CHIMA: a Framework for Network Services
Deployment and Performance Assurance

Elia Battiston*, Daniele Moro®, Giacomo Verticale*, Antonio Capone*
* Politecnico di Milano, Italy
elia.battiston @mail.polimi.it, giacomo.verticale @polimi.it, antonio.capone @polimi.it
f Open Networking Foundation
daniele @opennetworking.org

Abstract—Network Function Virtualization has dramatically
increased the flexibility in the deployment of network services,
however the execution of virtual functions on compute nodes
equipped with general purpose hardware can result in worse
performance compared to the middleboxes they aim to replace.
The use of programmable network hardware to perform part of
the processing at line rate can drastically increase the throughput
while retaining the flexibility.

This work presents a new framework, called CHIMA, which
extends the capabilities of other frameworks proposed in the
literature for the deployment of heterogeneous Service Function
Chains (SFCs). Heterogeneous SFCs comprise a combination of
virtual functions meant to be executed in containers running on
general purpose hardware and of functions for programmable
switches written using the P4 language. CHIMA exploits pro-
grammable data planes to perform real time monitoring of
the services through In-band Network Telemetry and uses
the collected information to guarantee the requested levels of
performance by redeploying and rerouting sections that are
affected by adverse conditions, allowing applications with critical
requirements to be deployed as SFCs.

The solution has been tested by emulating various topologies
and services on the FOP4 platform with bmv2 switches. The
analysis shows that the system is capable of detecting faults in the
order of hundreds of milliseconds, and the overhead it causes in
the process of redeployment is negligible compared to the startup
time of functions. Measurements also reveal that the current
bottleneck for the runtime relocation of heterogeneous functions
is the redeployment and reconfiguration of P4 programs.

Index Terms—Network Function Virtualization, Service Func-
tion Chains, Programmable Data Planes, In-band Network
Telemetry

I. INTRODUCTION

The use of Virtual Network Functions (VNFs) makes it eas-
ier and faster to manage the provisioning of network services.
This, however, introduces a tradeoff between flexibility and
performance since the execution of packet processing logic
on regular CPUs is less efficient, both in terms of throughput
and power consumption. Recent advances in the field of
Programmable Data Planes, and In-Network Computing in
particular, showed that offloading sections of these services
to programmable switches is a viable way to eliminate the
tradeoff, bringing back the processing performance to the level
that is offered by specialized hardware middleboxes. In addi-
tion, the ability to define arbitrary logic with the P4 language

This work is partially funded by EU Grant no. 101016577 project Al-
SPRINT.

enables the development of other features alongside regular
forwarding and processing, such as the real time monitoring
of flows with In-band Network Telemetry (INT) [1]. Such
techniques can be exploited for more than diagnosis of errors
or logging, since real time feedback on the performance of a
service could allow an orchestrator to take immediate action
in response to congestion or faults.

This paper builds on the existing techniques for the deploy-
ment of heterogeneous service function chains, such as the
one proposed by Moro et al. [2], and describes and assesses
the CHIMA (CHain Installation, Monitoring and Adjustment)
framework, which introduces the following novelties:

o The possibility of specifying the performance require-
ments, such as the maximum latency and the maximum
jitter, either for sections of the service or for its entirety.

o The real-time monitoring of the service’s communications
with In-band Network Telemetry.

¢ An extension mechanism to INT for measuring the exe-
cution time of virtual network functions, which results in
a better knowledge of the latency experienced by portions
of the service.

e A mechanism to detect events that result in a failure to
meet the performance targets and their solution through
the rerouting or redeployment of the affected components.

We develop a prototype of CHIMA and use it to evaluate the
feasibility of the proposed solution [3].

The remainder of the paper is structured as follows. Sec-
tion II gives an overview of the literature for the treated
subjects. Section III describes the context and assumptions
for which the system has been designed. Section IV explains
the design of the proposed solution. Section V reports how the
performance of the framework was evaluated, and the obtained
results. Finally, Section VI presents concluding observations.

