
Adaptive Services Function Chain Orchestration For
Digital Health Twin Use Cases: Heuristic-boosted

Q-Learning Approach
1st Jamila Alsayed Kassem

MNS Lab, IvI
University of Amsterdam
Amsterdam, Netherlands
j.alsayedkassem@uva.nl

2nd Li Zhong
SNE, IvI

University of Amsterdam
Amsterdam, Netherlands
li.zhong@student.uva.nl

3rd Arie Taal
MNS, IvI

University of Amsterdam
Amsterdam, Netherlands

a.taal9@upcmail.nl

4th Paola Grosso
MNS, IvI

University of Amsterdam
Amsterdam, Netherlands

p.grosso@uva.nl

Abstract—Digital Twin (DT) is a prominent technology to
utilise and deploy within the healthcare sector. Yet, the main
challenges facing such applications are: Strict health data-sharing
policies, high-performance network requirements, and possible
infrastructure resource limitations. In this paper, we address
all the challenges by provisioning adaptive Virtual Network
Functions (VNFs) to enforce security policies associated with
different data-sharing scenarios.

We define a Cloud-Native Network orchestrator on top of a
multi-node cluster mesh infrastructure for flexible and dynamic
container scheduling. The proposed framework considers the
intended data-sharing use case, the policies associated, and
infrastructure configurations, then provision Service Function
Chaining (SFC) and provides routing configurations accordingly
with little to no human intervention.

Moreover, what is optimal when deploying SFC is dependent on
the use case itself, and we tune the hyperparameters to prioritise
resource utilisation or latency in an effort to comply with the
performance requirements. As a result, we provide an adaptive
network orchestration for digital health twin use cases, that is
policy-aware, requirements-aware, and resource-aware.

Index Terms—Virtual Network Function, Programmable In-
frastructures, Network Policy, Service Function Chains, Digital
Health Twin, Heuristic

I. DIGITAL HEALTH TWIN: THE CONCEPT

The concept of Digital Twins (DTs) is not new, and it
originally appeared in the early 1990s [1] under different
terminologies, such as the ”Mirror Space Model” [2], ”Infor-
mation Mirror Mode” [3], etc. Although DT has been primarily
discussed within engineering and industrial contexts, medical
and health use cases are not excluded from the DTs’ impact.
In practice, a DT is a digitalised model that dynamically
couples both virtual and physical twins, and makes use of
contemporary technologies like smart sensors (IoT devices)
and data analytics in order to predict and identify failures,
discover and simulate optimising opportunities, and improve
outcomes [4].

Deploying a Digital Health Twin (DHT) utilises medical
data-sharing and patient-generated data to empower person-
alised medicine. With that in mind, DHTs come as a nat-

The EPI project is funded by the Dutch Science Foundation in the
Commit2Data program.

ural, complementary approach to implementing personalised
medicine, since it offers the capacity to model a distinct
patient. In the EPI project1, we develop a framework to com-
bine data analytics, and health decision support algorithms to
create personalised insights for prevention, management, and
intervention to providers and patients. We start by defining a
number of data-sharing use cases to effectively utilise patients-
generated data within the EPI consortium:

• EHR repository use case: We need to be able to build an
Electronic Health Records (EHR) repository (centralised
or decentralised) and have remote access to a patient’s
medical history, where this comes as a natural first step
to start building a DHT model.

• ML model sharing use case: With this use case we
are supporting another feature, such that we need to be
able to process medical data by applying aggregation,
analytics, and Machine Learning (ML) algorithms to have
predictive and informed responses to a physical’s system
status.

• Heathcare data streaming use case: We need to have
a real-time status update of the patients for monitoring,
control, and data acquisition.

The adoption of DHTs is accompanied and accelerated by
maturing and growing computing technologies. This is led by
cloud computing and network virtualisation, which offers the
means to facilitate knowledge discovery by provisioning on-
demand computing and network resources. It is evident that
one of the main contributing factors toward the successful
and reliable deployment of DHTs is the underlying network
paradigm connecting all the data-sharing components to ef-
fectively run a use case [5]. It is crucial for the network to
abide by a set of requirements set while running a use case:
policy-wise, latency-wise, and resource-wise.

II. HEALTH DATA SHARING POLICIES

In previous work [6], we defined the collaboration logic
model which the EPI data-sharing framework follows to

1https://enablingpersonalizedinterventions.nl/

ar
X

iv
:2

30
4.

12
85

3v
1

 [
cs

.N
I]

 2
5

A
pr

 2
02

3

aggregate higher-level data-sharing agreements, with lower-
level network security goals to establish a policy-abiding data-
sharing session. This can be further translated and aggregated
to be enforced at a lower level. The policy additionally depends
on the parties involved, and the data type being shared. After
discussions with the hospitals within the EPI consortium, we
can enumerate the following security goals as: 1) Providing
access control to the data resources, 2) Identifying and au-
thenticating parties, 3) Health data integrity, confidentiality,
and 4) non-repudiation.

