
Investigation of FlexAlgo for User-driven Path
Control

1st Julia Kułacz
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

julia.kulacz@os3.nl

2nd Martyna Pawlus
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

martyna.pawlus@os3.nl

3rd Leonardo Boldrini
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

l.boldrini@uva.nl

4th Paola Grosso
Multiscale Networked Systems group

University of Amsterdam
Amsterdam, The Netherlands

p.grosso@uva.nl

Abstract—This paper examines the Flexible Algorithm (Flex-
Algo) for its potential to enable user-driven path control in intra-
domain Segment Routing (SR) enabled networks. FlexAlgo is a
relatively new approach to intra-domain routing that allows mul-
tiple custom algorithms to coexist within a single domain. This
capability has the potential to provide users with greater control
over the paths their data takes through a network. The research
includes a thorough investigation of the FlexAlgo approach,
including an examination of its underlying techniques, as well
as a practical implementation of a FlexAlgo-based solution. We
depict performed experiments where we implemented FlexAlgo
in three different scenarios. We also present how we developed
an automated tool for users to control traffic steering using
preferred metrics and constraints. The results of this investigation
demonstrate the capabilities of FlexAlgo as a means of enabling
user-driven path control and therefore increase security and trust
of users towards the network.

I. INTRODUCTION

The need to ensure trustworthiness and privacy to network
users has led to developments such as the Responsible Internet
[1]. One of the still open questions has been which technolo-
gies can be used to support user-driven path control.

For many years, the Interior Gateway Routing Protocol
(IGP) was the primary factor in determining the optimal paths
across intra-domain networks. This solution was rather limited
as it takes solely bandwidth into account when calculating
the best paths throughout the network. However, as network
architectures have become more complex and dynamic, routing
has become much more sophisticated thanks to Traffic Engi-
neering (TE) solutions. It started taking into consideration a
wider range of factors beyond just bandwidth. Therefore, the
TE solutions allow network operators to manage the traffic
in a way that meets the specific needs and requirements of
the network and also its users. One aspect of TE is user-
driven path control, which focuses on putting control over
some decisions, related to choosing the best paths, in the hands
of the users. This allows them to specify different metrics
or constraints that the network should use to determine the

optimal path for their traffic. By allowing this level of control
over the network to its users we increase their situational
awareness over how their traffic is being routed. This brings an
additional layer of security, as users can choose paths that are
the most secure specifically for their traffic. It also increases
their trust towards the network as they are aware and monitor
what happens to their data.

In this paper, we aim to implement and test one of the newly
introduced TE solutions called Flexible Algorithm (FlexAlgo).
Moreover, we want to examine which metrics and constraints
can be used in order to give users control over their traffic. This
falls into the scope of UPIN (User-driven Path verification and
control for Inter-domain Networks) as the goal of this project
is to give users more insight and control over their data in
transit through the network, to finally increase the security and
trustworthiness of users to the network. These considerations
led us to state the main research question of this paper which
is: what are the capabilities and limitations of FlexAlgo when
used to support user-driven path control?

II. BACKGROUND

A. Segment Routing

The underlying technique that we use in order to provide
user-driven path control is Segment Routing (SR). SR is
based on the source routing paradigm where packets are
steered through a set of instructions called the SR Policy. The
SR Policy consists of segments identified by their Segment
IDs (SIDs) which can be associated with various types of
topological or service instructions. Segments have a meaning
that is either local to an SR node or global within the SR
domain. The set of local segments is called SR Local Block
(SRLB) and the set of global segments within an SR domain
is called SR Global Block (SRGB).

Furthermore, SR can be implemented on different types
of data planes, the two most common ones being SR over
MPLS (SR-MPLS) and SR over IPv6 (SRv6). In SR-MPLS,

ar
X

iv
:2

40
1.

