Performance Comparison of Node-Redundant
Multicast-Distribution Trees in SDN-Based
Networks

Miroslav Popovic
EPFL, IC-LCA2
Lausanne, Switzerland
miroslav.popovic@epfl.ch

Abstract—Some of the industrial processes with hard real-time
constraints, such as those commonly found in the context of
smart grids, require very reliable packet delivery and multicast.
Solutions such as PRP [1] and iPRP [2] have been traditionally
deployed over redundant (and often dedicated) networks. In this
paper, we study how to construct node-redundant multicast trees
that could be used in parallel over a shared network infrastructure.
Qur solution can be deployed over shared public networks, e.g.,
mobile carrier networks, hence it has an operating cost lower
than traditional deployments of PRP and iPRP.

We evaluate different algorithms proposed in the literature for
providing node-redundant multicast-distribution-trees. We study
specifically how to adapt these algorithms in an SDN network
and compare them based on the number of forwarding rules that
need to be installed on SDN switches, the number of hops between
source-destination pairs given the installed forwarding rules, and
the number of sources that can be placed in the network given
the capacity constraints. In addition, we discuss the effects of
topology changes (node failures, new source arrival and new
destination arrival) on the activity of the SDN control plane.

I. INTRODUCTION

Some of the industrial processes with hard real-time con-
straints require the creation of redundant multicast-distribution
trees to support 0-ms packet repair-time. For example, in
the emerging smart-grids there are applications such as grid
protection or grid control that are considered critical. We
were faced with such requirements when we designed the
communication network as part of the EPFL smart-grid project
(smartgrid.epfl.ch).

Solutions such as PRP [1] and iPRP [2] have been deployed
in these settings; they achieve O-ms packet repair-time by
duplicating packets over node-redundant multicast-distribution
trees. This is commonly done in industry by having dedicated
and duplicated networks. In this paper, we study how to
construct node-redundant multicast trees that can be used
in parallel over a shared network infrastructure. This is of
interest to telecom operators and manufacturers who want to
propose solutions over their shared infrastructures [3].

Our work differs from [4] and [5], as the solutions in [4] and
[5] establish one multicast tree as a backup tree that is activated
only when a link or node failure is detected in the primary tree.
This require extra repair-time delay as the detection of a failure

Ramin Khalili
Huawei
Munich, Germany
ramin.khalili @huawei.com

Jean-Yves Le Boudec
EPFL, IC-LCA2
Lausanne, Switzerland
jean-yves.leboudec @epfl.ch

is a time consuming process. Our solution however relies on
the parallel use of node-redundant trees, hence it provides a
0-ms packet repair-time.

We focus our study on SDN-based networks. SDN technol-
ogy is the most likely candidate for the design of 5G systems
[6], [7]; as it provides a fully programmable operator-network
interface. An SDN controller has a global information of the
situation in the network and can enforce appropriate forward-
ing rules to the SDN switches. This should therefore facilitate
the implementation of the proposed algorithms. Nevertheless,
there is a question of the choice of the appropriate algorithm
to be implemented for the purpose of creating node-redundant
multicast-distribution trees.

This problem is proven to be NP-complete [8] and approx-
imation methods for solving it are the only possible. To that
end, we evaluate the performance of three algorithms that
we adapted to the smart-grid setting: (i) ReducedCostV [9]
computes a pair of node-redundant spanning trees for a source,
(i) MADSWIP [10] computes a pair of maximally disjoint
paths between a source and each of its destinations, and (iii)
Takahashi - Matsuyama [8] finds a pair of minimum-
cost Steiner trees between a source and all its destinations.
Adaptations of the first two algorithms provide us with a
pair of node-redundant multicast trees, whereas the third one
constructs a pair of node-disjoint multicast trees.

We analyze the following metrics: network-utilization effi-
ciency (number of sources placed, minimum/maximum num-
ber of hops to the destination) and the number of forwarding
rules that need to be installed at SDN switches, with and
without aggregation. We quantify performance of different
methods based on these metrics when applied on networks
with structured (operator) topology or on random networks.
Our results show the following:

e In terms of the numbers of sources placed, for gen-
eral networks, ReducedCostV! and MADSWIP per-
form the best as in some cases, especially for random

'In this paper we call
tion of ReducedCostV and
Takahashi-Matsuyama.

“ReducedCostV” the adapta-
similarly ~with MADSWIP and

topologies with an increasing number of destinations,
Takahashi-Matsuyama is unable to place the second
tree for any sources, hence it is not a viable solution.
Nevertheless, for structured, dual-plane-like networks,
Takahashi-Matsuyama gives results comparable to
the two other algorithms.

e In terms of the number of hops to the destinations,
MADSWIP and Takahashi-Matsuyama (if source
placement is possible) outperform ReducedCostV as
they construct paths that are 2 to 3 times shorter than
those established by ReducedCostV. They can there-
fore provide a much better delay guarantee.

e Using MADSWIP and Takahashi-Matsuyama (if
source placement is possible), the total number of rules
that need to be installed in the network is 5 to 6
times smaller than ReducedCostV when no flow-rule
aggregation is applied. If applied, the number of installed
rules is reduced to handful of rules for all the algorithms.

