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Abstract—The evolution of the electricity grid towards the
smart grid paradigm is fostering the integration of distributed
renewable energy sources in Smart Buildings: a combination of
local power generation, battery storage and controllable loads can
greatly increase the energetic self-sufficiency of a Smart Building,
enabling it to operate in islanded mode or to participate in an
Automatic Demand Response framework, thus taking advantage
of time-variable tariffs to achieve economical savings.

This paper proposes an energy management system specifically
tailored for a Smart Office building, which relies on actual data
and on forecasting algorithms to predict the future patterns of
both local energy generation and power loads. Performance is
compared to the optimal energy usage scheduling, which would
be obtained assuming the exact knowledge of the future energy
production and consumption trends, showing gaps below 10%
w.r.t. the optimum.

Index Terms—Smart Office Building; Real-time Load Schedul-
ing; Photovoltaic Generation; Battery Storage;

I. INTRODUCTION

The novel smart grid concept is not only revolutionizing the
electricity grid infrastructure, but also incentivizing awareness
of a more sustainable energy utilization: “green” solutions for
residential and commercial buildings have been investigated
with the aim of increasing the diffusion of renewable energy
sources and reducing carbon footprints [1], [2]. However, the
inherently intermittent production patterns of renewables (such
as solar and wind energy) increase the unpredictability of
the overall power availability, thus rising power balancing
issues in the management of the smart grid [3]. To cope
with such challenges, the “Smart Building” paradigm proposes
to integrate distributed generation plants, storage capabilities
and electrical loads. Each Smart Building can be managed
by a dedicated control system and operates either in a grid-
connected fashion or in islanded mode. In the former, the
Smart Building can either absorb or inject power in the grid,
according to its needs. The latter implies complete energetic
autonomy of the Smart Building, which must rely exclusively
on local generation and storage to satisfy the power request
of the electrical loads without receiving any feeding from the
grid in case of shortage, nor injecting power surpluses into the
grid in case of excessive production.

The choice of the operational state of the Smart Building
affects both the management of the storage capabilities and

the scheduling of the power loads, in case they exhibit some
malleability (e.g. deferrable loads such as the recharge of
the batteries of electric vehicles or electronic devices, or
tunable loads such as cooling and heating systems). Several
management policies have been investigated, mostly aimed at
the minimization of the operational costs in presence of time-
variable energy tariffs (assuming to operate in grid-connected
mode) [4], or of the marginal costs when operating in islanded
mode [5].

This paper proposes an energy management system for a
Smart Office Building equipped with a photovoltaic plant, a
small storage bank and a set of loads (either non-deferrable or
deferrable). The management system works in real-time based
on energy production and consumption forecasting algorithms,
which exploit the following peculiarities of the Smart Office
ecosystem:

• with respect to residential buildings, in which power
consumption usually exhibits peaks in the early morning
and during the evenings, in a Smart Office the production
pattern of the photovoltaic plant is better aligned with the
peak consumption periods, which usually occur during
the day;

• heating, cooling, and lighting consumption can be fore-
casted according to the utilization schedules of the rooms
(e.g., the usage of conference rooms is mostly pre-
planned by means of a booking mechanism, the occu-
pation of offices depends on the travelling and time-off
patterns of the employees);

• deferrable loads such as the battery recharge of laptops
and mobile devices can be planned according to the pe-
riods in which the devices are plugged-in at the working
stations, which can be declared in advance by the device
owners according to their daily working schedule.

The proposed management system defines the periods in
which the Smart Office operates in islanded or grid connected
mode. In the latter case, it also defines the amount of energy
to be absorbed/injected into the grid based on the electricity
tariffs. To do so, the energy manager solves a Mixed Integer
Linear Program (MILP) at regular intervals, which takes as
input both the actual energy production/consumption data and
forecasts about the future production/consumption patterns.

978-1-4799-5804-7/15/$31.00 c©2015 IEEE



The remainder of the paper is structured as follows: Section
II provides a brief overview of the related work, whereas
Section III introduces the general framework of the Smart
Office Building, the energy production/consumption forecast-
ing algorithms and the MILP executed by the management
system. Section IV compares the results obtained by the
proposed system to the performance achieved by running the
MILP under the assumption of full knowledge of the future
energy production/consumption trends. Section V concludes
the paper.