12
58

2v
1

 [
cs

.N
I]

 2
3

Ja
n

20
24

a segment is represented as an MPLS label and SR is im-
plemented without any changes to the forwarding plane. The
experiments conducted during our research concentrate on
the SR-MPLS data plane and the Interior Gateway Protocol
(IGP) based control plane. There are two different segments
specified in the IGP-based distributed control plane, namely
the IGP-Adjacency segment and the IGP-Prefix segment. The
IGP-prefix segment represents a global instruction to forward
traffic based on the specific IGP routing protocol and its SID
is referred to as Prefix-SID. The IGP-Adjacency Segment
is usually a local segment that represents an instruction to
forward a packet to the next-hop router in the SR domain and
its SID is referred to as Adj-SID [2].

One of the primary applications of SR is Segment Routing
Traffic Engineering (SR-TE). The SR-TE architecture allows
directing the traffic by specifying an SR policy. This policy
uses segment lists to represent a desired path and steer the
traffic through it. An SR Policy is represented by three factors;
headend, color, and endpoint. The headend is a node that
instantiates an SR Policy (e.g. edge router), whereas the
endpoint is the target of an SR policy, both identified as IP
addresses. Color is employed to link a policy with a desired
objective, such as minimizing delay. The set of segment lists
used in SR-TE can be acquired from intent-based SR-TE
algorithms. One of the recently proposed SR-TE algorithms is
Flexible Algorithm [3]. A headend node of SR is responsible
for steering the traffic into a particular SR policy. When
a prefix that is colored with a BGP Extended Community
matches an SR Policy, the packet with the corresponding prefix
can be steered with On-Demand Next Hop (ODN) policy.
The purpose of ODN is to dynamically instantiate an SR
Policy to a BGP next-hop [4]. BGP Extended Community is
a path attribute that allows to group destinations which share
a common property.

B. Flexible Algorithm

The SR architecture utilizes FlexAlgo to achieve its goals
of efficient and flexible forwarding of packets as FlexAlgo can
be associated with a Prefix segment [3]. In general, FlexAlgo
is used to calculate the best path along a constraint topology,
and as described in the draft RFC [5], it can be applied as the
extension to IGPs such as IS-IS, OSPFv2, and OSPFv3. Within
this research paper, we focus on describing and implementing
FlexAlgo for OSPFv2.

In terms of network configuration, FlexAlgo is a numeric
identifier in the range between 128 and 255. Within this paper,
we refer to this value as FlexAlgo ID. It specifies the number
related to the Flexible Algorithm Definition (FAD) which is
the most fundamental term related to FlexAlgo. FAD is defined
as a set of 3 components, namely calculation type, metric type,
and constraints.

Calculation type can be equal to 0 or 1. When equal to
0, it utilizes the Dijkstra Shortest Path First (SPF) algorithm
in a traditional IGP and allows local policies to change the
paths calculated by the SPF. When it is equal to 1, a strict
SPF is in use and no local policy is allowed to modify paths

[6]. In all our experiments described in Section IV, we use the
calculation type of value 0.

Metric type defines a metric that is used during the cal-
culation of FlexAlgo. There are three values defined, namely
IGP Metric, Traffic Engineering Default Metric, and Minimum
Unidirectional Link Delay [7].

Constraints do not have a strict definition, they can indicate
for example using only a particular network plane, including
only a certain metric, or avoiding specific links in a network
topology. The only constraints that we will focus on in our
experiments relate to the links. Two attributes needed to
define them are affinity map and administrative group. The
affinity map defines colors and associates them with unique
bit positions. These bit positions relate to the bitmask sent in
the OSPF Link State Update (LSU) and specify which bits are
required to match the colors set on links. To make use of the
affinity maps, the links can be colored by referring to a specific
affinity map using the corresponding color name. Then, the
constraint can be defined using the second component which
is the administrative group. It makes use of one of the three
arguments, meaning exclude-any, include-all, and include-any
where each of them can contain a maximum of 10 colors
related to the affinity maps [8].