¢ In terms of the SDN-control-plane activity in the case of
change in network topology (node failure or new source),
MADSWIP and Takahashi-Matsuyama require fewer
changes compared to ReducedCostV. If the change of
interest is an arrival or departure of a destination within a
multicast group, ReducedCostV requires no changes,
hence it outperforms the two other algorithms in this case.

The rest of the paper is structured as follows. In the next
section, we cover the related work. In Section III, we provide
the problem formulation. In Section IV, we introduce three
different types of algorithms that we study in this paper, to
construct node-redundant multicast trees. In Section V, we
analyze their performance and in Section VI we discuss the
effects of topology changes on the SDN control-plane activity.
In Section VII, we provide the conclusion.

II. STATE OF THE ART

An extensive overview of the algorithms for network surviv-
ability was done by Kuipers in [11]; it served as an excellent
reference in classifying methods for the creation of multicast-
distribution trees.

We distinguish three different families of algorithms that
are of our interest and we choose for this evaluation one
representative from each of the families. First, there are
algorithms that find spanning trees. In the literature, we find
many solutions that are based on placing one tree and then
removing links and nodes already used, before placing the
second trees. Such solutions are suboptimal and can lead to the
inability to place the second tree. A better solution is presented
by Médard et al. in [12] and we choose its extension (algorithm
ReducedCostV) by Zhang et al. [9] as the representative of
the algorithms that find node-redundant spanning trees.

The second family of algorithms find Steiner trees. As for
the spanning trees, there are many solutions based on placing
one Steiner tree and then removing links and nodes already
used, before placing the second one. Surprisingly, to the best of
our knowledge, there are no practical algorithms for concurrent
tree-construction. We leave this problem for future work and

for this comparison we use the method of sequential placing
of Steiner trees constructed with the algorithm from [8]. We
refer to this algorithm as Takahashi - Matsuyama.

Finally, we have algorithms that find disjoint paths, where
many algorithms are inspired by the work of Suurballe and
Tarjan [13]. We single out the work of Nina Taft-Plotkin et
al. [10] (MADSWIP algorithm) and Guo et al. [14] (DIM-
CRA algorithm). MADSWIP computes maximum-bandwidth
maximally disjoint paths and minimizes the total weight as the
secondary objective, whereas DIMCRA finds two link-disjoint
paths subject to multiple quality-of-service constraints. In our
smart-grid setting, metrics of interest are only bandwidth and
delay, hence, for the comparison in this paper, we choose
MADSWIP as the representative of the algorithms that find
disjoint paths.

The application of SDN technology for reliable smart-
grid communication networks is considered in [4] and [5].
Neverthless, despite insisting on the need for reliable packet
delivery, the described settings are not compatible with a
reliability brought by iPRP-like Oms repair-time. In [4], the
authors describe Pcount, an algorithm that uses OpenFlow
to detect link failures that should trigger the activation of
backup multicast-distribution trees. However, the time-scale
in which Pcount operates is in the order of seconds, which
is unacceptable for critical processes in smart grids. Similarly,
in [5], the approach of bypassing the link that has failed after
the failure occurs with the precomputed backup segment is not
acceptable for critical traffic.

The parallel redundancy protocol (PRP) [1] requires redun-
dant, and, moreover, cloned networks; hence it cannot be used
in a shared infrastructure. TCP-like solutions are acceptable
for applications with less strict delay-requirements, as it takes
several round-trip times for losses to be repaired. Network
coding [15] is commonly used to improve networks throughput
and reliability but can perform poorly in terms of latency.
Source coding (e.g., Fountain codes [16]) is suitable in the case
of bursty packet transmissions where encoding and decoding
are performed across several packets. However, in smart grids,
usually there is a single packet per time-slot and it should be
sent as soon as it is available to avoid unnecessary delays.

III. PROBLEM FORMULATION

Let (V,&) be a directed graph representing our network,
with the set of vertices V and the set of edges £. Let B(3, j)
be the bandwidth assigned to (¢, 7) € £ and C(i, j) be the cost
of using the link. We denote by M (s) = {s, D(s)} a multicast
session with source s € V and destinations D(s) C V — s.
We study algorithms to construct a pair of node-redundant
multicast trees for this session such that a failure of a node
(vertex) in the network leaves each destination in D(s) still
connected to the source by using at least one of the trees.

These node-redundant trees are not necessarily disjoint and
can contain some nodes or edges in common. Hence, our
study is different from those that propose the use of disjoint
spanning trees; those studies are based on placing one tree and
then removing links and nodes already used, before placing

the second tree, because they are suboptimal and can lead to
the inability to place the second tree [12]. For an example of
one such case, we refer to Figure 1. Node 1 is the source of
packets and there are two destinations of interest: nodes 5 and
7. The blue tree follows the path 1-3-5-6-7, whereas the red
tree follows the path 1-4-7-6-5. We observe that the two trees
share node 6 thus making them non-disjoint. Nevertheless,
both destinations can be reached upon a failure of a single
node (node-redundancy property), which is the goal we want
to accomplish. Note that in this example it is not even possible
to construct two trees that are disjoint.

