
PUBLISHED IN NETSYS CONFERENCE 2019

Destination-aware Adaptive Traffic Flow Rule
Aggregation in Software-Defined Networks

Trung V. Phan, Mehrdad Hajizadeh, Nguyễn Tuấn Khải, Thomas Bauschert∗

Technische Universität Chemnitz, Chair of Communication Networks, 09126 Chemnitz, Germany
Email: trung.phan-van | mehrdad.hajizadeh | tuan-khai.nguyen | thomas.bauschert@etit.tu-chemnitz.de

Abstract—In this paper, we propose a destination-aware adap-
tive traffic flow rule aggregation (DATA) mechanism for fa-
cilitating traffic flow monitoring in SDN-based networks. This
method adapts the number of flow table entries in SDN switches
according to the level of detail of traffic flow information that
other mechanisms (e.g. for traffic engineering, traffic monitoring,
intrusion detection) require. It also prevents performance degra-
dation of the SDN switches by keeping the number of flow table
entries well below a critical level. This level is not preset as a
hard threshold but learned during operation by using a machine-
learning based algorithm. The DATA method is implemented
within a RESTful application (DATA App) which monitors and
analyzes the ongoing network traffic and provides instructions
to the SDN controller to adapt the traffic flow matching strate-
gies accordingly. A thorough performance evaluation of DATA
is conducted in an SDN emulation environment. The results
show that—compared to the default behavior of common SDN
controllers—the proposed DATA approach yields significant SDN
switch performance improvements while still providing detailed
traffic flow information on demand.

Index Terms—Adaptive Traffic Aggregation, Resource Con-
sumption, Network Statistics, Software Defined Networks.

I. INTRODUCTION

Software Defined Networking (SDN) is a new networking
paradigm which brings numerous advantages w.r.t. dynamic
traffic control and management. The SDN concept overcomes
the restrictions of legacy network architectures by decoupling
the control and data plane, and handling the control plane in a
centralized entity called SDN controller. The global network
view of the SDN controller allows to enable a policy-based
traffic management and a faster and more dynamic response
to network state and traffic variations [1].

Several features [2] are already available in SDN networks
such as mechanisms for traffic analysis, traffic flow manage-
ment and resilience. Nevertheless, some challenges still remain
to be addressed [3]. In particular, adapting the granularity of
traffic forwarding is an important issue. Most traffic manage-
ment approaches rely on the default flow matching strategies of
the available SDN controllers and therefore do not allow traffic
flow handling with variable granularity. For instance, the Open
Network Operating System (ONOS) SDN controller [4], by
default, applies Reactive Forwarding and uses the destination
MAC address for packet matching only. Hence, an incoming
packet is matched to a flow entry by just using its layer 2
destination address. In order to change the flow matching
scheme, an administrator has to manually set the respective

∗Corresponding author

true or f alse variables for the packet matching fields in the
ONOS source code.

In this paper, we propose a destination-aware adaptive traffic
flow matching (DATA) mechanism for SDN-based networks
in order to adapt the number of flow table entries in SDN
switches according to the level of detail of traffic flow
information that other mechanisms (e.g. for traffic engineering,
traffic monitoring) require. A RESTful application (DATA
App) monitors and analyzes the network traffic and advises
the SDN controller to adapt the matching strategy. The paper
is structured as follows. Section II gives a short overview about
common flow matching strategies in SDN-based networks.
Related work is outlined in Section III. Section IV explains
the DATA solution in detail. The results of the performance
evaluation are outlined in Section V and Section VI provides
a short summary of our work.

II. COMMON SDN FLOW MATCHING STRATEGIES AND
THEIR IMPLICATIONS

ONOS [4] provides high scalability and availability through
its distributed architecture. It supports Reactive Forwarding
(fwd) and intent-based Reactive Forwarding (ifwd) [4]. By
default, the ONOS SDN controller provides flow rules using
destination MAC addresses, i.e. only the destination MAC
address is examined during the packet matching process and
the other packet header fields like src/dst IP addresses or
src/dst ports are not considered. We denote this flow matching
strategy as MAC Matching Only Scheme (MMOS). However,
by modifying the ONOS Reactive Forwarding configuration
file, it is possible to add both the src/dst IP addresses and
the src/dst ports to the matching fields - this flow matching
strategy we denote as Full Matching Scheme (FMS). Similarly,
OpenDaylight (ODL) [5] provides a default L2Switch service
which applies MMOS. ODL also allows for another flow
matching scheme which uses only destination IP addresses.

In MMOS the destination MAC address but no IP ad-
dresses and port numbers are included in the matching fields.
Consequently, flow-table space is saved and the SDN switch
might have a higher data plane forwarding performance (as the
packet matching operation is quite fast). Another significant
advantage of MMOS is that it reduces the workload of the
SDN controller as less packet_in messages are generated. For
example, MMOS does not care about new TCP requests to the
same destination because it only checks the layer-2 addresses.
However, the simple MMOS scheme may raise problems for

ar
X

iv
:1

90
9.