These security goals can be achieved by applying different
security mechanisms, such as deploying access control and
security protocols namely, SSL, SSH, IPSec, firewalling, and
the security gateway systems [7]. We take a separation of
concerns approach where we define two levels of policies:
data level, and network level. We assume that all policies fall
under one of the two levels, and this is further discussed in
[8].

By virtualising the network services, we aim to deploy
and provision on-the-fly exemplary reliable Virtual Network
Functions (VNF), which we call Bridging Functions (BFs),
that can accomplish these security goals. The framework’s
goal is to define an adaptive BFs Chain (BFC) orchestrator,
enforcing all types of network policies. We provide an ac-
cess control mechanism by containerising a ready-to-deploy
firewall function, and we address the rest by implementing
standard security protocols to encrypt traffic. Once the security
goal is specified, then we can map that to the mandated
network services, and to the defined enforcement primitives:
Filter traffic (F) and/or transform traffic (T).

The framework dynamically provisions these services by
placing the BFs on available N-PoPs (Network Points of
Placements), assigning the service requests to the running
function, and routing traffic along the function’s chain to
enforce a policy. Along with the data-sharing policy changes,
the available N-PoPs are constrained with different use cases
running. As a result, the high-level policy is defined and
specified by two 3-tuples: < actors, acts, inRelation >, and
< endNodes,BFC,N -PoPs > , where the second one is in
accordance to the lower-level network policy.

III. DHT USE CASES AND N-POP RESTRICTIONS

The three use cases, as previously defined, describe the re-
quirements, restrictions, and network configurations associated
with each one.

A. Electronic Health Records Repository

This use case is built to run EHR (Electronic Health
Records) data-sharing scenarios where there are two N-PoPs
affiliated with healthcare institutions (HI), and an isolated
third-party research centre N-PoP. Fig. 1 illustrates the use
cases’ configuration and the infrastructure setup, where the
data-sharing movement is expected from a remote user net-
work to HI network and vice versa. This use case requires
remote access to sets and effective queries (Update/Insert/Get)
of a patient’s medical records.

The third-party research centre is uninvolved in this trans-
action, and hence the affiliated third N-PoP is isolated from
the rest. The placement algorithm will not consider it while
placing the BFCs request and will place the functions on
the other two to secure network traffic according to the BFC
request.

R
em

ot
e

U
se

rs

N
et

w
or

k

N-PoP candidate

Available link

Chaining

Research
centre

Allowed data
sharing

H
I*

 N
et

w
or

k

N-PoP candidate

HI* affiliated N-PoP HI* affiliated N-PoP

Running microservices

HI* Healthcare Institution

Fig. 1. The infrastructure graph configuration under the EHR and the
Streaming use cases.

B. Machine Learning model sharing

In an effort to advance healthcare research, we need to
accelerate and support the deployment of ML-featured appli-
cations (such as psychiatry diagnosis, effective drug prescrip-
tions, and side effects predictions, etc.), we define this use case
where ML and analytics algorithms are sent from a research
center to be trained on data residing in the HI. Moreover, data
movement is allowed again from the data provider (the HI)
back to the algorithm provider (the research centre), so that
the distributively trained model can be joined back again into
one (more accurate) model, and shipped back to be ready to
use.

As a result, the policy dictates the availability of links across
affiliated N-PoPs to ensure who and where data is handled, as
illustrated in Fig. 2. After establishing those restrictions on
traffic flow, we then reconfigure the network to adapt to that,
and secure the network traffic.

C. Healthcare data streaming

This use case describes health data streaming, an example
application is to monitor the patient’s status via wearable data,
provide timely interventions, etc. The data involved in this use
case is sensitive data, which means that similarly as in use case
A, HI-affiliated N-PoPs are only considered for placement.

IV. BFC PROVISIONING

A. Adaptive Provisioning of BFC

We need to adapt the network to performance and policy
requirements by automating the provisioning of the network
service function chains. To do that, we consider multiple
approaches to provide a best-effort placement of network
microservices on a Kubernetes cluster mesh of N-PoPs mid-
dleboxes. We consider the following provisioning steps:

H
IN

N-PoP candidate

Research
centre

H
I*

 N
et

w
or

k

N-PoP candidate

HI* affiliated N-PoP HI* affiliated N-PoP

Running microservices

N-PoP candidate

Available link

Chaining

Allowed data
sharing

HI* Healthcare Institution

Fig. 2. The infrastructure graph configuration under the ML model sharing
use case.

1) Profiling of BFC service chains: Determine the comput-
ing and network profiles while running microservices
within the service chain under different use cases.