In order to advertise the definition of FlexAlgo and therefore
have loop-free computed paths, routers use OSPF FAD TLV
(Type-Length-Value).

Before a node calculates the best paths for a specific
FlexAlgo, it has to fulfill two conditions: it must be configured
to participate in this specific FlexAlgo and it must select a
consistent FAD that corresponds to this FlexAlgo. This FAD
needs to include metric type and calculation type, but con-
straints are not mandatory. The first step towards calculating
the best path for a FlexAlgo is defining links that should be
definitely excluded from the computation. Then, when all links
are either excluded or included from the topology for a given
FlexAlgo, the SPF algorithm can be run over this topology
with a metric defined in the FAD. When the calculation is
done, the Prefix-SID for a given FlexAlgo is installed in the
MPLS forwarding table.

III. SETUP DESCRIPTION

We present the topology of our setup in Figure 1. It is
divided into two logical parts. The first one is framed by the
grey rectangle and poses the base for investigating FlexAlgo’s
capabilities. We used the additional three elements outside of
this rectangle for automation purposes which are described in
Section IV-D. As the base topology, we created a partial-mesh
topology consisting of four XRv9000 nodes.

In order to connect the nodes, we used five GigabitEthernet
links as presented in Figure 1.

Next step involved configuring the OSPF routing protocol
on all nodes. We created the OSPF process on each router and
assigned all interfaces to area 0 and defined them as OSPF
point-to-point interfaces.

We configured SR in one domain where R1 executed ingress
procedures, R4 executed egress procedures, whereas R2 and

Fig. 1: Network topology created in Cisco Modelling Labs.

R3 were treated as transit nodes. We defined the SRGB in the
global configuration so that each Prefix-SID was calculated
from this base. We then activated SR-MPLS in all routers
in area 0 of the OSPF routing protocol and configured all
Loopback0 interfaces to calculate their Prefix-SIDs using the
SRGB.

Lastly, in order to simulate traffic from five different users,
we performed several steps on two edge routers, R1 and
R4. Firstly, we configured BGP across SR-MPLS and created
iBGP peering between R1 and R4. Next, we created five
separate Virtual Routing and Forwarding (VRFs), namely
GOLD, SILVER, BRONZE, PLATINUM, and CUSTOM, and
we assigned five separate GigabitEthernet interfaces to these
VRFs respectively. In general, VRFs are the layer 3 equivalent
of layer 2 VLANs and allow to create multiple routing and
forwarding tables within one router. The router itself stores
more than one routing table, but the VRF instance allows
using only one routing table, for a single user, at a time.
To distinguish the VRFs from each other, we used Route
Distinguisher (RD). RD is an identifier added to each router
that identifies a specific VRF and distinguishes VRFs from
each other. Then, we configured colors associated with five
VRFs and advertised them in the BGP extended community
attributes via Route Policy. This way, they were dynamically
assigned to the VRFs later on. Afterwards, we configured
the Route Policy in the outgoing direction, facing the other
iBGP peer. In the last step, we created ODN policies for
each color associated with a separate VRF. Within each policy,
we specified the Prefix-SID of FlexAlgo associated with this
specific VRF. All these steps allowed us to separate traffic
coming from different users and are described in detail in
Section IV.

As a part of the experiments, we also aimed to develop
an automated method for a user to control traffic steering
in the SR domain. This approach constitutes one possible
implementation of the Path Controller in the UPIN project
[9]. In particular, our intention was to create an elementary
user interface. It would allow users from VRF CUSTOM
to either choose one of the existing FlexAlgos or create

a new one that fulfilled their preferences. We implemented
the controller using Ansible as a configuration management
tool. The controller communicated with the routers using the
NETCONF protocol [10]. Moreover, to be able to retrieve and
change configurations related to FlexAlgo and SR, we created
specific RPC payloads with Cisco Yang Suite [11].