II. RELATED WORK

The problem of placing the VNFs of a Service Function
Chain (SFC) while determining the optimal path for their com-
munication has been studied extensively. CHIMA leverages
on that literature and, instead, focuses on the deployment and
monitoring that follows the deployment decision. Addis et al.
[4] consider the joint problem of placement and chaining of the
VNFs and propose a mixed integer linear programming model
for its optimization. Khoshkholghi et al. [5] also focus on the

optimization of latency and costs in the placing of SFCs, but
do so with heuristic-based algorithms. A similar goal to the
one of this work is pursued by Mechtri et al. [6], who propose
an SFC orchestration framework that takes the monitoring of
the deployed service into consideration, but do not propose
solutions to guarantee their performance.

All of the above only take into consideration SFCs com-
posed by VNFs that target homogeneous compute architec-
tures. CHIMA supports the deployment of heterogeneous
SFCs that take advantage of programmable data planes and
significantly increase the achievable throughput. The concept
of decomposed VNFs that take advantage of programmable
network hardware is explored by Moro et al. [2], who propose
a model and the heuristics for the optimization of the place-
ment of functions that provide implementations for multiple
types of hardware. In a similar fashion, DPPx [7] also enables
the installation of data plane programs on P4 switches for the
enhancements of NFVs. Additionally, Moro et al. [2] propose
the use of an extensible template pipeline and segment routing
for the deployment of user functions on programmable data
planes. The template pipeline of CHIMA is inspired from the
one of [2].

Other approaches for the composition of P4 functions have
been studied in Hyper4 [8], which defines a P4 program that is
able to emulate other P4 programs provided at runtime by the
control plane and in P4Visor [9], which suggests a technique
to merge multiple P4 programs into a single one, while
retaining the functionality of all of them. An alternative take
on the acceleration of SFCs with programmable data planes is
explored with P4sc [10] and in [11], both of which consider the
implementation of whole function chains on single switches,
lacking the possibility of combining components of different
technologies.

This paper also proposes the relocation of the components
of the chains at runtime as a solution to tackle performance
degradation. The optimization for this kind of readjustment
has been explored in [12], proposing an algorithm for the
real-time migration of VNFs and demonstrating the possibility
of lowering the latency with it. The performance of similar
reconfiguration scenarios in microservices orchestrators, which
however happen in case of failures instead of degradation,
has been studied by Vayghan et al. [13]. CHIMA uses In-
band Network Telemetry (INT) to monitor the deployed SFCs
and understand when to execute the redeployment of the
network functions. A similar approach is studied with IntOpt
[14], which aims at optimizing the overhead introduced while
achieving optimal measurements of a deployment, but lacks
the measurement of the execution time of functions, preventing
the calculation of the end-to-end metrics seen by packets. The
same is done by IntSight [15], which has a similar goal to
CHIMA in trying to detect requirement compliance. Instead,
Choi et al. [16] propose the use of INT to heal the performance
of services at runtime, but only considering the alteration
of traffic flows between fixed endpoints. The relocation of
P4 VNFs at runtime is studied in depth by P4NFV [17],
which also enables the migration of stateful functions while

preserving their consistency.

III. SYSTEM MODEL

The proposed framework operates on a system composed
of both programmable switches that can be targeted by a P4
compiler and compute nodes capable of running containers.
The ONOS SDN controller [18] is used to manage the
forwarding of the packets; the computing nodes are configured
using Docker. The system can be used for the deployment
of network services in the form of heterogeneous Service
Function Chains, composed of two types of functions:

o General purpose functions: designed to run on the
compute nodes. These are available to the framework as
container images.

« P4 functions: intended to be compiled and run on P4
programmable switches. These are available as P4 pro-
grams in which a P4 control block with a compatible
signature is defined.

Each service chain is associated to an SLA that specifies the
maximum end-to-end delay and jitter. The CHIMA framework
is responsible for measuring the end-to-end delay and jitter,
also across the nework functions, by means of In-Network
Telemetry and for comparing the collected measurements to
the SLA of each chain. In case a chain violates the SLA, the
chain is rerouted through a new path which satisfies the SLA.
The calculation of the SLA-constrained path is managed by
the orchestrator and is outside of the scope of this paper.