Fig. 1. Source: Node 1. Destinations of interest: 5 and 7. Blue and red trees
are node-redundant but they are not disjoint (node 6 is shared).

For comparison, we define the following metrics of interest:

o Number of sources placed. This metric illustrates how
many sources can be served, depending on the approach
taken. We say that a source is placed only if it is possible
to establish node-redundant trees that comprise all the
destinations in the group of receivers, subject to the
capacity constraints.

o Minimum number of hops between each source and each
destination. Given that in all cases we have two paths
between each source and each destination, this metric
illustrates the effective number of hops (delay) in the case
when both paths are operational.

o Maximum number of hops between each source and each
destination. Given that in all cases we have two paths
between each source and each destination, this metric
illustrates the effective number of hops (delay) in the
worst case if one path becomes unavailable.

o Number of flow rules installed per source placed. This
metric illustrates how big the SDN flow tables are. It is
desirable to have a smaller number of flow-table entries
as the switches can be of limited resources.

o Number of flow rules installed per source placed. This
metric illustrates how many rules need to be installed at
the switches by the controller and how large the SDN
flow tables are. The larger the number of rules installed
is, the higher the volume of control traffic exchanged is
between the controller and switches. This can, on one
hand, overload the controller and, on the other hand,
saturate the control plane. A larger number of installed
rules also means larger flow tables, which can affect the
performance of SDN switches with limited resources.

IV. METHODS USED IN THIS COMPARISON AND
NECESSARY ADAPTATIONS

As mentioned in Section II, we choose ReducedCostV,
Takahashi — Matsuyama and MADSWIP as the basis for
the methods based on spanning trees, Steiner trees, and disjoint
paths, respectively. In order to compare these approaches, it
was necessary to harmonize the assumptions and to adapt the
algorithms so that they all produce multicast-distribution trees.
We discuss below the necessary adaptations, after describing
the algorithms themselves.

A. ReducedCostV

This algorithm finds a pair of directed node-redundant
spanning trees (referring to as 7' and TP trees) for a given
source in the network. As stated by Xue et al. [17], the
construction of these trees is related to ear decomposition of
the graph. Adapting this idea, ReducedCostV constructs 7%
and TP from a DFS (depth first search) tree 7 by applying
the ear decomposition technique. This is done by adding an
ear whenever a back edge from 7 to the current T2 and T5,
which span a subset of the network nodes, is encountered. The
resulting 77 and T'Z trees have a total cost that is minimum
among all possible node-redundant spanning trees.

As mentioned in Section III, we analyze directed graphs.
ReducedCostV takes as input undirected graphs, whereas it
outputs directed graphs. This means that, after placing the first
source and updating the available link capacities, the resulting
graph has available link capacities that are asymmetric. Hence,
it cannot be treated as undirected, which is the problem for the
next iteration of the simulation when the next source needs to
be placed. For a solution, for every link, we keep track of the
available capacities in both directions; and for the input for
the algorithm, we take the minimum of the two.

Furthermore, for each source that offers traffic
ReducedCostV computes a pair of spanning trees
that already have a property of having no single point of
failure. By construction, all the destinations from a group
of receivers that belong to the same multicast group will be
reachable, hence no further adaptation is required. We sort
the sources based on the offered traffic and we treat them in
that order. Before placing a source, we remove the links that
do not have enough capacity to support the offered traffic.

B. Takahashi - Matsuyama

[8] proposes a heuristic to compute minimum-cost Steiner
tree for a given source node and a set of destinations in
a network. This heuristic performs as follows. It first finds
the closest destination to the source and constructs the path
between the source and the destination. It then selects the
closest non-spanned destination to this tree and updates the
tree by adding the path between this destination and the tree. It
repeats this process until all the destination nodes are covered.
The resulting Steiner tree has the minimum total cost.

Takahashi - Matsuyama also expects the input in the
form of undirected graphs, whereas it outputs directed graphs.
We deal with this aspect in the same way as in the case of
the method based on spanning trees (see the description of
ReducedCostV approach).

An additional adaptation is needed as Takahashi -
Mat suyama provides a single Steiner tree (not a pair). Hence,
we use the method (e.g., described in [18]) where after
placing the first Steiner tree, we remove the already used
nodes and links. After this we run again the Takahashi -
Matsuyama algorithm for the creation of the second Steiner
tree, that is now node-redundant by construction. We sort the
sources based on the offered traffic and that is the order in
which we treat them. Before placing a source, we remove the
links without enough capacity to support the offered traffic.