2) Mapping BFC requests to running microservices: Assign
new requests to run microservices’ deployments under
different constraints.

3) Allocation of N-PoP: When mapping fails, place a new
instance on an N-PoP. This is also done according to a
set of placement rules/constraints.

4) Chaining the microservices: This step is to assign avail-
able (routable) links and host virtual links and actually
chain the microservices according to internal packet
flows requirements between the microservices pairs.

B. Provisioning Decisions model

1) Infrastructure: The currently available infrastructure
is represented as a directed, attributed graph
G(C,L,CPUC , DL). The finite set of vertices C represents
the clusters that serve as network points of placements
(N-PoP), where a network microservice can be placed. The
unidirectional link between clusters is represented by the set
L ⊆ C × C, where (i, j) ∈ L represents the unidirectional
link between cluster ci and cj ∈ C.

Within the infrastructure environment, there exist limited
computing and network resources. These are represented by
the attribute sets CPUC and DL. cpuCi ∈ CPUC is the
maximum CPU capacity of cluster ci ∈ C, and dL(i,j) ∈ DL

is the network capacity with an associated delay of link (i, j) ∈
L at time t.

The configuration of G is representative of the data-sharing
policy held by the infrastructure providers within the EPI
consortium, such that for any cluster ci there is a cluster cj
considered as an N-PoP candidate under the condition that:

(i, j) =

{
1|exists, ⇐⇒ cj is considered N-PoP candidate
0, otherwise.

(1)
The lack of an edge would drive the placement algorithm to
either centralise placement on ci or distribute it on a different
cluster cz such that (i, z) exists.

As an example, when data provider A and algorithm
provider B are sharing data, the policy dictates that a third-
party associated N-PoP should not be considered for place-
ment.

2) BFC requests and profiles: BFCs are ordered sets
of network service requests, and a single request can be
composed of multiple chained microservices. To successfully
provision these requests, microservices can be placed and
hosted on one or more clusters. BFC = {f1, ..., fn} is a first-
come-first-placed ordered set, where to each request f ∈ BFC
a directed graph Gf = (Sf , Lf) is associated. Service requests
are allowed to run as long as required, and multiple service
requests can populate the infrastructure at any time. The finite
set Sf represents the microservice functions that need to be
assigned to run a request f ∈ BFC.

Moreover, Sf ⊆ µS, the list of all possible containerised
network microservices (e.g. firewall, encryption, load balancer,
NAT, etc.). The edges of the graph are members of the set
Lf ⊆ Sf × Sf and are associated with inter-virtual links
between two microservices, where (q, r) ∈ Lf represents the
unidirectional link between requested microservices µsq and
µsr ∈ Sf .

Members of µS can be instantiated multiple times and can
be deployed as a microservice replica with different config-
urations, such that µsmn is the nth instance of microservice
µsm ∈ µS. With that, one can instantiate smaller and bigger
instances of the same microservice.

To model this, we define CPU{µsmn} and d{µsmn}, the
computing capacity and processing delay of the nth instance
of microservice µsm. On the other hand, placed and running
microservices can be shared across multiple incoming network
service requests, as an example, µsmn can be active for f1 and
f2.

A network service request has profiled requirements values
that may differ under different use cases utilising the requested
service chain setup. As an example, a service request f active
for a streaming use case needs more CPU resources and higher
bandwidth than active for another use case. To model this, we
define CPUuq,f , Du

f , representing the required CPU running
microservice µsq when active for f under use case u ∈ U ,
the end-to-end maximum delay respectively. (U is the set of
all possible use cases)

C. Variables

The goal of the proposed placement algorithm is to allocate
network microservice instances to N-PoP clusters and then
map the deployed microservices to the running instance. More-
over, the algorithm considers the use cases being deployed
over the network infrastructure, and tailors the placement
according to profiled resource consumption per use case.
Furthermore, the microservices need to be chained to enforce
the network policy route.

The first variable we consider is the virtual link mapping
function MC

(i,j),(q,r),f , where we decide to utilise link (i, j)

with virtual link (q, r) under request f such that:

MC
(i,j),(q,r),f =

{
1, link (i, j) ∈ L is mapped to link (q, r) ∈ Lf
0, otherwise.

(2)
Then we consider is the placement function PCci,µsnm ∈

{0, 1}, such that:

PCci,µsmn =

{
1, µsm

n is placed on ci ∈ C
0, otherwise.

(3)

We also consider the mapping function Mµsnm,q,f
∈ {0, 1} to

assign a microservice µsm ∈ µS needed by the service request
f , and associated with µsq ∈ Sf , to an instance µsmn running
on the cluster ci, such that:

Mµsnm,q,f
=

{
1, microservice µsmn is mapped to µsq
0, otherwise.