In the current implementation of CHIMA, each function
of this chain supports one successor at most, but could be
easily extended to cover more complex service graphs. Figure
1 shows an abstract representation of an SFC and how it can
be deployed on the available devices.

Service Function Chain

_ - = = = = = = = =

/\

a2

o —

—
a

Fig. 1: Logical view of a Service Function Chain and how it
can be mapped to a physical topology

IV. THE CHIMA FRAMEWORK

CHIMA is a framework for CHain Installation, Monitoring
and Adjustment. Its goal is to ease the placement and installa-
tion of applications that take advantage of programmable data
planes, managing the orchestration of heterogeneous SFCs
in the network and guaranteeing their performance through

relocation of functions at runtime when necessary. This section
will give an overview of its implementation.
A. Framework components

The CHIMA framework consists of multiple components,
distributed over a supported network as shown in Figure 2.

CHIMA

Q 4—| INT Collector
Prometheus
A

Pipeline

CHIMAstub

CHIMACclient

Northbound APIs

-

Il :REST API
@ : P4Runtime gRPC
= : Communication

Fig. 2: Logical placement of the framework components in the
network and their interactions

1) CHIMAstub: This component is an ONOS application.
It exposes topology information such as the available switches,
hosts and links, and events like the activation and deactivation
of devices to CHIMA. Moreover, it allows the interaction
with the network’s devices through an extension of the ONOS
REST APIs. These enable the installation of new pipelines
on programmable switches, and the configuration of INT
monitoring. ONOS also manages the forwarding of traffic that
is not handled by CHIMA, by capturing ARP, LLDP and
DHCP packets and installing according rules on switches.

2) CHIMAclient: This process runs on hosts, and enables
the routing scheme explained in Section IV-C by applying the
MPLS header stack to the packets of managed services.

3) P4 pipeline: This is installed on all the switches. On top
of providing basic forwarding, it supports In-band Network
Telemetry according to the INT v1.0 specification [1]. This
pipeline is used as a template for the inclusion of user provided
P4 functions at runtime.

4) INT Collector: This component is co-located with the
core CHIMA process. It receives INT reports generated by
the switches running the P4 pipeline, extracts the telemetry
data and maintains a moving average of the measurements,
as explained in Section IV-D. These values are periodically
provided to CHIMA for the comparison with requirements,
and sent to a server of the Prometheus monitoring system that
stores them and makes them easily accessible to users.

5) CHIMA: The CHIMA module is the central manager of
the system. Its tasks are to:

o Build and maintain an internal representation of the
network topology.

o Compute a deployment strategy based on the available
topology information.

e Inject user provided P4 functions into the template
pipeline.

o Carry out the installation of P4 pipelines through CHIMA
Stub.

o Deploy Docker containers on hosts using Docker Com-
pose.

o Compute performance metrics for communication paths,
using data provided by the INT Collector, and compare
them with user set requirements.

o Alter the placement of functions and reroute traffic ac-
cordingly in case of a requirement violation.

B. Template Pipeline

The P4 switches are programmed with a pipeline containing
an extensible section. The service functions are deployed into
this section. A dispatcher makes sure that the various functions
are applied only to the packets belonging to a specific service
chain.

INT report

Ethernet

‘@ Forwarding Routing INT Ueer
MPLS

Functions
@ © =3
il =
@ INT data

Parser Packet processing

Deparser

Fig. 3: Stages of the template pipeline

The processing sections of the pipeline, depicted in Figure 3,
are the following:

1) Forwarding: The pipeline is based on the basic.p4!
pipeline included in ONOS and inherits its forwarding mech-
anism. The treatment of packets is determined by the reactive
forwarding rules installed by the controller.

2) Routing: The routing of packets between functions of
a service managed by CHIMA is handled separately, and
bypasses the usual forwarding, as explained in Section I'V-C.

3) INT: The implementation of In-band Network Teleme-
try is inherited from the ONOS int.p4 pipeline. The
control plane logic for this part of the pipeline is the
inbandtelemetry ONOS application, which translates
INT intents into the rules to be installed on the switch.