II. RELATED WORK

Several optimization methods for the management of a
Smart Building have been recently proposed by the scien-
tific community. Solutions tailored for both residential and
commercial environments have been discussed, with strategies
ranging from day-ahead to real-time planning. Guan et al.
[2] design a MILP for the minimization of gas and elec-
tricity bills of a university campus building equipped with
a controllable combined heat-power system, battery storage
and a photovoltaic plant. The program is applied both under
the assumption of a deterministic scenario or of a “scenario
tree”, where uncertainty about future power usage is taken
into account by means of a weighted objective function
including various production/consumption patterns, each one
occurring with different probabilities. Our approach also uses
a linear program, but the deterministic case is compared to a
real-time optimization method in which the model is solved
multiple times during the optimization horizon, and scheduling
decisions are dynamically updated.

More refined linear programs for the energy management
of a household are provided by Bozchalui et al. [6] and
Kriett et al. [4], who model the behavior of individual electri-
cal appliances and combine multiple objectives such as the
minimization of energy consumption, energy costs, carbon
emissions, and peak load. Our proposed energy management
system also considers different objective functions.

A few recent works have specifically addressed the peculiar-
ities of a Smart Office environment: Stojanovic et al. [7] focus
on energy saving strategies for lightening management based
on room occupancy. Real testbeds deployed in office buildings
aimed at the development of self-sustained distributed energy
systems are described in [8]–[10]. The results presented in
this paper have been obtained based on data provided by the
“Smart Energy Living Lab” located at the fortiss premises
[10].

III. THE SMART OFFICE ENVIRONMENT

The fortiss Smart Energy Living Lab is envisioned as a
Smart Building (i.e. a system that can produce, consume,
and store energy) and is an example for adaptive control
and responsive behavior. Based on the current and predicted
generation of renewable energy and on the available storage
capacity, it is possible to control office appliances in order
to achieve a better utilization of energy. Imagine a sunny
day, which leads to an overproduction of the solar energy

generation. Once the batteries of the storage bank are fully
charged, the surplus could be used to cool down the server
room more than usual. Hence, the server room has not to
be cooled down for a longer period of time. Alternatively,
taking the current energy prices into account, the excess energy
can be feed into the network to achieve an economic profit.
Another scenario related to dynamic energy prices is the
switching between islanded and grid connected mode. Again,
mechanisms for efficient energy use can be used to avoid
prolonged high price periods.

In the following we will summarize the general framework
of the fortiss Smart Energy Living Lab [11] before explaining
the components and algorithms used to predict the future
energy generation/consumption and to schedule the Smart
Building operations.

A. General Framework

For the Smart Energy Living Lab a flexible, extensible and
lightweight architecture is used, which follows a layered and
component based approach to ensure scalability, flexibility and
extensibility. An overview of the system is illustrated in Figure
1. Starting at the bottom, several sensors and actuators are con-
nected to the Server Application, or middleware, respectively.
The sensor and actuator layer of the middleware supports
different protocols like IEC61850 via Modbus, ZigBee, and
EnOcean to exchange information and control signals with
different sensors and actuators from both the home automation
and the energy domain. This enables the system to provide real
time monitoring and control capabilities for the photovoltaic
installation, the backup batteries, air condition, blinds, lights,
power plugs, window sensors, humidity, temperature, bright-
ness, and powermeters. For additional details regarding the
system middleware, the reader is referred to [10]. Software
components within the system layer of the Server Application
enable the management of users, their roles, associations
to rooms and personal profiles as well as the modeling of
Smart Building environments in terms of assigning devices
to rooms and these to floors or buildings respectively. This
layer includes a central registrar to enable the integration of
additional sensors and actuators in a plug and play manner.
Corresponding observation data and control capabilities can
be made available via a REST or WebSocket API on different
devices and clients. Besides the utilization of real time data
all information is stored in, or retrieved from a database.
In addition, a rule system at the application layer of the
middleware is used to observe the current status and under
appropriate conditions to issue commands e.g. to maintain a
defined brightness level. Nevertheless, a detailed description of
the rule system is out of scope of this work, as well as another
component which extracts knowledge out of historical data.