IV. EXPERIMENTS

Before conducting experiments we had to configure fun-
damental techniques essential to test FlexAlgo capabilities.
Firstly, we provided reachability between the routers by
configuring the OSPF protocol. We added all routers into
the backbone area, configured the interfaces as point-to-point
networks, and enabled segment-routing mpls. Then, we con-
figured segment routing itself.

We then configured VRFs and BGP. The following configu-
rations were only applied on router 1 and router 4 which were
iBGP peers. We created five VRFs, namely GOLD, SILVER,
BRONZE, PLATINUM, and CUSTOM. Next, we assigned
them route distinguishers, namely 1:1, 1:2, 1:3, 1:4, and 1:5
respectively. In order to define which routes were exported
and imported into a specific VRF routing table, we configured
route-target import and export. We also assigned interfaces
GigabitEthernet0/0/0/5-9 to the VRFs.

Finally, we configured the route policy and ODN. We
created five BGP colors extended communities that we later
applied to route distinguishers via route policy bronze silver.
At this point, we created five ODN SR policies with the
colors mentioned earlier. We also associated the policies with
different FlexAlgos.

A. Experiment 1 - IGP metric and constraints

In Experiment 1, we created two FlexAlgo definitions 128
and 129 which were later associated with traffic from VRFs
GOLD and SILVER respectively.

The affinity map associates the color red with a bit position
20 and blue with a bit position 10. These bit positions relate
to the bitmask sent in the OSPF LSU in the Extended Admin
Group field and specify which bits are required to match the
colors set on links. Then, to make use of the affinity map,
we colored the links by specifying colors on the routers’
interfaces. In the next step, we linked the configuration of FAD
with the running OSPF process on all routers. To participate
in the specific FlexAlgo and advertise its definition all routers
had to configure it in the router ospf 1 submode.

Similarly, we configured FlexAlgo 129 on all routers.
The last remaining part of the configuration was the adver-

tisement of Prefix-SID for a particular FlexAlgo. This way,
all routers installed an MPLS-labeled path for the specific
destinations.

From this point, we could see the advertisement of FlexAlgo
128, and 129 in the LSU packet in Link State Advertisement
(LSA) type 10, particularly in Opaque Router Information
LSA. Within the exclude-any constraint, FlexAlgo 128 found
matching to the color specified in the affinity map, meaning

blue. Therefore, all links marked with the color blue are
excluded from this FlexAlgo calculation.

Once routers advertised the FAD, they computed the best
paths to reach other nodes participating in specific FlexAlgos.

All routers computed their paths for the FlexAlgo 129 in a
respective way. However, in this scenario, router 1 used the
interface GigabitEthernet0/0/0/1 to reach the remaining nodes
as red links were excluded from the computation.

If we check the MPLS forwarding table on router 1 related
to the Prefix-SIDs for FlexAlgo 128, we can see that, in order
to forward traffic to the destination associated with Prefix-SID
20013 (which is a Prefix-SID for FlexAlgo 128 on router 3),
router 1 would use the same outgoing label 20013. It would
forward the traffic to interface GigabitEthernet0/0/0/0 to the
Next Hop 10.0.12.2.

Finally, we associated FlexAlgo 128 and 129 with the
previously configured ODN SR policies for colors 10 and 20
respectively. This way, traffic generated within VRFs GOLD
was forwarded via paths computed by FlexAlgo 128.

B. Experiment 2 - Delay metric

Experiment 2 focused on specifying the metric type as
Minimum Unidirectional Link Delay for FlexAlgo 130 which
we associated with VRF BRONZE. In order to measure delay
on links and advertise it, we had to configure performance
measurement on routers. In a real environment, routers would
use performance measurement to monitor network metrics
using probing mechanisms on the interfaces. However, in the
CML virtualized environment routers do not support perfor-
mance measurement functionalities in the context of dynamic
link delay measurement. In our scenarios, performance mea-
surement allowed us to configure statically assigned delay
values on the interfaces.