4) User functions: The template pipeline includes a section
in which user code can be inserted. Users provide functions
to execute on packets in the form of control blocks with a
predefined signature, such as the one presented in Listing 1.
Control blocks allow the definition of arbitrary computation
on the packet by defining tables, instantiating other controls,
using registers, etc. The access to parsed headers and metadata
is provided through the parameters of the control, enabling the
user’s function to change the content of the packet and even
altering the predetermined egress port.

Thttps://github.com/opennetworkinglab/onos/tree/master/pipelines/basic

control decrement_ttl (
inout headers_t hdr,
inout local_metadata_t local_metadata,
inout standard_metadata_t std_metadata)

apply {
if (hdr.ipv4.isvalid()) {
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}

— OOV R W=

—_—

}

Listing 1: Example of a simple user defined control that
can be submitted to CHIMA as a function

When CHIMA determines one or more P4 functions of a
service have to be deployed on a switch, their code is injected,
and will only be executed for packets of the correct service.

5) Setting up the pipeline: The decision of what user
functions must be deployed in each switch is made by an
orchestrator. The orchestrator is outside of the scope of this
paper, but we note that the orchestrator described in [2] is
compatible with the CHIMA framework.

Once the orchestrator provides the CHIMA module with
the decisions, CHIMA compiles the resulting P4 program
using the p4c compiler. The installation of the pipeline
at runtime can be achieved with the SetForwarding-—
PipelineConfig RPC call of P4Runtime. Its implementa-
tion in ONOS is exploited by creating a Pipeconf with the
pipeline files that is then bound to the device in ONOS’s
distributed map. In addition to this, the installation process
involves the reconciliation of rules installed in the device’s
tables. In general, reconfiguration of the pipeline may cause
significant downtime, but platform specific features like Tofino
Fast Refresh [19], can greatly accelerate this process.

C. Routing

After all the functions have been installed, the correct
routing of packets between them has to be configured along
the prescribed path.

1) Segment Routing over MPLS: CHIMA routing is based
on Segment Routing over MPLS (SR-MPLS), which uses
values called Segment IDs (SIDs) to instruct switches on the
operations to execute on a packet by embedding them in the
packet itself. In particular, we implement the approach defined
by RFC8660 [20], in which SIDs are represented as MPLS
labels. We define three SR Local Blocks (SRLB), whose
semantic for specific segments is dependent on the node that
executes it.

e 0x40000 - Ox7FFFF: used for the execution of user
defined P4 functions that have been deployed on the
switch.

e 0x80000 - OxBFFFF: used for packet forwarding.
These segments can be classified as Adjacency SIDs
according to RFC8402.

e 0xCO0000 - OXFFFFF: used to implement the custom
extension of INT for the measurement of the delay intro-
duced by general purpose functions, explained in Section
IV-D2. While 0xC0000 is used to instruct switches to

forward INT data to hosts, the remaining values of the
block are used to identify the executed function.
Keeping in mind that MPLS labels are 20 bits long, their
2 most significant bits are used to identify their SRLB, while
the remaining 18 can be interpreted as an argument for the
action to be performed. The evaluation of segments on a
switch continues until the bottom of the stack is reached or an
Adjacency SID is found, for which a Penultimate Hop Popping
approach is used. Figure 4 shows an example of how MPLS
label stacks are used by the framework to perform routing.

0 | 1Pv4 |

Forward to H1
MPLS Forward to 54
stack Execute F1

Fig. 4: Example of the framework’s use of segment routing

2) Encapsulation and segment distribution: In CHIMA, the
MPLS encapsulation of packets belonging to managed services
is performed by CHIMAclient. At the heart of CHIMAclient
is an eBPF filter that inspects the packets egressing the host.
Services are identified using the tuple of source and destination
IPv4 addresses. If the tuple is known, it means that the filter
has a label stack that represent the series of segments used
to implement its pre-computed path. In this case, the stack
of MPLS label headers is inserted between the Ethernet and
IPv4 headers. During this process, the EtherType field of the
Ethernet header is set to 0x8847 to allow proper parsing.