B. Energy Production and Consumption Forecast Algorithms

For the determination of optimized schedules to achieve
economic savings taking into account operational mode, load
shifting and variable energy tariffs, forecasts of both the local
energy generation and consumption are essential. In this work



Fig. 1: Overview of the Smart Energy Living Lab

the forecasts are generated at midnight for the next 24 hours
with a granularity of 15 minute intervals.

Generation Forecast: The generation forecast utilizes the
OpenWeatherMap API [12], which provides weather forecasts
for three hour periods. Available information include sunrise
and sunset times, a weather condition code, and the percentage
of sky coverage due to clouds. Since energy generation using
a photovoltaic installation depends on the time of the year, we
assume due to simplicity reasons a parabolic peak production
for each month(−5, ..., 6) with a maximum in July:

Pmax(month) = −75 · (month)2 + PVpeak [W ]

where PVpeak indicates the peak production of the installed
plant. The weather condition code γ(t) (e.g. clear sky, scat-
tered clouds, or moderate rain) and the percentage of sky
coverage φ form a weather factor ω(t) = γ(t)+φ(t)

2 in the
range [0, ..., 1] (e.g. 0.0 for heavy rain and 1.0 for clear
sky). To model an ideal generation we utilize two Gaussian
distributions and select the minimum value at desired points
in time i between sunrise and sunset with a granularity of 15
minutes. Such points are mapped between −e and e as steps
si. Before sunrise and after sunset the generation forecast Gfc
is zero, otherwise it is calculated as follows:

Gfc(t) = ω(t) · Pmax(month) ·min(
1.0

e0.3·(i)2
,

1.0

2 · e0.75·(i)2
)

(1)
Figure 2 illustrates the results of the actual (solid, blue) and
predicted (dashed, green) generation.

Consumption Forecast: We applied a triple exponential
smoothing model provided by openforecast [13] to predict
the power consumption, since seasonal models are sup-
posed to be a simple but feasible approach for short-term
electricity demand [14], [15]. Initial tests have shown that
the following parameterization generates sufficiently adequate
results: TripleExponentialSmoothingModel(0.7, 0.1, 0.2)
which correspond to the weight of recent data, trend, and
seasonality, respectively. The basis for these models are time

series, where we use the historical consumption data for the
past six same days (either working or high days). If we
utilized information from the last successive days, the strong
differences between workdays and weekends would distort the
forecast values. Figure 3 illustrates the results of the actual
(solid, blue) and predicted (dashed, green) consumption, where
the difference in the power demand of workdays and the
weekends becomes evident. Currently we are working on the
integration of additional calendar information regarding the
booking of the conference rooms including the expected par-
ticipants and the type of the meeting. In our approach we will
subtract the consumption of the respective conference rooms,
which are also monitored, from the overall consumption used
for the described demand forecast. In a second step, predefined
consumption profiles for each conference room will be added
to the calculated forecast for the period of the reservations
of the corresponding room, e.g. when it is booked for a
presentation from 3 pm until 5 pm. Finally, we will compare
and evaluate our approach with others, however, this is beyond
the focus of this work.

C. Real-time Energy Manager

The energy management algorithm assumes that the opti-
mization horizon is divided in T epochs of fixed duration
(e.g. in the order of minutes) and works under the following
assumptions:
• when operating in grid-connected mode, the Smart

Building absorbs/inject energy directly from/to the grid,
whereas the backup battery is automatically recharged
at constant rate until full charge level and cannot be
discharged1;

• when operating in islanded mode, the Smart Building
absorbs/inject energy at arbitrary rate from the backup
battery. In case of excess in energy production, which
cannot be absorbed by the backup battery, surpluses are

1This assumption is made to meet the constraints imposed by the fortiss
Smart Energy Living Lab.