The routers advertised static delay values in the OSPFv2
Extended Link Opaque LSA of the OSPF LSU Packet. Router
1 advertises a Unidirectional Link Delay 100 µs on the point-
to-point link between router 1 and router 3. OSPFv2 Extended
Link TLV defined the delay in Application-Specific Link
Attributes Sub-TLV called Unidirectional Link Delay Sub-
TLV.

Similarly as described in Section IV-A, we assigned Prefix-
SID to FlexAlgo 130 on each router. Once the computation of
FlexAlgo 130 was completed, we could see the paths to reach
other nodes.

To steer the traffic within VRF BRONZE via paths com-
puted by FlexAlgo 130 we associated FlexAlgo 130 with ODN
color 30. We configured it similarly as we did with FlexAlgo
128.

As a last part of this experiment, we changed the delay on
the link between router 2 and router 4 from 100 µs to 10 µs.
We wanted to see if FlexAlgo would dynamically adapt its
calculation to a changing environment.

C. Experiment 3 - TE metric

In Experiment 3, we aimed to configure FlexAlgo 131 for
VRF PLATINUM with computation determined by the TE

Default metric. Since the underlying protocol responsible for
calculating the Shortest Path Tree is OSPF, we wanted to show
that load balancing would be possible on two equally costed
paths. We began the configuration by specifying the default
TE values on interfaces.

The routers advertised default TE metrics in the OSPFv2
Extended Link Opaque LSA of the OSPF LSU Packet. We
assigned a Prefix-SID to FlexAlgo 131 on each router. As we
aimed to demonstrate there are two possible paths to reach
node 4.4.4.4 with an equal distance of 3. Lastly, we associated
FlexAlgo 131 with ODN color 40 similarly as we did with
FlexAlgo 128.

D. Path Controller

To automate the injection of the routers’ configurations
related to FlexAlgo, we created an automation tool that could
act as a part of the UPIN Path Controller [9]. In particular, we
aimed to automate the creation of FlexAlgo associated with
VRF CUSTOM. In order to do so, we used the Cisco YANG
suite to generate RPC payloads and Ansible to automate the
whole procedure.

The automation process consisted of three steps. The first
one was related to gathering input from the user with their de-
sired FAD parameters. The user could specify three arguments,
namely, one of the three administrative groups (include-any,
exclude-any, include-all), an attribute color name related to
this administrative group (red, blue), and a metric type (te-
metric, delay, igp). However, the user did not have control
over choosing FlexAlgo value as this could affect overriding
the already existing FADs. That is why the tool automatically
chose the ID of FlexAlgo.

We created an Ansible task that executed this operation on
the routers using the NETCONF protocol. We gathered infor-
mation about all FlexAlgos and we checked if the FlexAlgo
chosen by a user already existed. If so, then the tool associated
Prefix-SID of this exact FlexAlgo with the On-Demand policy
for color 50 (VRF CUSTOM); if not, the tool creates this new
FlexAlgo.

The configuration of the routers, the output of the show
commands, and the code for our configuration tool can be
found in the following Github repository [12].

V. RESULTS

For testing purposes, we attached the Ubuntu host to router 1
consecutively to each interface associated with different VRFs.
We conducted two types of tests. As a first test, we run a
traceroute to an IP address on router 4 from the same VRF.
In the second test, we generated multiple TCP packets using a
network tool called hping3. We performed both tests in three
defined experiments.

A. Experiment 1 - results

First, we connected the Ubuntu host to router 1 inter-
face GigabitEthernet0/0/0/5 which was associated with VRF
GOLD. We added a 20.10.1.2 IP address on the interface
facing router 1. We generated multiple TCP packets from the

Fig. 2: Path chosen for FlexAlgo 128

Ubuntu host. We sent TCP packets on port 80 to destination
IP addresses from the 20.10.4.0/24 subnet. This command
allowed us to send TCP packets on port 80 to IP addresses
from the range 20.10.4.1-20.10.4.254. We wanted to generate
multiple different flows to see if all traffic was forwarded via
the same path. We captured the packets on all links using
the feature provided by CML. We also performed a traceroute
command from router 1.