These stacks are computed by the CHIMA process based
on the result of an optimization model, and then installed on
the CHIMAclient of specific hosts by contacting their REST
APIs.

D. In-band Network Telemetry

The INT implementation used by the framework is derived
from the int.p4 pipeline included in ONOS, which is
designed to be managed by the inbandtelemetry appli-
cation, with which CHIMA interfaces through CHIMAstub.
This implementation is based on the INT v1.0 specification,
and uses embedded metadata with headers located over TCP
or UDP.

1) Collection of INT data: The CHIMA process includes an
INT collector as one of its modules, which has been adapted
form an existing eBPF based implementation [21]. The source
of the obtained values is identified by the pair of IDs of
the switches at the two ends of a link. For each incoming
INT packet, the collector computes the packet delay d,. The
collector also maintains a running Exponentially Weighted
Moving Average (EWMA) of the delay d, which is updated
for each incoming packet as follows:

d<— (1—a)d+ad, (1)

The average value of jitter is also measured following the same
procedure. Periodically, at each polling interval, the running
values of delay and jitter are also conveyed to a server of the
Prometheus monitoring system.

The a parameter acts as a smoothing factor, and can be
modified by the user when running CHIMA to tune the
response to transient variations of the metrics.

2) Measurement of general purpose function times: In
order to measure the time it takes for a packet to reach a
particular function, it is necessary to consider the time to
pass through all the previous functions in the chain. While
P4 functions run in constant time over specialised hardware,
general purpose compute nodes cannot assure the same level
of stability.

In this paper we focus on the measurement of functions that
process UDP packets, with each packet containing a single
application message. This makes it possible to correlate the
time needed by the packet to traverse the function’s host and
the time of execution of the function itself.

A general purpose function deployed on a compute host will
process packets forwarded by the switch to which it is directly
connected. When its execution ends, the resulting packet will
be sent back on the same switch to continue its routing across
the remaining functions. The measurement is performed by
altering the forwarding behavior of packets with INT headers
by using MPLS Segment ID 0xC0000. INT data will be left
in the packet, and new INT transit headers will be added before
the packet’s egress. The egress timestamp included in these
headers will be considered the start of the function’s execution.
This requires the function to be aware of this data and leave
it untouched. The resulting packet will then include previous
INT data and the function output as a payload. Segment IDs
in the range 0xC0001-0xFFFFF, added to the egress packet
by the CHIMAclient, uniquely identify the executed function,
as shown in Figure 5. This information is then used by the
switch to mark the end of the function’s execution with the
value of the ingress timestamp, enabling the computation of
its extent.

V. NUMERICAL RESULTS

A. Methodology

We evaluated the CHIMA framework over multiple topolo-
gies and services, as shown in Figure 6, whose relevant
characteristics are shown in Table I. Their complete definition
can be found in the project repository [3].

TABLE I: Characteristics of the presented test cases.

Topology Switches Containers P4 func.
mesh 7 3(1) 0 (0)
datacenter 6 2 (0) 1(1)
unbalanced 4 4 (1) 2 (1)
minimal 5 2(2) 2(2)
medium 7 3(3) 3(3)
large 9 4 (4) 4 4)

The number of functions moved upon network failure is in parentheses.

Previous INT

F1

(a) Regular processing of an INT packet when forwarded to a
host

Previous INT

Previous INT
MPLS: 0xC0000 S1INT
F1
I L N
F Prvous T

S1INT

MPLS: 0xC0001

(b) Additional measurement of the function’s time using Seg-
ment IDs

F1[S1INT

Fig. 5: Comparison of the content of packets and the forward-
ing behavior with regular INT and with CHIMA’s extension

(a) minimal test case (b) medium test case (c) unbalanced test case

23

(e) mesh test case (f) datacenter test case

(d) large test case

A Client n Deployment of n™ function
en n Redeployment of n* function
(O P4 switch 4 Introduction of latency

