumptions of the opti-
mization mechanism and the modeling of device behaviors,
operation risks and failures. However, as the scope of an
IBN system expands, so does the support for failure scenarios
which reduces the effectiveness of modeling. Optimization and
validation mechanisms should be coupled with network emu-
lation [17], [11] and verification mechanisms [18] to expand
testing coverage and incorporate complex elements that cannot
be captured by the mathematical modeling that typically
underpins these mechanisms. To reflect these requirements, we
propose an extension in the IETF lifecycle model and include a
”test/verify“ stage in the lifecycle prior to the provision stage.

The final loop exists between the intent layer and the user;
responsible for reporting intent state information. Reports
are generated by analysis modules in the intent layer, which
transform low-level monitoring information into intent-centric
status updates, offering accurate, high-level notifications.
Analysis at this stage, typically relies on low-level telemetry
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Fig. 2: Intent Layer Architecture

information available by default from the infrastructure (e.g.
link load, VM resource utilization). Tests in this loop can be
automatically generated based on intent KPIs and monitored
throughout the intent lifecycle, using programmable control
and even deploying special monitoring VNFs alongside
the service. Further, testing opportunities are enabled using
automated test generation mechanisms which can verify data
plane correctness and security [19], [20]. Running multiple
monitoring VNFs can incur a significant resource overhead,
but modern advances in network virtualization in the form of
Unikernels and containers can significantly reduce resource
requirements and provide precise automation monitoring.

IV. ARCHITECTURE

Our research efforts in intent testing are part of the
Next Generation Converged Digital Infrastructure (NG-CDI)
project [21], a research collaboration between British Telecom
and four leading UK University partners. The project aims
to develop completely new ways of operating network
infrastructures and deliver closed-loop, self-optimizing,
and self-healing operations. To support these operations,
the NG-CDI project has developed an architecture and a
strawman implementation of an IBN system [10]. In this
section, we discuss the architectural extensions introduced in
the NG-CDI intent architecture (§ IV-A), in order to validate
intent fulfillment plans as part of the closed-control loop. Our
validation mechanism, is based on NEAT, an open-source
configuration validation too, based on network emula-
tion.(§ IV-B). Finally, we discuss how our intent deployment
process can be extended to generate testing suites tailored to
the configuration changes of the infrastructure§ IV-C.

A. NG-CDI Intent Layer

Figure 2 depicts the architecture of our strawman IBN im-
plementation. Intent management is organized in four layers,
coordinated using an event-driven model. Changes in the intent
life-cycle are driven by the Monitor layer, which contains
services that extract monitoring information from the different
components of the infrastructure and service components.
Information is stored on a time-series database (Prometheus).
An alerting service, running on top of the database, signals
services in the analyze layer for the availability of new data,
based on service-specific alert policies. Analyze services
process monitoring data and can detect or predict (e.g.
proactive maintenance) intent violations. Intent violations
trigger the Decide layer to compute a new deployment plan



and define a set of configuration updates. Finally, the Execute
layer has access to low-level infrastructure management
interfaces and can deploy the resulting configuration changes.

Using this multi-stage architecture, our intent layer can
deliver a number of connectivity and management intents.
Firstly, a “route” intent can establish paths between any set of
network hosts, as well as, ensure that the traffic will traverse
specific middlebox devices. Secondly, a “drain” intent, can
update the forwarding policy of the network and redirects the
path uses by a route intent, in order to isolate network device
for maintenance. Thirdly, a “service protection” intent ensure
that no configuration changes will occur during specific
periods of time, in order to avoid possible service degradation
during a major event (e.g. Olympic games). Finally, a router
update intent, can automate the delivery of hardware upgrades
on a network device and synchronize traffic drain operations
during site engineer visits.

B. Automated Testing

NEAT [11] is an open-source network testing framework
for network configuration. Network managers and developers
can use NEAT to re-create realistic network topologies with
custom network configurations, run asynchronous network
tests and collect detailed information about test outcomes.
Tests can include a wide range of network device types,
including network namespaces, containers, Xen and KVM
VMs, Unikernel appliances and vendor virtual appliances
(Cisco, Nokia, Juniper). The architecture of NEAT is presented
in Figure 3. The setup and execution of a test is enabled by
a session manager module, which is responsible to boot the
required VM and configure the network bridges that provide
the required connectivity. Users can interact with the session
manager using either a RESTful API or though a local CLI.