C. MADSWIP

This algorithm computes a pair of maximally disjoint paths
between the source and its destinations such that either the
total cost of paths is minimized or the bandwidth is maxi-
mized. It performs as follows. First, a shortest-path tree from
the source to the destination is computed.The edge costs and
bandwidths are updated, based on the computed shortest path,
and the nodes are labeled. Using this labelling information, a
pair of disjoint paths from the source to all destinations are
computed.

In the case of MADSWIP, both input and output graphs
are directed, hence, in this respect, no changes are needed.
Still, there is another adaptation that is required. Our goal
is to find node-redundant multicast trees, whereas MADSWIP
produces link-disjoint paths. Therefore, we needed firstly to
adapt the MADSWIP to produce node-disjoint paths (instead
of link-disjoint) before combining them into node-redundant
multicast trees. The method that we used is described in [11];
we split each node v into two nodes u; and uq, with a directed
link (w1, us2), and the incoming links of u connected to u; and
the outgoing links of u departing from us.

Once we have node-disjoint paths, there is a question of
how to combine them into node-redundant trees. Each source
has a number of destinations that correspond to the same
multicast group. Each execution of [10] produces a pair of
paths originating from the source, one pair per destination.
This raises the question of how to combine disjoint paths into
trees: For a single path-pair, which path should join which of
the two output trees? We use the following heuristic to solve
this problem. Again, we sort the sources based on the offered
traffic and that is the order in which we treat them. For each
source, we pick randomly the first destination (from the group
of multicast receivers) and we compute disjoint paths. The two
solution trees (named blue and red) are initialized with these
paths. After every subsequent computation of disjoint paths
(for the other destinations from the same multicast group), we
decide which path should be combined with which tree, based
on the minimal number of new links that need to be added.
We also remove the links without enough capacity to support
the offered traffic for the next computation.

Furthermore, to have a fair comparison, we accept paths
from MADSWIP only if they are completely disjoint (MADSWIP
finds maximally disjoint paths). For the same reason, we
implemented a version of MADSWIP that computes minimum-
cost disjoint paths (instead of maximum bandwidth).

V. PERFORMANCE EVALUATION

In this section, we provide performance analysis. We first
describe our simulation setting.

A. Network scenarios

Random (ad-hoc) topology: We generate a topology that
resembles the one of wireless sensor networks (see Figure 2).
We place 100 switches in a 1000m x 1000m area as follows:
The positions are generated uniformly at random, with restric-
tions that no switches are within 75m, and the connectivity
between switches is ensured if the distance between them is
below 150m. All the links have capacity of 1.

We randomly select a subset of nodes that serve as destina-
tions. Depending on the number of destinations, we distinguish
scenarios that correspond to sparse multicast (3, 4, ... , 10
receivers) and dense multicast (15, 20, 25, ... , 40 receivers).
In the sparse multicast case, we select destinations in such a
way that the distance between any pair of destinations is at
least 100m. The idea is that several receivers are required for
reliability reasons and thus they should not be too close to each
other.All the nodes that are not designated as receivers are the
candidate sources with the traffic rate uniformly distributed
in the interval [0.025,0.05]. Our algorithms try to compute
node-redundant trees for as many of them as possible.

1000

8001

6001

4001

200}

Fig. 2. Random (ad-hoc) topology.

Structured (operator) topology: We also study the perfor-
mance of mechanisms proposed in the previous section on a
topology generated from [19], [20]; it represents the backhaul
of carrier networks. It is hierarchical and consists of three
layers: access, aggregation, and core.

The access layer consists of clusters of 20 access switches,
each connected to two neighboring aggregation switches (to
provide redundancy between access and aggregation layers).
The aggregation layer consists of 4 pods, each with 4 switches

connected together in a full mesh.
Two of the switches in a pod are connected to each of 20

access switches in a cluster and the remaining two switches are
connected to two core switches. The core layer consists of 4
switches connected together in a full mesh. We therefore have
a network of size 100 with 80 access switches, 16 aggregation
switches and 4 core switches.

The links between access switches and aggregation switches
have a capacity of 1. The links between aggregation switches
(within a pod) have a capacity of 20. The links between
aggregation switches and core switches have a capacity of 40.
The resulting network is depicted in Figure 3.

Fig. 3. Structured (infrastructure) topology.

We randomly select subset of nodes that serve as desti-
nations from the group of access nodes. As for the random
topology case, depending on the number of destinations, we
distinguish scenarios that correspond to sparse multicast (3,
4, ..., 10 receivers) and dense multicast (15, 20, 25, ... ,
40 receivers). All the nodes from the group of access nodes
that are not designated as receivers are the candidate sources
with the traffic rate uniformly distributed in the interval
[0.025,0.05]. Our algorithms try to compute node-redundant
trees for as many of them as possible.

B. Results

The results presented her are the output of 20 simulations
with different seeds. Hence, every simulation has a different
group of sources/destinations and different offered traffic for
the sources. We show the average values and the confidence
interval for the number of sources placed and the number of
installed rules (with and without aggregation).