D Compute host Link

Fig. 6: Topologies used to evaluate the redeployment times

The test cases have been simulated with the FOP4 [22]
platform, using bmv2 instances as switches. To evaluate the
detection and redeployment performance, the framework has
been instrumented to record the timestamps of relevant events.
Figure 7 shows the complete list of values obtained during a
test run. All measurements have been performed on a bare-
metal installation of Ubuntu 20.04 LTS, running on an Intel

Introduction of
delay

@ Timestamp

First packet sent

Detection First packet
time received
Delay detected

& redeploy started T

Containers install
started ®

P4 install
Containers ready & started
distribution of routes
@ P4 ready Ei:ieeploy

Routes ready

Start changing
metadata

@

Metadata ready &
redeployment complete

Fig. 7: Representation of the timestamps collected during
one test run, their relationship in time, and how performance
measurements are computed on them.

Core 17-6700 CPU with 64GB of RAM.

Each experiment starts with the creation of the simulated
topology on FOP4, followed by the deployment of the related
service with CHIMA. After the service is properly set up, the
latency of the targeted link is artificially increased to a level
that causes requirements to be exceeded. The event is detected
when one of the path-wise measurements reaches the value of
the requirement, and causes the redeployment process to begin.

B. Detection delay

The first set of measurements have the objective of deter-
mining how much time is needed by the framework to detect
the introduction of a perturbation, depending on the values of
user-configurable parameters.

The detection delay is computed as the time CHIMA takes
to detect an exceeded requirement after the first packet of
a perturbed application is sent. Assuming the properties of
topology and service to be constant, we can consider the
detection delay to be a function of the polling interval and
the EWMA coefficient. For this reason, all the measurements
of this section have been performed on the minimal topology,
shown in Figure 6a.

a) Polling interval: Figure 8 shows the average detection
delay versus the rate at which the userspace component of the
eBPF INT collector polls new EWMA values. Each experi-
ment was repeated 30 times and we report the average result.
These measurements have been performed with o = 272 in
(1). For comparison, Figure 8 also shows the time taken by
a request to traverse the function chain end-to-end with a red
line.

As expected, the results present a clear linear trend, directly
proportional to p. A constant contribution is given by the time

—— Detection[s] 1
0.4 —— Travel[s] N

Time (s)

|

0.5

I
0 0.1

| | |
0.2 0.3 0.4
Polling interval p [s]
Fig. 8: Delay in the detection of an exceeded requirement
with different intervals for the polling of new measurements

from the INT collector. The bars indicate the 95% confidence
interval.

needed for the EWMA-smoothed measurements to cross the
threshold, while the slope of the curve is due to the polling
frequency. As expected, the mean delay due to the polling
latency is about £.

b) EWMA coefficient: The second parameter is the
smoothing coefficient for the computation of the EWMA in
equation (1). While running these tests, the Polling interval
was set to 0.1 s.

Detection (s)
(an) — [N} w =~
I

Fig. 9: Delay in the detection of an exceeded requirement
with different coefficients for the computation of the EWMA
on link measurements. The bars indicate 95% confidence
intervals.

Larger values of « result in more weight given to recent
data, as shown by Figure 9, in which smaller coefficients cause
a larger time needed for convergence to the new measured
values. This data shows that different values of a can be
used to tune the response of the framework in case of short-
lived congestion events. A different value of a can be set
for each chain. In case of long or complex SFCs, for which
the redeployment process can be expensive in terms of time
and resources, a smaller « yields smoother measurements and
avoid route flapping and rearrangements that could decrease
the chain’s performance as much as the degradation itself. In
other scenarios, where maintaining performance requirements
at all times is critical, o can be set to a bigger value. This
will result in noisier measurements that more closely follows
the raw values obtained from INT, allowing the framework
to minimize delays in the detection of a problem. For these
reasons, the optimal value for this parameter should be deter-

TABLE II: Breakout of redeployment times for different
topologies. 95% CI.