A network test is configured via a YAML file and an
example test definition is depicted in Listing 1. A NEAT
configuration file consists of two components: a list of network
topologies and a list of test blocks running on top of a
topology. A Topology is defined using Python scripts and
an extended Mininet topology API with support for VM and
container-based device types. Topologies can be supplemented
with a set of files and directories that contain assets relevant to
the network, for example, disk images for VMs should be in-
cluded in the assets list. Optionally, a topology can be granted
privileges such as access to the host Docker or LibVirt sockets.
Furthermore, if topologies need more advanced configuration,
such as configuration that responds to dynamic content in
the topology, NEAT also provides a set of hook points for
scripts to be executed. The test block defines a set of tests that
should be executed on-top of a specific topology, as well as
the test success criteria. NEAT offers a set of pre-packages test
scenarios, including connectivity and bandwidth, and users can
develop custom test scenarios, by developing bash scripts that
abstract the execution of the test and the analysis of test results.

The design of the configuration system decouples test
scenarios from topology specifications in order to facilitate
NetDevOps methodologies. For example, this allows a VNF

Listing 1: Sample test configuration for a network function
test suite
1 topologies:
2 - name: clickos-loadbalancer
3 topology: cdn-topo
4 assets: ["$(pwd)/click-images"]
5 libvirt: true
6 post_start_script: ./install_routers.sh
7 blocks:
8 - name: h1 connect h4
9 variant: ping
10 topologies: [clickos-loadbalancer]
11 mutables: { sender: h1, target: h4, count: 5}
12 expressions:
13 - Sent == Received

developer to produce a simple integration test suite for their
appliance using a simple network, as well validate correctness
in a real environment by sourcing topologies files from the
network operator.

C. Intent Testing

In order to integrate automated testing in the intent lifecycle,
we have extended out Execute layer, and we have introduced a
new Test service. The test service aims to fulfil two goals: Gen-
erate automatic test suites that validate configuration changes
and execute automatically tests before the deployment of a
configuration. Test generation is driven by service connectivity
intents. Effectively, the intent layer translate each connectivity
intent into a connectivity test, thus validating that host remains
reachable after the application of a network update. The oper-
ational state of the network is derived from two configuration
streams. On the one hand, we assume that any static configu-
ration and topology information are available by the network
operators, in a format which contains that latest network
changes (e.g. Git repo). In parallel, the Test service, caches
any configuration changes performed by active intent during
the operation of the IBN. Composing the two configuration
streams, can provide a realistic configuration snapshot, which
can be replayed using realistic device models by NEAT. The
Test service generate a NEAT YAML file, which can be exe-
cuted using the NEAT CLI tools. The Test service monitors the
execution of the test, and upon a failure, it requests from the
intent lifecycle manager to compute a new deployment plan.

V. USE CASE: AUTOMATED INTENT
VERIFICATION IN HYBRID NETWORKS

In order to demonstrate the applicability of our intent
testing pipeline, we apply our testing functionality on a
realistic network scenario, inspired by operational processes
in the BT production network. Our experimental scenario
utilizes a multi-layer topology, inspired by the 21CN BT
network topology, and depicted in Figure 4. The network is
separated in three zones: access, metro and core. The access
and metro zones are emulated using 14 OpenFlow switches,
using the Open VSwitch switch. The metro and access layers
are programmable by a single ONOS instance, which uses
L2 OpenFlow rules to forward traffic between Access hosts
and Core routers. The Core zone consists of five Cisco 7200
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routers, emulated using the DynaMIPS platform [22], four of
which are connected in a mesh topology. A fifth aggregation
router uses a dedicated VLAN tag towards switches s12, s13,
and s14 to connect the Metro and Core zones. The devices
use handwritten IOS configuration files that route traffic from
the access network subnet to adjacent ASes. Finally, the
topology uses two Cisco7200 virtual routers to emulate 2
external ASes and establish BGP session with the two edge
routers in our topology. The BGP configuration of the routers
is minimal, full connectivity is allowed between the three
ASes and path selection is achieved using a shortest path
policy. The topology is used both to emulate our “operational”
network, and our NEAT testing topology.