Random (ad-hoc) topology, sparse multicast:

As shown in Figure 4, there is no significant difference in
the number of sources that can be placed when the number
of destinations is fewer than seven. Once the number of des-
tinations grows bigger, Takahashi - Matsuyama starts
paying the price of the fact that it is the only algorithm that
does not construct trees in parallel. Consequently, with more
than seven destinations, after placing the first of the two trees,
it becomes impossible to place the second tree for more than
only a few sources. The main bottleneck in how many sources
can be placed for the other two algorithms is the aggregated
capacity of the links to the destination node with minimum
degree, among all destinations. For example, node 93 in the
upper-right corner (Figure 2) has only two edges that connect
this node to the rest of the graph. Hence, the aggregated
capacity that is shared among two tree branches that reach
this destination is 2. Therefore, we cannot place more than
21 — 23 sources, as the aggregated traffic of this many sources

in decreasing order of offered traffic is close to 1. In the case
of node 42 (lower-left corner) this capacity is 3. So, if the node
42 is the node with minimum number of edges in the multicast
group, the limiting capacity is 50% higher than in the case of
node 93, and more sources can be placed (~ 35). The more
destinations we have the higher probability is that one of the
nodes with two edges will be in the group of receivers; and
this is why we converge to 21 — 23 sources placed.

50

T
|—ReducedCostv ’
45 |—Takahashi - Matsuyama

| MADSWIP |

kel

S3sfF e

k]

[*% —— — —_—
w30 L S~

() P
g o
S

s L I

2

520

=

8

€15

=

=

Number of destinations
Fig. 4. Number of sources placed for random topology, sparse multicast.

When it comes to the minimum number of hops between
sources and destinations (CDFs depicted in Figures 5 and
6), ReducedCostV is dominated by the other two. This is
expected, as ReducedCostV does not have as a goal creation
of short paths to specific nodes; the goal is simply to cover
all the nodes of a given graph.

Empirical CDF : min number of hops; 3-10 destinations per source
T T T

1 ———

—ReducedCostV

——Takahashi - Matsuyama
MADSWIP

09
08
07
06 |

Zos
04t
03
02

0.1

0 I I I
0 5! 10 15 20 25 30 35 40

Number of hops

Fig. 5. Minimum number of hops for random topology, sparse multicast.

Looking at the number of rules that need to be installed,
both with and without rule aggregation (Figures 7 and 8),
we see that ReducedCostV is the worst one; but the
difference is not so significant if the aggregation is applied.
We do not show results for Takahashi - Matsuyama for
more than seven destinations as, afterward, the number of
sources placed becomes very low. For fewer destinations, we
see that Takahashi - Matsuyama gives slightly better
results than MADSWIP, as every additional destination is added
by minimizing the distance from the nearest node in an already
established tree to other destinations within the same multicast
group. Whereas, in the case of MADSWIP, every destination
within a multicast group is treated completely separately.

Empirical CDF : max number of hops; 3-10 destinations per source

—ReducedCostV
——Takahashi - Matsuyama
MADSWIP

0.9
08
07
06

§o.s -
04
03F
02F

0.1 [

0 10 20 30 40 50 60 70
Number of hops

Fig. 6. Maximum number of hops for random topology, sparse multicast.
200

|—ReducedCostv
——Takahashi - Matsuyama |
MADSWIP

@
S

o
S

per source placed
=
—

—ReducedCostV
—Takahashi - Matsuyama
MADSWIP

Number of aggregated rules installed

3 4 5 6 7 8 9 10
Number of destinations

Fig. 8. Number of rules installed with aggregation for random topology,
sparse multicast.
30

I

—ReducedCostV

~——Takahashi - Matsuyama
MADSWIP

N

G
T

b

el
v
o]
& E
[}
(]
P - _ = S
%140 @ E =
2 820 -
w [}
T "
g120 8
I~
8100 315¢
= o
Z 80 S
@ g 10
() Qo
S €
= ___— =]
S - =
S 40| e 4 -
T p— sf
L
g 20 il
3 -
Z 0 - 0 L
3 4 5 6 7 8 9 10 15 20 25 30 35 40

Number of destinations

Fig. 7. Number of rules installed without aggregation for random topology,
sparse multicast.

Random (ad-hoc) topology, dense multicast:

The trends stay the same when we analyze dense multicast
case. The number of sources that can be places stays stable
for ReducedCostV and MADSWIP, whereas the decreas-
ing trend for Takahashi - Matsuyama continues, which
means that no, or very few, sources can be placed (Figure 9).

The conclusions are unchanged when it comes to the
minimum number of hops between sources and destina-
tions (CDF shown in Figure 10), MADSWIP is better than
ReducedCostV and Takahashi - Matsuyama is not
shown because almost no sources were placed. The same con-
clusions are valid for the maximum number of hops between
sources and destinations (CDF shown in Figure 11). However,
MADSWIP loses its dominance when it comes to the number
of rules that need to be installed both with and without rules
aggregation (Figures 12 and 13). Simply, with the increasing
number of destinations, the number of affected nodes grows
for MADSWIP and, in the case of ReducedCostV, all the
nodes are affected no matter how many destinations there are.