Topology P4 (s) Containers (s) Paths (ms) Metadata (ms)
mesh - 1.13 £0.04 54.23 £5.07 2.68 £0.13
datacenter 5.20 +0.03 - 288.60 +5.30 2.79 £0.16
unbalanced 5.19 +0.03 0.97 £0.01 60.57 £2.48 2.81 £0.17
minimal 6.06 £0.04 1.50 £0.02 48.79 £5.01 3.50 +0.19
medium 6.93 £0.03 2.12 £0.03 125.89 +£17.95 4.81 +£0.97
large 8.28 £0.09 2.54 +0.08 477.55 £90.06 6.10 +1.26

mined for each chain based on the deployed service and the
intended application.

C. Redeployment time

Another crucial measurement to outline the framework
performance is the time needed to complete a redeployment.
Table I presents a comparison of the relevant characteristics
among the test cases for which redeployment times have been
measured.

The results presented in Figure 11 show the total redeploy-
ment times for these cases, along with the most significant
contributing factors. Additionally, all recorded contributes are
detailed in Table II. The time needed by CHIMA to complete
the service’s reconfiguration is consistent with the performance
of other orchestrators in similar cases, according to the anal-
ysis of Vayghan et al. [13].

Since the redeployment of the different components is
executed in parallel, as shown in Figure 10, the recorded
times will be equal to the delay caused by the slowest one.
The installation of P4 functions proves to be the dominant
factor if present, causing the total time to be in the order
of seconds. The two contributions to this delay are the re-
configuration of the switch’s pipeline and the reinstallation
of the flow rules in the pipeline’s tables. The former is
due to the use of bmv2 switches and could be reduced to
tens of milliseconds with vendor specific features. The latter,
instead, is caused by ONOS management of programmable
data planes, which is not structured for time sensitive pipeline
changes. Improvements to target this use case could drastically
decrease delays. Moreover, the introduction of features to
enable a partial reconfiguration of the pipeline would further
decrease these figures. In such a scenario, there would be no
need for the controller to install the same set of rules after
each reconfiguration, since they are independent of the set of
user functions deployed on the switch. The times for path
distribution and metadata adjustment are entirely attributed to
the CHIMA framework logic, but are less significant than the
previous ones, adding minimal overhead.

VI. CONCLUSION

In this paper, we propose the CHIMA framework for the
deployment, monitoring and real-time readjustment of het-
erogeneous SFCs. CHIMA allows the specification of perfor-
mance requirements for functions and services and monitors
it by means of the telemetry powered by programmable
data planes. This opens the opportunity for applications with

Containers
P4
Paths

Metadata

0 2 4 6 8
Time from failure detection (s)

Fig. 10: Temporal relationship between the operations that
contribute to redeployment times, measured on the large test
case (Figure 6d). 95% CI.

|
I l Total
D [Containers

|
Bups

m, dag, . Unp,, Wi, Meyg: lar
Csh acep terbalanceglmal iy, Se

Fig. 11: Time for the complete redeployment of a service,
along with the contributes of P4 and Container redeployment,
in different test cases. 95% CI.

critical performance demands to use existing networks for
their communication. Measurements include the execution
time of functions on compute nodes, allowing the constraints
to reflect real delays experienced by packets, and not just
the ones caused by the network. We developed a prototype
and tested it through emulation on the FOP4 platform with
bmv2 switches. The results showed that the detection of
exceeded requirements happens in the order of hundreds of
milliseconds, and can be tuned by the user to achieve the
desired level of responsiveness. Analysis of the redeployment
process showed that the overhead introduced by the system
is negligible compared to the time needed for the startup of
functions, and real time relocation of VNFs to achieve desired
levels of performance is feasible.

REFERENCES

[11 T. P. A. W. Group et al., “In-band Network Telemetry (INT)
Dataplane Specification - Version 1.0,” 2018. [Online]. Available: https:
//github.com/p4lang/p4-applications/raw/master/docs/INT_v1_0.pdf

[2] D. Moro, G. Verticale, and A. Capone, “Network function decomposition
and offloading on heterogeneous networks with programmable data
planes,” IEEE Open Journal of the Communications Society, vol. 2,
pp- 1874-1885, 2021.

[3] “CHIMA: CHain Installation, Monitoring and Adjustment.” [Online].
Available: https://github.com/ANTLab-polimi/CHIMA

[4]

[5]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th In-
ternational Conference on Cloud Networking (CloudNet). 1EEE, 2015,
pp. 171-177.