(4)
Note that variables defined in Eq. 2, 3, 4 are dependant

values such that, suppose that we have a subgraph of Sf :

µsq µsr

In fact the possibility to connect microservices depends on
their mapping and placement. For example, we can have
a successful microservice provisioning of µsq can be that:
Mµsnm,q,f

= 1 and PCci,µsnm = 1. While the output of
provisioning µsr such that Mµspk,r,f

= 1, and PC
cj ,µs

p
k
= 1 is

conditional to the existence of the link (i, j). This means that
virtual link mapping MC

(i,j),(q,r),f = 1, and it is determined,
such that:

MC
(i,j),(q,r),f = 1 =⇒ ∃Mµsnm,q,f

= 1, PCci,µsnm = 1 ∧ ∃Mµskp,r,f
= 1PCcj ,µskp

= 1

(5)
Before assigning a microservice of flow request f to cluster
ci, we define the available CPU resources of ci as:

cpuCi −
∑

∀µsnm|µsm∈µS

PCci,µsnm .CPU{µs
n
m} (6)

The expected latency on utilised links running flow request
f at time t is:

D̂L,f =
∑

∀(i,j)∈L,(q,r)∈Lf

MC
(i,j),(q,r),f .d

L
(i,j), (7)

D̂C,f =
∑
∀ci∈C,

µsnm|µsm∈µS,
µsq∈Sf

Mµsnm,q,f
.d{µsnm} (8)

The un-utilised resources on already running microservice
instances are approximated to be:

cpuCi −
∑

f∈BFC

∑
∀ci∈C,

µsnm|µsm∈µS,
µsq∈Sf

Mµsnm,q,f
.
∑
u∈U

CPUuq,f (9)

D. Objectives and placement constraints

The objective is to minmise end-to-end latency and max-
imise CPU utilisation across the infrastructure’s clusters, such
that:

min
∑
∀ci∈C,

µsnm|µsm∈µS

PCci,µsnm , (10)

min(D̂C,f + D̂L,f) ≤ Du
f , (11)

The two minima might not always correlate depending on
the use case, hence the provisioning tools should prioritise
minimising one over the other when appropriate.

E. Possible constraints

The first constraint is to ensure that the allocated function
instances on the cluster ci do not exceed available CPU
resources, such that:

∀ci :
∑

∀µsnm|µsm∈µS

PCci,µsnm .CPU{µs
n
m} ≤ CPUCi (12)

The second constraint is to ensure that the mapped mi-
croservice requested does not exceed the available CPU at
the running instance:∑
µsq∈Sf ,
f∈BFC

Mµsnm,q,f

∑
u∈U

CPUuq,f ≤ CPU{µsnm}

(13)
Eq. 14 is to ensure that the maximal latency allowed is greater
than the delay composed of link and processing delays.

∀u :
∑

∀µsnm|µsm∈µS,
f∈BFC,
µsq∈Sf

Mµsnm,q,f
.D{µsmn}+

∑
∀(i,j)∈L,
f∈BFC,
(q,r)∈Lf

MC
(i,j),(q,r),f .D

L
(i,j) ≤ D

u
f

(14)
If a cluster ci is chosen for placement of nth microservice of

µsm requested by f , the function needs to be running (placed)
before assignment.

Mµsnm,q,f
≤ PCci,µsnm (15)

All microservices requested by request f are placed and
mapped to the infrastructure.

∀f ∈ BFC :
∑

∀µsnm|µsm∈µS,
µsq∈Sf

Mµsnm,q,f
= 1 (16)

Building virtual paths over available links must obey the
following rule to ensure that there exists a mapped link (i, j) to
(q, r) if µsq is placed on ci and µsr is placed on cj , such that
µsn′m is potentially a different microservice instance assigned
to µsr:

∀µsq, µsr ∈ Sf , (q, r) ∈ Lf :

Mµsnm,q,f
.PCci,µsnm .M

C
µsn′

m′,r,f
.Pcj ,µsn′

m′
=MC

(i,j),(q,r),f (17)

Lastly, the microservice should not run indefinitely once
instantiated, but the microservice is deleted after being idle for
a specified duration of time T , such that PCci,µsnm = 0 ⇐⇒∑t=t′+T
t=t′ CPU{µsnm}.

V. PROVISIONING APPROACHES

We deploy three approaches in an effort to satisfy the
use cases’ requirements: a greedy heuristic approach, Deep
Q-Learning (DQL), and a Heuristic-boosted DQL (HDQL).
Fig. 3 illustrates the high-level overview of the infrastructure
orchestrator with the different components to make the provi-
sioning decisions.

Fig. 3. A high-level overview of the orchestrator.

We first deploy a greedy-based heuristic approach to reduce
complexity with increasingly complex network policies and
use cases, and still provide a manageable best-effort provision-
ing decision by choosing the first N-PoP candidate meeting the
placement constraints. This approach is dependent on accurate
CPU profiles and does not react to resource usage and network
latency bursts and anomalies. It is not concerned with the most
optimal provisioning choice, instead, it provides the decisions
that work.