Structured topology, sparse multicast:

Before we analyze the results for the structured topology, we
should make one observation. This topology resembles dual-
plane topologies and, given that the capacities at the core and
aggregation levels are sufficient, the bottlenecks will simply
be the links that are connected to the destinations that are part
of the multicast group. All the algorithms are “smart enough”
to discover two planes, even though they are not explicitly

Number of destinations

Fig. 9. Number of sources placed for random topology, dense multicast.

defined so the number of sources places is comparable in all
cases, see Figure 14. Again, we converge to 21 — 23 sources
placed, as the aggregated traffic of that many sources (in
decreasing order of offered traffic) is close to 1, which is the
capacity of the links to the destinations mentioned above.

As for the rest of the results (Figures 15 - 18), for the num-
ber of hops, we see again that ReducedCostV is dominated
by the two others that are comparable. The same holds for the
number of SDN rules that need to be installed, and again, the
difference is not so significant with route aggregation.

Structured topology, dense multicast:

In this scenario, the bottlenecks are the same as for the
sparse case: the links that are connected to the destinations
that are part of the multicast group. Consequently, all the
conclusions are the same as for the sparse case, and the
corresponding graphs are depicted in Figures 19 - 23.

VI. DISCUSSION ABOUT SDN-RULES UPDATE-ACTIVITY
PROVOKED BY TOPOLOGY CHANGES

In this section, we analyze the effect of different changes in
scenarios to the activity of the SDN control plane. Concretely,
we are interested in situations when there is a permanent
change in the system that triggers the update of already
installed forwarding rules. The goal of the reconstruction is
the (re)establishment of node-redundancy property for all the
sources and destinations, without disrupting services that are
in-progress. Specifically, we analyze the SDN-control-plane
activity in case of (i) node failure, (ii) the arrival of a new

Empirical CDF : min number of hops; 15-40 destinations per source
T T

—ReducedCostV
—MADSWIP

0.9

0.8 -

07+

06
Xos
i

0.4

03+~

02

0.1

0 I I I
0 5 10 15 20 25 30 35 40

Number of hops

Fig. 10. Minimum number of hops for random topology, dense multicast.

Empirical CDF : max number of hops; 15-40 destinations per source
T

{;@ﬁcedCostV
0.9 |—MADSWIP

0.8
0.7
0.6

Xos
[

03 =
02 al

0.1 =1

0 I I
0 10 20 30 40 50 60

Number of hops

Fig. 11. Maximum number of hops for random topology, dense multicast.

destination within a multicast group, and (iii) the arrival of a
new source. This analysis is carried out under the assumption
that, after a change, it is still possible to construct node-
redundant multicast-distribution trees without disrupting the
connections that are already put in place.

SDN-rules update-activity in the case of node failure:
Depending on the position of the failed node, and on the
algorithm in use, the effect of such an event can be dif-
ferent. First, we analyze the case of random topology. For
ReducedCostV, a node failure certainly breaks both span-
ning trees that are constructed. As a consequence, a new
pair of spanning trees has to be computed. For Takahashi
- Matsuyama and MADSWIP the answer is less straight-
forward; it depends on the position of the failed node. It
can be part of none, or very few, of the already estab-
lished trees, hence its failure will not affect significantly the
network operation. Therefore, Takahashi - Matsuyama
and MADSWIP are less vulnerable to node failures, compared
to ReducedCostV. In order to compare them in more details,
we made a simulation analysis to evaluate the probability that
a placed pair of trees is affected in case of a random node
failure. We did it for cases with 3 and 6 destinations within
a multicast group, for the random topology. For both 3 and
6 destinations, the difference in probabilities for these two
algorithms is negligible (around 1%). Specifically, we get 25%
and 36%, for 3 and 6 destinations respectively.

N}
=3
S

|—ReducedCostv

—MADSWIP

3
S

o
S

N
S

~
S

=)
S

60

40

20

Number of rules installed per source placed

-]
vl
N
S

25 30 35, 40
Number of destinations

Fig. 12. Number of rules installed without aggregation for random topology,
dense multicast.
25

—ReducedCostV
—MADSWIP

T =

HH
HH
HH

20

\

per source placed
>
T
L

Number of aggregated rules installed
«
T
L

15 20 25 30 35 40
Number of destinations

Fig. 13. Number of rules installed with aggregation for random topology,
dense multicast.

For the structured topology, failure of an access switch
means permanent disconnection for the directly connected
source or destination. Failure of an aggregation switch disables
one of the trees but the redundancy re-establishment is impos-
sible. This is as we set the level of connectivity between access
and aggregation switches to 2 and also because the pods are
of size 4, hence, any lower layer aggregation switches is only
connected to two upper layer aggregation switches. Therefore,
the failure of interest is a failure of one of the core nodes as, in
this case, the redundancy re-establishment is possible. Given
the topology, almost all of the established trees will be affected
and new computations will be needed for all the algorithms.