From outputs of both traceroute and captured packets we
conclude that the traffic for users from VRF GOLD was
forwarded as shown in Figure 2. We looked into the packets
that were captured on the interfaces and we observed MPLS
labels which are also presented in the figure.

Router 1 created the ordered lists of instructions which are
represented by the MPLS label stack. The label stack consisted
of two MPLS labels, namely 20014, and 24002. The top one
was associated with the Prefix-SID advertised by router 4 and
associated with FlexAlgo 128. Router 2 popped this label from
the stack when packets were forwarded to the next hop which
was router 4. The bottom label 24002 was associated with
VRF GOLD.

We then connected Ubuntu to interface GigabitEther-
net0/0/0/6 of router 1 which was associated with VRF SIL-
VER. We addressed the Ubuntu host’s interface facing router 1
with 20.20.1.2 IP. Again, we generated multiple TCP packets
from the Ubuntu host, and in the same manner, we captured
packets on all links to verify the selected path.

We successfully tested the functionality of FlexAlgo 129 in
a similar way, this time avoiding red links.

B. Experiment 2 - results

We attached the Ubuntu host to router 1 interface Giga-
bitEthernet0/0/0/7 which was associated with VRF BRONZE.
We addressed the interface on Ubuntu that was facing router 1
with the 20.30.1.2 IP. Then, we performed a traceroute to the
20.20.4.4 IP address. We generated TCP packets to multiple
destination IP addresses from subnet 20.30.4.0/24 and we
captured the traffic on all links. In the meantime, we changed
the delay on the link between router 2 and router 4 from 100
µs to 10 µs. The output of the traceroute demonstrated how
many packets were sent on each link from the source and
destination located in VRF BRONZE.

Fig. 3: Path chosen for FlexAlgo 131

After, we changed the delay on the link between router 2
and router 4 from 100 µs to 10 µs we also performed the
traceroute again.

As we can observe from the results of both tests, routers
dynamically adjusted the computation of FlexAlgo after the
delay changed.

C. Experiment 3 - results

We connected the Ubuntu host to the router 1 interface
GigabitEthernet0/0/0/8, which was associated with the VRF
PLATINUM. We assigned the 20.30.1.2 IP address to the
interface on the Ubuntu host, facing router 1. Then, we ran a
traceroute to the 20.40.4.4 IP address. We wanted to generate
multiple packet flows to see if the traffic was load-balanced on
equally costed paths. We sent packets from multiple spoofed
IP addresses from subnet 20.40.1.0/24 to multiple destination
IP addresses from the 20.30.4.0/24 subnet.

The path chosen by the routers for FlexAlgo 131 is illus-
trated in Figure 3. Additionally, the figure shows the MPLS
labels from the generated packets. Label 20044 corresponded
to the Prefix-SID associated with FlexAlgo 131 advertised
by router 4, while label 24005 corresponded to the VRF
PLATINUM destinations attached to router 4.

The results of running traceroute and capturing the gen-
erated packets demonstrate that traffic was load balanced
between two equally costed paths computed by FlexAlgo 131.

D. Path Controller - results

As stated in Section IV-D, in order to test the Path Con-
troller, we performed two tests that imitated two different
scenarios.

In the first scenario, the user specified the FlexAlgo with the
same parameters as an already existing FlexAlgo 128, namely
igp as metric type, exclude-any as affinity, and blue as the
attribute related to this affinity. The user inserted these values
through a command-line user interface. One of the tasks within
our tool compared the values specified by the user with other
FlexAlgos parameters stored in a dictionary. It found a match
with a FlexAlgo with ID 128. Therefore, it did not create a
new FlexAlgo but associated the ID of FlexAlgo 128 with the

ODN color 50. This resulted in injecting a new configuration
to router 1 and router 4.