A. Greedy Heuristic BFC Deployment Algorithm

This algorithm loops over the requested microservices and
N-PoP candidates (lines 1-2), if a running microservice in-
stance µsnm meets the requirements set according to placement
properties and constraints in the previous section (line 4) then,
µsq is assigned to run on the cluster ci and the loop continues
to consider more microservice requests. If the assignment of a
microservice failed on all clusters, then new instances need
to be placed, and the algorithm loops again over clusters,
but this time places new instances and then assigns them
to a microservice request. The algorithm applies constraints
defined in Eq. (12), (13), (14), (15), and (16) in lines 4 and 12,
and it does so according to CPU and delays profiles. We only
instantiate and place a new service when all the mapping fails
(in line 13), and by that we prioritise minimising placement,
as in Eq. (10) under the constraints of delay.

B. DQL Algorithm

The performance of the first approach is highly dependant
on the accuracy of the CPU and delays profiles. Compared

Algorithm 1 Heuristic BFC Deployment Algorithm
Input: G(C,L), Gf (Sf , Lf)
Output: PCci,µsnm ,Mµsnm,q,f

1: while Not all µsq has been mapped to ci ∈ C do
2: while Not all ci ∈ C has been checked do
3: if ci ∈ N-PoP candidates then
4: if µsnm meets requirements then
5: Mµsnm,q,f

= 1
6: end if
7: end if
8: end while
9: end while

10: if Not all µsq mapped to C then
11: while Not all ci ∈ C has been checked do
12: if µsn

′

m meets requirements then
13: PC

ci,µsn
′

m
∧Mµsn′

m ,q,f = 1

14: end if
15: end while
16: end if

to traditional heuristic-based resource scaling methods, Rein-
forcement Learning-based (RL) solutions are equipped to deal
un-profiled network and resource bursts, instead this DQL-
approach relies on querying the current state and reacting via
provisioning actions to maximise performance rewards.

Action space: The discrete actions of microservices
placing and assignment are structured as [Cluster ID, Place/
Map/ Destroy, Instance ID, Microservice ID, Proxy ID]. The
first value specifies the cluster that is considered; the N-PoP
candidate. The second value specifies the type of provisioning
action: placing a new instance, mapping a running instance
to a request, or deleting an idle microservice instance. The
third and fourth values, respectively, refer to the microservice
instance and the type of microservice (n and m within µsmn).
Lastly, the Proxy ID identifies the proxy we are configuring to
chain the instantiated microservices and handles the network
services requests.

State Space: The state space consists of the infrastructure’s
variables, which the DQL interacts with to monitor the
environment’s changes based on decisions. The provisioning
is done across multiple sites, and the DQL algorithm needs
to make a satisfactory trade-off between resource cost and
latency. Therefore, the state of the agent should contain
information about: CPU utilisation/cluster, placement status
of microservices, the number of microservices across the
clusters, and the response time of requests.

Reward Function: The reward function measures the per-
formance incentive for the agent to perform a new action,
based on the infrastructure’s current state. The entire reward
Rall at time t is calculated as the weighted sum of reward in
resource cost Rres and reward in performance Rperf , which
is shown in:

Rall = αRres + βRperf (18)

Hyperparameters α and β are used to control the importance of
these two values compared to the entire reward. One effective
definition of reward function steers the agent towards better
performance with higher utilisation of resources (prioristing
Eq. (10) vs Eq. (11)).

Action Policy: In the traditional DQL approach, the policy
is set to map an observable state st to a provisioning action at
at a time t. The policy is optimised by learning the Q-value
performing at in state st, according to the following formula:

π(st) =

{
maxatQ(st, at), ifq ≤ p
arandom, otherwise

(19)

, where q is a random value with uniform probability in [0, 1],
and 0 ≤ p ≤ 1 is the exploration/exploitation ratio parameter.

C. Heuristic-boosted Algorithm

While the previous tool can reactively adapt the network’s
configuration to optimally provision BFC requests, it still
can take a long time to converge with increasingly complex
requests, use cases, and N-PoP configurations. Subsequently,
we propose to combine both provision approaches (A and B)
to deploy a Heuristic-boosted DQL provisioning of SFC. We
aim to accelerate the decision-making, and guide the model
learning via a new action policy:

π(st) =

{
argmaxat [Q(st, at) +H(st, at)], ifq ≤ p
arandom, otherwise

(20)
Where the H-value H(st, at) influences the choice of action,
by evaluating the importance of executing the action at
(suggested by the heuristic algorithm) having state st [9].