Our network design, aims to explore the ability of our
intent testing pipeline to capture configuration errors in
hybrid networks, that occur due to the split configuration
between multiple administrative domains. To explore this
testing dimension, we utilize the following configuration
scenario. Our programmable part of the network is initialized
with a series of connectivity intents which establish L2 paths
between Access hosts and the Core aggregation switch using
switch s12. After an initial cooldown period, a drain intent is
sent to the intent manager for switch s12. The intent manager
will compute a new set of paths between the Access nodes
and the aggregation router which replace switch s12 with

switches s13 and s14 and generates a set of ONOS REST
API calls to install the new routes.

Before transmitting the new ONOS configuration in the
production network, the intent manager runs a NEAT test to
validate that connectivity is maintained by the new configura-
tion. The NEAT test is bootstrapped with a static topology file
and the configuration of the legacy devices, while the intent
manager generates automatically the testing block section of
the NEAT config, based on the active route intents. In order to
test the correctness of the new configuration, we use ping tests
between the Access nodes and the aggregation router. Each
node transmits 10 ICMP Echo request packets and counts the
number of successful ICMP ECHO responses received for the
router within 10 seconds. The parameters of the ping test (des-
tination host) are automatically estimated from the parameters
of the initial connectivity intents. In order for the intent man-
ager to install the new configuration to the production network,
ping tests from access nodes should achieve a ping response
rate of more than 50% (we allow some space for packet loss
due to the best effort nature of network emulation). In case of
a failed test, the intent manager will inform the user regarding
the intent failure. The test outcome can also be used to collect
detailed packet traces, which can be analyzed to perform an
initial root cause analysis and generate precise user feedback.

We create two variation of the network scenario. A
valid experiment uses a static configuration for the legacy
network, capable to receive and route all traffic from the
programmable network. An invalid experiment uses a static
configuration for the legacy network, which contains a VLAN
tag misconfiguration. Specifically, the aggregation router
configuration has an invalid VLAN tag configuration on the
ports that connect to switches s13 and s14. Detecting such
an error requires from a network engineer to closely inspect
the configuration of all devices, in order to detect the source
of the error, while the intent manager would assume that the
intent was deployed successfully without a prior test, even if
host traffic cannot reach the legacy network.

The results of our experimental scenarios are depicted in
Figure 5. The hosts are able to ping each other, but tests fail
when a host pings an IP beyond the programmable domain.
Test results are analyzed by the intent manager and a short
report is sent to the user using the Dialogflow/Telegram
agent. In terms of the scalability of the testing system, the
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Fig. 5: Detecting and reporting a testing error for a “drain”
intent using a NEAT connectivity test.

resulting test takes on average 33 seconds (std 1.7 sec across
10 runs) and the majority of the experimental time is spent
on setting up the emulation environment (24 sec on average).

VI. CONCLUSION

Intent-based networking (IBN) systems have become the
de facto control abstraction to drive self-service, self-healing,
and self-optimized capabilities in service delivery processes.
However, adoption of IBN is limited in production as network
operators remain skeptical of IBNs effectiveness in day-to-day
network operations. Several enabling features of IBN remain
open implementation challenges as practical research has
only demonstrated limited use-case for automated intent life-
cycles. Without the capability to provide robust guarantees of
correctness in generated configurations, network operators are
apprehensive about introducing autonomous decision logic
into performance critical infrastructure. This paper argued for
the inclusion of network testing to support IBN use-cases and
introduced a proof-of-concept tool to automatically validate
intent-based configurations prior to deployment, using a
network emulator to conduct testing.

In future work, we aim to expand the testing approaches
to validate a variety of network features beyond reachability,
enabling the system to compare network state with a more
expressive intent model. Furthermore, we will explore how
the intent lifecycle model can include further verification
processes during run-time. Relevant verification processes
can configure the underlying platform to monitor intent KPIs
using programmable control and deploying special monitoring
VNFs alongside the service.
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