In the second scenario, the user specified the FlexAlgo with
parameters that did not match with any other FlexAlgo stored
in a dictionary, namely te-metric as metric type, include-all as
affinity, and red as the attribute related to this affinity. The
following FAD did not match with any of the FlexAlgos,
therefore the automation tool created a new FAD, specified
a new Prefix-SID for this FlexAlgo on all routers and finally
associated the ID of a new FlexAlgo with the VRF CUSTOM
on router 1 and router 4. As the highest value of the already
existing FlexAlgos was 131, the tool automatically assigned
the FlexAlgo ID of value 132 to the newly created FlexAlgo.

VI. CONCLUSIONS

In this work we set out to test the suitability of FlexAlgo
as one of the technologies that can underpin the Responsible
Internet. We proved it to be a scalable technique as it requires
only a single Prefix-SID to enforce traffic to specific paths,
without the need to advertise Prefix-SIDs for the transit nodes.
Moreover, FlexAlgo is flexible as it enables the integration
of multiple unique algorithms within a single SR domain. It
enables the creation of multiple logical topologies by assigning
a single FlexAlgo ID to one set of routers. Another advantage
is that FlexAlgo benefits from the simplicity and automation
features of the SR-TE solutions. Finally, the configuration
of FlexAlgo can be automated with NETCONF and Yang
modules.

When FlexAlgo uses the SR-MPLS control plane, as we
tested in our environment, Prefix-SIDs characterized as MPLS
labels are distributed within the IGP Link State packets.
This way, FlexAlgo does not require any additional label
distribution or path signaling protocol, and thus, generates less
overhead compared to traditional MPLS solutions.

Furthermore, FlexAlgo can help fulfilling one of the main
goals of the UPIN project by handing over some control over
the traffic to the user to suit their specific needs. With Flex-
Algo, users could experience greater visibility and control over
their traffic, leading to a more trustworthy network environ-
ment. Specifically, with the automation tool, we demonstrated
a way for users to set up a path following constraints they
chose. They are able to choose more secured paths based on
their specific needs through constraints they set themselves.
This allowed us to open an interface between the network,
its routing functionalities, and its users, therefore not offering
routing as a black box but instead provide users with insight
and more control compared to traditional approaches. This
increases the situational awareness and provides an additional
layer of security and privacy for user’s data in transit.

The limitations we came across when performing our ex-
periments were related to our virtualized environment, CML,
where IOS XR routers did not support real-time delay mea-
surement. As a workaround, we had to statically advertise
delay on links. Another limitation that we came across was
related to FlexAlgo itself and TE metrics. The draft [5]
does not specify how exactly TE metric extensions could be

introduced and implemented within FlexAlgo. Furthermore,
we did not find how TE metric extensions could be employed
with FlexAlgo on IOS XR routers.

We were able to test the capabilities and limitations of
FlexAlgo in a confined environment. We plan to carry out
experiments with FlexAlgo on a more complex and physical
network topology, as well as on IS-IS-based control plane and
SRv6 based data plane to investigate the differences in both
configuration and capabilities of FlexAlgo.

ACKNOWLEDGEMENTS

This research received funding from the Dutch Research
Council (NWO) under the project UPIN and the project
CATRIN under the Dutch Research Agenda (NWA) – Cy-
bersecurity - Research Programme.

REFERENCES

[1] Cristian Hesselman et al. “A responsible internet to in-
crease trust in the digital world”. In: Journal of Network
and Systems Management 28 (2020), pp. 882–922.

[2] Clarence Filsfils et al. Segment Routing Architecture.
RFC 8402. URL: https://datatracker.ietf.org/doc/rfc8402.