VI. EXPERIMENTS AND RESULTS

Use cases’ Network Policies: The security enforcement
primitives are consistent throughout all the use cases, such that
the firewall function is mandated to provide access control to
incoming traffic towards the healthcare institution. Likewise,
all outgoing traffic should be encrypted to protect sensitive
data. This is showcased in Fig. 4, where you can see the same
logic being applied to all the use cases.

The EHR use case is profiled to be a small load application
with an expected average send rate of 100-200 kB/s. The ML-
model sharing use case is defined to be, also, a small load use
case with an expected (average) periodic send rate of 100-200
kB/s. Additionally, the streaming use case is profiled to be a
large load use case with a 1-3 MB/s send rate. Accordingly, the
CPU profiles of different BFCs under different use cases’ send
rates are recorded in [10], and further used via the heuristic
algorithm to make provisioning decisions.

Moreover, the provisioning algorithm should comply with
multiple use case requirements. Maximum CPU usage is
prioritised with the EHR and ML model sharing use cases,
compared to the streaming use case where low latency over-
head is required as well.

USE CASE NETWORK POLICY REQUIREMENTS

Remote
user

Healthcare
Institution

F

T

Healthcare
Institution

Healthcare
Institution

F

Research
centre

T

F

T

Healthcare
Institutiom

Healthcare
Institution

F

T

T

F

EHR

ML model sharing

Healthcare data streaming

Prioritise maximal CPU usage

Latency overhead is not critical

Prioritise maximal CPU usage

Latency overhead is not critical

Prioritise low latency overhead

 Minimise resource wastage

Fig. 4. Different network policies and requirements, deploying different
use cases; F represents a firewall microservice request, and T represents an
encryption microservice request.

A. Experiments

To evaluate placement and assignment decisions taken by
the different provisioning tools, we run the three use cases
according to the defined send rate workloads, and associated
CPU profiles. We first reconfigure the graph G as Kubernetes
clusters, to reflect Fig. 1 and 4. Connected clusters form a
cluster mesh via a cilium backend server 2.

New instances vs CPU utilisation: We increase the number
of concurrent clients utilising the BFC with locust3, and we
record the instantiated new instances/microservice across all
the clusters under the different use case configurations, with
the growing number of clients. For replication purposes, the
implementation and configurations of the experiments are
available on GitHub 4. Furthermore, we compare number of
pods (instances) to the actual utilized CPU per instance, to
evaluate the CPU resource wastage, and further relate that to
the latency.

Latency Overhead: Similarly, we increase the number of
concurrent clients running different use cases, and record the
latency of processing one request (sending a request, and
receiving a reply back). Low latency can be accomplished
by providing high-performance networking, but the goal is
to evaluate the overhead latency caused by adding network
services in between end nodes, and the effect of different
provisioning decisions. We try to minimise the delay when
deploying the network function request, and ideally the latency
overhead ≈ 0ms. We collect the latency overhead by calcu-

2https://cilium.io/
3https://locust.io/
4https://github.com/epi-project/Netsoft2023

lating the average of 10 queries, then measuring the effect of
the chain addition compared to no functions in between.

B. Results

Under the first use case’s N-PoPs constraints, no microser-
vice instances are placed on cluster 3 i.e. the Research centre
cluster (or, if already running, not assigned to the requests
running EHR traffic), as shown in Fig. 5. The provisioning
decision, however, differs with each method, to capture the
difference we collect the number of running pods /clusters
and the effect of increasing the number of clients from 1 to 50
concurrently running. Moreover, the provisioning decisions as
we discussed previously are based on factors: CPU availability,
and latency overhead. Hence, we also showcase the average
CPU utilisation percentage/pod with each iteration, and the
latency recorded to successfully resolve one request. Firstly, in

(a) The heuristic algorithm placement

(b) The DQL and HDQL algorithm placement

Fig. 5. The placement of microservices and the average CPU utilisation
running the EHR use case.

Fig. 5(a) we notice that the heuristic-based placement starts by
placing small configured firewall and encryption microservices
on cluster 1 and 2, respectively, with the CPU utilisation
average of 20-25% running 1 client on both. The firewall
utilisation ramps up faster than encryption to reach 100% with
10 concurrent clients, then the heuristic placement reacts to
the maximal utilisation by upgrading the configuration of the
microservice to reach 3 pods running on cluster 1 with 20
concurrent clients running. The trend we notice throughout
this plot is that the heuristic placement is more concerned with
maximising the average CPU utilisation, such that we end up
overcommitting the firewall microservice and assigning it to
the maximal number of traffic. The effect of overcommitting

the firewall microservices (120%, 140% with 40 and 50
clients) is also reflected in the latency in Fig. 8(a), such that
latency overhead increases from 2.21 ms with 30 clients to
5.32 and 6.26ms with 40 and 50 clients, respectively.