Fig. 2: Comparison of actual and predicted production

Fig. 3: Comparison of actual and predicted consumption

dissipated. Conversely, in case of production deficits,
which cannot be fully compensated by the energy stored
in the backup battery, loads must be shed (e.g. by
switching off non-critical appliances);

• the duration of plug-in periods of rechargeable electronic
devices is specified by the owners at the moment of
plugging the device. Alternatively, these periods could
be enforced by using switchable sockets controlled by
the system. The recharge process can possibly experience
intermediate interruptions. Recharge is mandatory if the
current state of charge of the device battery is below a
given threshold specified by the user.

Whenever a new epoch i starts, the energy manager receives
the energy production/consumption forecasts computed by the
algorithms presented in Section III-B, the actual amounts
of energy generated and consumed in the previous epochs
1, . . . , i− 1, the current state of charge of the backup battery
and of the batteries of the electronic devices actually plugged
for recharge. The expected plug-in periods of the electronic
devices can be either randomly generated or computed accord-
ing to historical data. The energy manager then runs a MILP
to schedule the energy usage for the current epoch, which is
defined as follows:

Inputs:

• pi: forecasted energy production of the photovoltaic plant
for epochs i, . . . , T ;

• ci: forecasted energy consumption of non-deferrable
loads for epochs i, . . . , T ;

• epi/esi: energy purchasing/selling price for epochs
i, . . . , T ;2

• B: actual state of charge of the backup battery at the end
of epoch i− 1;

2Note that the energy tariff can be either known in advance or dynamically
adjusted. In the latter case, energy prices are forecasted according to historical
knowledge and then updated epoch by epoch according to the actual values.

• R: recharge rate of the backup battery (only for grid-
connected mode);

• forecasted/actual plug-in periods (wji ), state of charge
(Bwj), and battery recharge rate (Rwj) of each recharge-
able device j;

• rji : reward for recharge of device j at epoch i;
Outputs:

• xi: choice of the operational mode (islanded=0 or grid-
connected=1) for epochs i, . . . , T ;

• ypi /y
s
i : amount of purchased/sold energy at epoch for

epochs i, . . . , T (0 if in islanded mode);
• zji : schedule of the recharge periods of electronic devices

for epochs i, . . . , T (not in charge=0, in charge=1);
Objective Function:

min
∑

i=1,...,T

(ypi epi − y
s
i esi −

∑
j∈J

zyi r
y
i ) (2)

The model performs a multi-objective optimization, i.e. the
minimization of a weighted sum of multiple contributions,
including operational costs (in terms of daily energy expenses)
and rewards for the recharge of the batteries of the electronic
devices above the minimal threshold. Rewards are design
parameters which can be adjusted to privilege one or the other
objective.

The operational mode for epoch i and the recharge of the
batteries of the electronic devices is then settled according to
the MILP output. At the end of epoch i, in case of islanded
operation regime the state of charge of the battery is updated
according to the real energy usage trend, whereas in case of
grid-connected regime operational costs are updated according
to the exact amount of energy absorbed/injected from/into the
grid.

D. Energy Manager Integration

In the following we shortly describe the integration and
interaction of the energy manager into the current system. The



presented energy management algorithm will be implemented
as an OSGi bundle, whereas the execution will be carried out
periodically. The interaction with the other components will
be realized using RPC calls over the rabbitMQ message bus
system [16]. The required input parameters are provided by the
Smart Energy Living Lab using the same technology. The sys-
tem periodically generates the described forecasts at midnight
for the next 24 hours, although the responsible component
supports requests at any time the optimization interval and
the number of epochs. This enables readjustments of earlier
forecasts, especially to improve the short term prediction
quality. In order to control the required actuators, the existing
rule system API [10] will be extended to allow the input from
the energy manager. Here, the choice of the operational mode
can be modeled as a list containing a timestamp referring to
the epoch and an indicator for the mode. In this way, the
schedule of recharge periods can be represented too. In case
of updates due to differences between the forecast and actual
production/consumption this list can be easily updated. The
rule system already supports the functionality to switch on and
off necessary devices. Switchable sockets currently consist of
Hexabus [17], ZigBee and EnOcean devices. The change of
the operational mode is carried out by using an IPSwitch-SGIn
[18] which is already integrated.