[3] Duo Wu and Lin Cui. “A comprehensive survey on
Segment Routing Traffic Engineering”. In: Digital Com-
munications and Networks (2022).

[4] Segment Routing Traffic Engineering (SR-TE). http : / /
www . segment - routing . net / tutorials / 2017 - 03 - 06 -
segment-routing-traffic-engineering-srte/.

[5] Peter Psenak et al. IGP Flexible Algorithm. draft-ietf-
lsr-flex-algo-26. 2022. URL: https://datatracker.ietf.org/
doc/draft-ietf-lsr-flex-algo-26.

[6] Cisco Systems. Introduction to Segment Routing. https:
/ /www.cisco.com/c/en/us/ td/docs/ ios- xml/ ios/seg
routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-
routing.pdf.

[7] Cisco Systems. SR IGP Flexible Algorithm. https : / /
www . segment - routing . net / tutorials / 2018 - 03 - 06 -
segment-routing-igp-flex-algo/.

[8] Segment Routing Configuration Guide for Cisco ASR
9000 Series Routers. https : / / www . cisco . com / c /
en / us / td / docs / routers / asr9000 / software / asr9k - r6 -
3 / segment - routing / configuration / guide / b - segment -
routing - cg - asr9000 - 63x / b - segment - routing - cg -
asr9000-63x chapter 01110.html.

[9] Rodrigo Bazo et al. “Increasing the Transparency, Ac-
countability and Controllability of Multi-Domain Net-
works with the UPIN Framework”. In: Proceedings of
the ACM SIGCOMM 2021 Workshop on Technologies,
Applications, and Uses of a Responsible Internet.

[10] Rob Enns et al. Network Configuration Protocol (NET-
CONF). URL: https://datatracker.ietf.org/doc/rfc6241.

[11] Martin Björklund. YANG - A Data Modeling Language
for the Network Configuration Protocol (NETCONF).
URL: https://datatracker.ietf.org/doc/rfc6020.

[12] Martyna Pawlus. FlexAlgo. 2023. URL: https://github.
com/martynapawlus/FlexAlgo.

https://datatracker.ietf.org/doc/rfc8402
http://www.segment-routing.net/tutorials/2017-03-06-segment-routing-traffic-engineering-srte/
http://www.segment-routing.net/tutorials/2017-03-06-segment-routing-traffic-engineering-srte/
http://www.segment-routing.net/tutorials/2017-03-06-segment-routing-traffic-engineering-srte/
https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo-26
https://datatracker.ietf.org/doc/draft-ietf-lsr-flex-algo-26
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-3s/segrt-xe-3s-book/intro-seg-routing.pdf
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
https://www.segment-routing.net/tutorials/2018-03-06-segment-routing-igp-flex-algo/
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-3/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-63x/b-segment-routing-cg-asr9000-63x_chapter_01110.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-3/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-63x/b-segment-routing-cg-asr9000-63x_chapter_01110.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-3/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-63x/b-segment-routing-cg-asr9000-63x_chapter_01110.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-3/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-63x/b-segment-routing-cg-asr9000-63x_chapter_01110.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r6-3/segment-routing/configuration/guide/b-segment-routing-cg-asr9000-63x/b-segment-routing-cg-asr9000-63x_chapter_01110.html
https://datatracker.ietf.org/doc/rfc6241
https://datatracker.ietf.org/doc/rfc6020
https://github.com/martynapawlus/FlexAlgo
https://github.com/martynapawlus/FlexAlgo

	Introduction
	Background
	Segment Routing
	Flexible Algorithm

	Setup description
	Experiments
	Experiment 1 - IGP metric and constraints
	Experiment 2 - Delay metric
	Experiment 3 - TE metric
	Path Controller

	Results
	Experiment 1 - results
	Experiment 2 - results
	Experiment 3 - results
	Path Controller - results

	Conclusions