On the other hand, with the DQL approach, this latency
increase is avoided because the resources are never overcom-
mitted, with the hyperparameters in Eq. 18 set so that α > β,
so the model will prioritise resources. With this approach,
two main decisions to optimise placement are taken, the first
is to place the encryption microservice on cluster 1, and
by that only using the Kubernetes backend discovery service
once, such that microservices on the same cluster belong to
the same private network. Another thing is that the DQL is
more adaptive to resource bursts, with no need for profiling,
and relying on accurate profiles of CPU usage. This is also
reflected in the latency, such that the overhead is almost halved
compared to the heuristic approach, and it is from 5.32 to
1.26ms running 40 clients.

With the HDQL approach, there are no major differences,
and we end up with the same latency as well. The reason is
that the hyperparameters are set in the action policy. With
this use case, latency overhead is not crucial, and hence
occasional under-provisioning of resources is not an issue, and
the heuristic placement is a sufficient tool for this use case.

(a) The heuristic algorithm placement

(b) The DQL and HDQL algorithm placement

Fig. 6. The placement of microservices and the average CPU utilisation
running the ML model sharing use case.

Similarly, the ML model sharing use case has initially
a similar placement, the difference is that the utilisation is
doubled indicating that the pods are assigned to handle double
the requests. After that, we start another instance of a firewall
on cluster 2, to handle half of the traffic. The heuristic function

(a) The heuristic algorithm placement

(b) The DQL algorithm placement

(c) The HDQL algorithm placement

Fig. 7. The placement of microservices and the average CPU utilisation
running the streaming use case.

upgrades the placement configuration to adapt to the increasing
workload. Similarly, this approach ends up overcommitting
resources and the overhead increases as shown in Fig. 8(b).

The optimisation decisions taken by the DQL and HDQL
approaches are demonstrated by deciding to place microser-
vices on the same cluster, to then start new instances of the
firewall cluster 3, that has currently associated with lower
round-trip latency, compared to cluster 2. This approach
adapts to resource usage bursts more accurately and minimises
latency overhead accordingly.

With the last use case, the healthcare data streaming use
case, we prioritise latency, and there are three different place-
ment decisions taken. First, the heuristic performs poorly with
this use case as shown in Fig. 8(c), where the chaining is
still distributed, and assignment decisions require two different
lookups. Unlike the other two approaches, the placement

(a) The EHR use case.

(b) The ML model sharing use case.

(c) The streaming use case

Fig. 8. The latency average recorded with different placement methods,
and the overhead compared to proxying traffic without passing through extra
microservices.

is distributed across clusters, but the chaining is on one
cluster. With that, Kubernetes backend microservice discovery
is optimised. With this experiment, due to the hyperparameters
change, we end up wasting resources with the DQL approach
as shown in Fig. 7(b). Although with these provisioning
decisions, we provide the best latency overhead, there exist
better actions and hence we have a third different placement
with HDQL. The HDQL provisioning provides approximately
equal latency with maximal CPU utilisation (shown in Fig.
7(c) and 8(c)).

As a result, the heuristic-based approach proved to be
sufficient with the EHR and ML model-sharing use cases,
where we end up under-provisioning but inflicting tolerable
latency. That is especially true since low latency overhead is

not crucial in running said use cases, instead, we prioritise
minimal CPU wastage. The HDQL tool performs the best
while running the streaming use case, where minimal overhead
latency was achieved, but with seemingly no over-provisioning
and resource wastage.

VII. RELATED WORK

SFC and VNF provisioning problems have been formalised
and addressed by employing heuristics or DQL in the past.
Recently, [11] formalised TO-DG heuristic-based approach to
maximise the network throughput, while considering resource
overhead. They consider the required CPU consumption of a
VNF, link capacity, and maximum tolerable delay to search
for optimal provisioning decisions. [12] takes a different
approach and utilised DQL neural networks to outperform
linear programming approaches in an effort to solve the SFC
resource allocation problem. Similarly, the authors in [13] use
RL-based techniques to formalise the same problem as an
MDP and address it with a policy gradient learning agent.
We add to the current literature three main contributions: 1)
We specifically reason about the type of SFC that is being
provisioned to enforce network security policy in DHT use
cases, 2) We propose heuristic-boosted DQL techniques to
guide and facilitate the learning process according to prior
knowledge of profiled data, 3) We add dynamic constraints
to the provisioning problem; dynamic N-PoP candidate and
prioritising different metrics with different use cases.

VIII. CONCLUSION

To run DHT use cases, it is essential to first consider data-
sharing policies (including network policies), and translate
them into actionable service function chain requests; which we
call BFC. Additionally, the provisioning of BFC (new instance
placement and/or assignment of an incoming request to an old
running instance) depends on the use case’s requirements and
the current state of the infrastructure. We need to prioritise
latency or/and minimising resource wastage, and we do that
by modelling the decision as a constrained optimising problem.
Initially, we address the requirements and constraints via
heuristic, which can query the infrastructure state and output
decisions influences by the BFC CPU profiles. Next, we
propose using DQL methods, which provides more resilience
to un-profiled bursts and network degradation. Finally, we
combine both approaches to introduce a ”best of both world”
solution, that proved to be most valuable to accomplish lower
latency overhead, with minimal CPU wastage.