SDN-rules update-activity in the case of an arrival of a
new destination within a multicast group: Here we assume that
we add a new receiver in the group of multicast receivers. This
does not affect ReducedCostV as all the nodes are reachable
from all the existing sources and spanning trees are con-
structed and rules are already put in place. For Takahashi -
Matsuyama and MADSWIP, new calculations will be needed
and, as we see from the figures that show the CDFs of the
number of hops, the effect is similar as up to 20 nodes will
be affected in majority of cases, irrespectively of scenario.
To conclude, contrary to the previous case, ReducedCostV
outpeforms the two other algorithms.

SDN-rules update-activity in the case of an arrival of
a new source: Here we assume that a new source starts

u
=)

—ReducedCostV ‘
——Takahashi - Matsuyama ’7

I
o

MADSWIP

FN
S

w
vl

w
S
L

N
a

Number of sources placed
s & 8
L
L L

%)
T
L

o

6 7 8 9 10
Number of destinations

w
EN
w

Fig. 14. Number of sources placed for structured topology, sparse multicast.

Empirical CDF : min number of hops; 3-10 destinations per source
T T T T

1
0.9 1
0.8
0.7
0.6 |- a
Xos
s
0.4
03 3
02 b
—ReducedCostV
0.1 - ——Takahashi - Matsuyama |-
MADSWIP
0 1 I 1 I I
2 3 4 5 6 7 8 9 10 " 12

Number of hops

Fig. 15. Minimum number of hops for structured topology, sparse multicast.

sending traffic to already present group of receivers. For all
the algorithms, a new computation of tree pairs is needed. In
the case of ReducedCostV, an installation of new rules will
be needed in all the nodes. For Takahashi - Matsuyama
and MADSWIP, the fraction of the nodes that require new rules
depends on the exact scenario. As fewer nodes are affected
because we are not creating spanning trees, the conclusion
is similar to the one in the first scenario: Takahashi
- Matsuyama and MADSWIP are less affected by source
arrivals, compared to ReducedCostV, and are very close
to each other. Concretely, the figures that show the number
of rules installed (with and without aggregation) per source
placed are the best comparison of the effect of the arrival of
a new source, depending on the used algorithm.

VII. CONCLUSION

In summary, we can say that MADSWIP is the overall
winner in this performance comparison. It is robust and it
performs the best or comparably to the best algorithm in a
wide range of scenarios and metrics. However, there are two
exceptions where it makes sense to consider other algorithms.
First, if the topology of interest is truly dual-plane and if
it is guaranteed that it will remain so, no matter what the
changes in the network are, we might consider applying
Takahashi - Matsuyama as, under such conditions, its
performance is comparable to (or even slightly better than)
the one of MADSWIP. Second, if the rate of arrivals/departures

Empirical CDF : max number of hops; 3-10 destinations per source
T T T

T

0.9

- [

0.7 -

06 -

Xos
P
04|
03
0.2
—ReducedCostV ‘
0.1 —Takahashi - Matsuyama
MADSWIP ‘
" | | | | —
2 4 6 8 10 12 14
Number of hops
Fig. 16. Maximum number of hops structured topology, sparse multicast.

——ReducedCostV
180 —Takahashi - Matsuyama
MADSWIP

e
S

5
S

N

S
T
L

©
S

o
S
T
I

IS
S
T

N
S

Number of rules installed per source placed
2
(=]

o
w
IS
w
o
~
o -
©
5

Number of destinations

Fig. 17. Number of rules installed without aggregation for structured topology,
sparse multicast.

of new destinations within a multicast group is high, which
provokes high SDN-control-plane activity, we should consider
ReducedCostV as a solution. This, of course, if the higher
number of hops between source-destination pairs can be
tolerated (this translates to less-strict delay requirements).

REFERENCES

[1] H. Kirrmann, M. Hansson, and P. Muri, “IEC 62439 PRP: Bumpless
Recovery for Highly Available, Hard Real-Time Industrial Networks,”
in Emerging Technologies and Factory Automation, 2007. ETFA. IEEE
Conference on, Sept 2007, pp. 1396-1399.

[2] M. Popovic, M. Mohiuddin, D.-C. Tomozei, and J.-Y. Le Boudec,
“iPRP: Parallel Redundancy Protocol for IP Networks,” in Factory
Communication Systems (WFCS), 2015 IEEE World Conference on.

[3] M. Torchia, “Innovative ICT Empower a Better Connected Smartgrid -
White Paper,” Tech. Rep., August 2014.

[4] D. Gyllstrom, N. Braga, and J. Kurose, “Recovery from link failures
in a smart grid communication network using openflow,” in Smart Grid
Communications (SmartGridComm), 2014 IEEE International Confer-
ence on, Nov 2014, pp. 254-259.