M. A. Khoshkholghi, M. G. Khan, K. A. Noghani, J. Taheri, D. Bhamare,
A. Kassler, Z. Xiang, S. Deng, and X. Yang, “Service function chain
placement for joint cost and latency optimization,” Mobile Networks and
Applications, vol. 25, no. 6, pp. 2191-2205, 2020.

M. Mechtri, C. Ghribi, O. Soualah, and D. Zeghlache, “NFV orches-
tration framework addressing SFC challenges,” IEEE Communications
Magazine, vol. 55, no. 6, pp. 16-23, 2017.

T. Osinski, H. Tarasiuk, L. Rajewski, and E. Kowalczyk, “DPPx: A P4-
based Data Plane Programmability and Exposure framework to enhance
NFV services,” in 2019 IEEE Conference on Network Softwarization
(NetSoft). 1EEE, 2019, pp. 296-300.

D. Hancock and J. Van der Merwe, “Hyper4: Using P4 to virtualize
the programmable data plane,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 35-49.

P. Zheng, T. Benson, and C. Hu, “P4visor: Lightweight virtualization
and composition primitives for building and testing modular programs,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, 2018, pp. 98-111.

D. Zhang, X. Chen, Q. Huang, X. Hong, C. Wu, H. Zhou, Y. Yang,
H. Liu, and Y. Chen, “P4SC: A High Performance and Flexible Frame-
work for Service Function Chain,” IEEE Access, vol. 7, pp. 160982—
160997, 2019.

J. Lee, H. Ko, H. Lee, and S. Pack, “Flow-aware service function
embedding algorithm in programmable data plane,” IEEE Access, vol. 9,
pp. 6113-6121, 2020.

D. Cho, J. Taheri, A. Y. Zomaya, and P. Bouvry, “Real-time virtual
network function (VNF) migration toward low network latency in cloud
environments,” in 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD). 1EEE, 2017, pp. 798-801.

L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice
based architecture: Towards high-availability for stateful applications
with kubernetes,” in 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS). 1EEE, 2019, pp.
176-185.

D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, and J. Taheri,
“IntOpt: In-band network telemetry optimization for nfv service chain
monitoring,” in ICC 2019-2019 IEEE International Conference on
Communications (ICC). 1EEE, 2019, pp. 1-7.

J. Marques, K. Levchenko, and L. Gaspary, “Intsight: diagnosing slo
violations with in-band network telemetry,” in Proceedings of the 16th
International Conference on emerging Networking EXperiments and
Technologies, 2020, pp. 421-434.

N. Choi, L. Jagadeesan, Y. Jin, N. N. Mohanasamy, M. R. Rahman,
K. Sabnani, and M. Thottan, “Run-time performance monitoring, veri-
fication, and healing of end-to-end services,” in 2019 IEEE Conference
on Network Softwarization (NetSoft). 1EEE, 2019, pp. 30-35.

M. He, A. Basta, A. Blenk, N. Deric, and W. Kellerer, “P4NFV: An
NFV architecture with flexible data plane reconfiguration,” in 2018 14th
International Conference on Network and Service Management (CNSM).
IEEE, 2018, pp. 90-98.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed sdn o0s,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 1-6.

A. Bas, “Leveraging stratum and tofino fast refresh for software up-
grades,” Accessed: Jul, vol. 4, p. 2021, 2018.

A. Bashandy, C. Filsfils, S. Previdi, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing with the MPLS Data Plane,” RFC 8660,
Dec. 2019. [Online]. Available: https://rfc-editor.org/rfc/rfc8660.html
“INT Collector - Atmosphere project”” [Online]. Available: https:
//github.com/eubr-atmosphere/distributed- network- federation- probe/
tree/master/int_collector

D. Moro, M. Peuster, H. Karl, and A. Capone, “FOP4: Function
offloading prototyping in heterogeneous and programmable network
scenarios,” in 2019 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). 1EEE, 2019, pp. 1-6.