The provisioning tools should consider a combination of
constraints and objectives, as demonstrated in Section IV. The
framework we propose can be used within any general context,
and it effectively provisions network resources to deploy DHT
use cases. We conclude that heuristic-based approaches are
sufficient when the latency overhead is not crucial, while
HDQL tools are most effective otherwise. In future work, we
aim to increase the complexity of the service requests; we
consider line path SFC in the experiments, but we aim to
include: i) requests with bifurcated path with different end-
points ii) bifurcated path with single end-point. We also plan

to deploy and experiment on test beds with larger topologies
and evaluate the orchestrators within larger networks.

REFERENCES

[1] David Hillel Gelernter, Mirror World: Or the day software puts in the
universe in a shoebox ...: How it will happen and what it will mean,
Oxford Univ. Press, 1991.

[2] M. Grieves, Product Lifecycle Management:driving the next generation
of Lean Thinking, McGraw-Hill, 2006.

[3] Michael W. Grieves, “Product lifecycle management: The new paradigm
for enterprises,” International Journal of Product Development, vol. 2,
no. 1/2, pp. 71, 2005.

[4] Maged N. Kamel Boulos and Peng Zhang, “Digital twins: From per-
sonalised medicine to precision public health,” Journal of Personalized
Medicine, vol. 11, no. 8, pp. 745, 2021.

[5] Maggie Mashaly, “Connecting the twins: A review on digital twin
technology & its networking requirements,” Procedia Computer
Science, vol. 184, pp. 299–305, 2021.

[6] Jamila Alsayed Kassem, Cees De Laat, Arie Taal, and Paola Grosso,
“The epi framework: A dynamic data sharing framework for healthcare
use cases,” IEEE Access, vol. 8, pp. 179909–179920, 2020.

[7] Romain Laborde, Michel Kamel, François Barrère, and Abdelmalek
Benzekri, “Implementation of a formal security policy refinement
process in wbem architecture,” Journal of Network and Systems
Management, vol. 15, no. 2, pp. 241–266, 2007.

[8] Christopher A. Esterhuyse, Tim Müller, L. Thomas Van Binsbergen,
and Adam S. Z. Belloum, “Exploring the enforcement of private,
dynamic policies on medical workflow execution,” in 2022 IEEE 18th
International Conference on e-Science (e-Science), 2022, pp. 481–486.

[9] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan, “Heuristic-
guided reinforcement learning,” CoRR, vol. abs/2106.02757, 2021.

[10] Jamila Alsayed Kassem, Adam Belloum, Tim Müller, and Paola Grosso,
“Utilisation profiles of bridging function chain for healthcare use cases,”
in 2022 IEEE 18th International Conference on e-Science (e-Science),
2022, pp. 475–480.

[11] Yi Yue, Bo Cheng, Meng Wang, Biyi Li, Xuan Liu, and Junliang
Chen, “Throughput optimization and delay guarantee vnf placement
for mapping sfc requests in nfv-enabled networks,” IEEE Transactions
on Network and Service Management, vol. 18, no. 4, pp. 4247–4262,
2021.

[12] Tom Jenno Wassing, Danny De Vleeschauwer, and Chrysa Papagianni,
“A machine learning approach for service function chain embedding in
cloud datacenter networks,” in 2021 IEEE 10th International Conference
on Cloud Networking (CloudNet), 2021, pp. 26–32.

[13] Jaehoon Koo, Veena B. Mendiratta, Muntasir Raihan Rahman, and
Anwar Walid, “Deep reinforcement learning for network slicing with
heterogeneous resource requirements and time varying traffic dynamics,”
2019.

	I Digital Health Twin: The concept
	II Health Data sharing Policies
	III DHT use cases and N-PoP restrictions
	III-A Electronic Health Records Repository
	III-B Machine Learning model sharing
	III-C Healthcare data streaming

	IV BFC provisioning
	IV-A Adaptive Provisioning of BFC
	IV-B Provisioning Decisions model
	IV-B1 Infrastructure
	IV-B2 BFC requests and profiles

	IV-C Variables
	IV-D Objectives and placement constraints
	IV-E Possible constraints

	V Provisioning Approaches
	V-A Greedy Heuristic BFC Deployment Algorithm
	V-B DQL Algorithm
	V-C Heuristic-boosted Algorithm

	VI Experiments and Results
	VI-A Experiments
	VI-B Results

	VII Related work
	VIII Conclusion
	References