[5] T. Pfeiffenberger, J. L. Du, P. Bittencourt Arruda, and A. Anzaloni,
“Reliable and flexible communications for power systems: Fault-tolerant
multicast with sdn/openflow,” in New Technologies, Mobility and Secu-
rity (NTMS), 2015 7th IFIP International Conference on, 2015.

[6] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach
to control forwarding paths in carrier-grade networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. ACM Sigcomm ’15.

[7] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable
and flexible cellular core network architecture,” in Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and
Technologies, ser. ACM CoNEXT ’13.

25 T T

—ReducedCostV
——Takahashi - Matsuyama
o MADSWIP
= 2
E
2
P + E == =5 = =
2
S TiI5f
273 15
T v
o .
v o
o
g ¢
o S 101 =
o O
& 0
“ =
c o
5 Q
e} 5
£ .
S r
=z
0 L . L
3 4 5 6 7 8 9 10

Number of destinations

Fig. 18. Number of rules installed with aggregation for structured topology,
sparse multicast.

30

:
—ReducedCostV
——Takahashi - Matsuyama
MADSWIP
51 — 4
= i T ————————————

o e & —
(7 -
o
mZ20 4
Q
P
[
2
35 -
2
&
o
810 ,
€
3
=

5,

0 1 L

15 20 25 30 35 40
Number of destinations

Fig. 19. Number of sources placed for structured topology, dense multicast.

Empirical CDF : min number of hops; 15-40 destinations per source
T T T T

—ReducedCostV

0.9 —Takahashi - Matsuyama
MADSWIP

0.6

03[=

02 T

0.1 =

0 I I I I I
2 3 4 5 6 7 8 9 10 1 12

Number of hops

Fig. 20. Minimum number of hops for structured topology, dense multicast.

[8] H. Takahashi and A. Matsuyama, “An approximate solution for the
steiner problem in graphs,” Math. Japonica, vol. 24, no. 6, 1980.

[91 W. Zhang, G. Xue, J. Tang, and K. Thulasiraman, “Faster algorithms
for construction of recovery trees enhancing qop and qos,” Networking,
IEEE/ACM Transactions on, vol. 16, no. 3, pp. 642-655, June 2008.

[10] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-of-service routing
using maximally disjoint paths,” in International Workshop on Quality
of Service, 1999.

[11] F. A. Kuipers, “An overview of algorithms for network survivability,”
CN, vol. 2012, pp. 24:24-24:24, Jan. 2012.

[12] M. Médard, S. G. Finn, and R. A. Barry, “Redundant trees for
preplanned recovery in arbitrary vertex-redundant or edge-redundant
graphs,” IEEE/ACM Trans. Netw., vol. 7, no. 5, pp. 641-652, Oct. 1999.

[13] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325-336, 1984.

[14] Y. Guo, F. Kuipers, and P. Van Mieghem, “Link-disjoint paths for reliable
qos routing,” International Journal of Communication Systems, vol. 16,

Empirical CDF : max number of hops; 15-40 destinations per source
T T T

——ReducedCostV {
09 - ——Takahashi - Matsuyama {
MADSWIP

0.8

0.6

Xos |- 4
.
04 -

03[=

0.2 b

0.1 4

0 L L L
2 4 6 8 10 12 14

Number of hops

T
el

e
™)
—

. Maximum number of hops for structured topology, dense multicast.
200

—ReducedCostV
~——Takahashi - Matsuyama |
MADSWIP

@
S

Iy
S

N
S
T
I

N
S

Number of rules installed per source placed
2
o

0
15 20 25 30 35 40

Number of destinations

Fig. 22. Number of rules installed without aggregation for structured topology,
dense multicast.

25 - :

—ReducedCostV

—Takahashi - Matsuyama
MADSWIP

20 -

HH
th
i

Number of aggregated rules installed
per source placed

Number of destinations

Fig. 23. Number of rules installed with aggregation for structured topology,
dense multicast.

no. 9, pp. 779-798, 2003.

[15] M. Médard and A. Sprintson, Eds., Network coding : fundamentals and
applications. Amsterdam, Boston, London: Elsevier, 2012.

[16] D. J. C. MacKay, “Fountain codes,” Communications, IEEE Proceed-
ings, vol. 152, no. 6, pp. 1062-1068, Dec 2005.

[17] G. Xue, L. Chen, and K. Thulasiraman, “Quality of service and quality
protection issues in preplanned recovery schemes using redundant trees,”
in IEEE J. Sel. Areas Commun., ser. Optical Communications and
Networking series, vol. 21, 2003, p. 13321345.

[18] N. Singhal, L. Sahasrabuddhe, and B. Mukherjee, “Provisioning of
survivable multicast sessions against single link failures in optical wdm
mesh networks,” Lightwave Technology, Journal of, vol. 21, no. 11, pp.
2587-2594, Nov 2003.

[19] R. Nadiv and T. Naveh, “Wireless backhaul topologies: Analyzing
backhaul topology strategies,” White Paper, Ceragon, August 2010.

[20] M. Howard, “Using carrier ethernet to backhaul lte,” White Paper,
Infonetics Research, February 2011.