IV. PERFORMANCE EVALUATION

To assess the performance of our proposed energy man-
agement system, we tested it in the fortiss Smart Energy
Living Lab. The testbed includes a photovoltaic plant with
peak production of 3770 Wp, a backup battery with capacity
of 6720 Wh and recharge rate of 1200 W, a set of non-
deferrable appliances (lights, heating/cooling systems, servers
and desktop computers), and six controllable plugs to which
three laptops (device battery capacity of 55 Wh, recharge rate
of 45 W) and three mobile phones (device battery capacity of
6 Wh, recharge rate of 3 W) can be connected. Recharge is
mandatory until device batteries reach 65% of charge.

The scheduling horizon is a 24 hour period divided in
T = 96 epochs of 15 minute duration. The objective func-
tion minimizes the overall operational costs and rewards the
recharge of the electronic devices by decreasing the energy
bill by the corresponding recharging cost (i.e. rji = epi).
The energy prices vary according to the tariffs provided in
[19], which usually exhibit the highest peaks in the morning
(9-11 a.m.) and in the early evening (6-8 p.m.). Prices for
selling energy surpluses by injection into the grid are obtained
by multiplying the actual purchase prices by a scaling factor
α = 0.7 (i.e. esi = αepi).

For the sake of concision, here we limit the analysis of the
numerical results to two reference week and weekend days.
Figures 4 and 5 show an example of the forecasted/actual en-
ergy production/consumption patterns of the photovoltaic plant
and the must-run appliances during a sunny weekend day and a
partially cloudy working day, respectively. The corresponding
forecasted/actual energy exchanges with the grid obtained

Fig. 4: Actual and predicted production/consumption daily
trend (weekend)

Fig. 5: Actual and predicted production/consumption daily
trend (working day)

by means of the real-time energy management system3 are
compared to the optimal benchmark schedules computed “a
posteriori” in Figures 6 and 7. The trends depicted in Figure
6 show that during a sunny weekend, the power generated
by the photovoltaic plant is sufficient to support the islanded
operational mode for most of the daylight time. This also
avoids to purchase energy from the grid during the peak-price
periods occurring from 8 to 12 a.m. (i.e. from epoch 30 to
45). Conversely, during weekdays the photovoltaic production
is not sufficient to ensure prolonged periods in islanded mode,
which are thus limited to a few epochs corresponding to the
highest price peaks (e.g. epochs 43 and 83, see Figure 7).
In both scenarios, our proposed energy management system
achieves close-to-optimum performance, with gaps of 8.2%
and 0.2% w.r.t. the benchmark cost, respectively. As expected,
the gap is lower for the weekday, where the flexibility in the
management of the battery charge/dischrage process is lower
due to the high energy consumption, which almost always
considerably exceeds production, thus preventing prolonged
islanded periods. It is worth noting that, in absence of storage
capability and constantly operating in grid-connected mode,
the overall cost would be 67.8% and 9.2% higher than the
benchmark.

However, when operating in islanded mode, production
surpluses or deficits may occur, e.g. in case of significant
under/overestimations of the power usage/generation by the
forecasting algorithms w.r.t. the actual values. In the presented
results, the latter case occurs twice in Figure 7 (see epochs 43
and 83), but the impact of the power shortage is mild (below
1 kW) and could easily be compensated e.g. by turning off
the heating/cooling system for a few minutes.

V. CONCLUSIONS

This paper describes a real-time energy management sys-
tem for a Smart Office environment, which combines fore-

3Note that the running time of the AMPL/CPLEX solver on a standard
desktop computer was below 1 min in all the considered instances.



Fig. 6: Forecasted, actual and optimal daily trend of energy purchase/sell (weekend). Zero values occur during periods of
islanded regime. Negative values indicate energy deficits.

Fig. 7: Forecasted, actual and optimal daily trend of energy purchase/sell (working day). Zero values occur during periods of
islanded regime. Negative values indicate energy deficits.

casting algorithms for the predictions of energy produc-
tion/consumption trends with an optimizer that schedules the
Smart Building operations according to the forecasted and
actual energy utilization patterns, as well as to the current
energy prices. Based on the presented results, we believe that
the integration of our proposed system is a valid support
to achieve nearly-optimal schedules of the Smart Building
operational mode and to ensure significant cost savings.
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