03
05

9v
1

 [
cs

.N
I]

 7
 S

ep
 2

01
9

other applications which want to monitor traffic flows in
the network. For instance, an intrusion detection application
requires detailed flow information to detect malicious traffic.
As a result, an intrusion prevention application cannot issue the
right policies for specific flows to prevent or mitigate unwanted
traffic (e.g., DDoS traffic). In general, by using only MMOS,
the ability to track and monitor network traffic for security or
forensic analysis is limited.

In FMS, as the MAC address, IP address, and port number
are used for packet matching, it is possible to classify traffic
based on any individual field or combination of these fields.
This fine-grained flow handling enables security or traffic
engineering applications to have a closer view on the current
network traffic. On the contrary, the number of packet_in
messages to the SDN controller as well as the number of
flow entries in a SDN switch is much higher than in the case
of MMOS. This can result in significant degradation of the
forwarding performance or even to a switch outage in case the
maximum number of flow table entries is reached.

III. RELATED WORK

Issues related to flow rule installation and management in
SDN switches attracted a high interest in the SDN research
community. A wide range of approaches to control TCAM
(Ternary Content Addressable Memory) utilization were pro-
posed with the primary target of flow rule compression or
aggregation [6]–[10]. For example, the authors in [6] argue
that for simple packet forwarding rules based e.g. on MAC
addresses or VLAN IDs only cheap SRAM memory is suffi-
cient. Only more complex matching rules (with more matching
fields) might require the use of fast but expensive TCAM
memory. Thus the amount of TCAM memory in SDN switches
can be significantly reduced. The solutions outlined in [7] and
[8] apply the concept of flow rule aggregation by restructuring
the matching fields. By that the number of flow rules can
be significantly reduced. Another approach for dynamic flow
matching was proposed in [9] where the matching policy
includes the DSCP (Differentiated Services Code Point) values
for different traffic types. Rifai et al. introduced the MINNIE
framework [10] for flow table compression using wildcard
rules. The mentioned approaches only focus on flow table
size reduction and on increasing the data plane forwarding
performance but—contrary to our approach—do not consider
the possibility of adaptively changing the granularity of flow
matching (and thus the flow table size) depending on the level
of detail of traffic flow information that other mechanisms
(traffic engineering, traffic monitoring) demand.

IV. DESTINATION-AWARE ADAPTIVE TRAFFIC FLOW RULE
AGGREGATION MECHANISM

A. DATA Architecture

Fig. 1 provides an overview of the extended SDN control
plane. It comprises the default SDN control plane with a built-
in forwarding application and our novel DATA App. Detailed
information about the relevant components is provided below.

Fig. 1. DATA Architecture

1) Built-in Forwarding Application: Most of the common
SDN controllers [4], [5] provide a built-in forwarding appli-
cation with basic functionality to allow the creation of flow
rules which are then downloaded to the SDN switches. In this
work, we propose to add REST API interfaces to the built-
in forwarding application to have a secure communication
channel to the DATA App. The channel is used to share and
exchange network information and control instructions with
the DATA App via the shared database. Initially the DATA
App instructs the build-in forwarding application to apply the
FMS strategy.

2) DATA App: The DATA App consists of the following
three main components: The Statistics Collector periodically
gets information about the traffic flows (e.g. MAC/IP ad-
dresses, packet counts) traversing the SDN switches from the
SDN controller via a RESTful API [4], [5]. It sends the
collected statistical information to the Analyzer and stores it
in the shared database. The Shared Database is accessible
from three agents: Built-in forwarding application, Statistics
Collector and Analyzer. The Analyzer controls the change of
the flow matching schemes in the SDN network. It receives
flow statistics information from monitor threads of SDN
switches via the Statistics Collector and identifies the SDN
switches which are subject to performance degradation and
finds out the destination hosts (via applying Algorithm 1, see
below) whose associated flows are most critical to the switch
performance. In order to anticipate the switch performance
degradation well before it occurs and to trigger the flow
matching scheme change in time we apply a 2-dimensional
Support Vector Machine (SVM) [11] learning algorithm which
is well known in the machine learning research community
for its very good practical results [12]. After checking the
switch performance, the Analyzer co-operates with the built-
in forwarding application of the SDN controller to conduct
actions regarding the flow matching schemes of all flows
related to the previously identified destination hosts.

Fig. 2. Support Vector Machine principle

The SVM algorithm in the DATA App works as follows.
In general we have a linearly separable data set for train-
ing D =

{
(x1,y1), (x2,y2), . . .,

(
xN,yN

)}
, where xi ∈ Rn and

yi ∈ {+1,−1}. In this work xi represents the tuple (f ,∆ f).
Here f (0 ≤ f ≤ fcap) is the current total number of flow
entries and ∆ f denotes the change of the total number of flow
entries in a SDN switch between two consecutive observations.
The value of yi represents the status of the switch in the
ith observation period: yi = +1 denotes a good switch state
while yi = -1 indicates a performance degradation (due to
e.g. errors or exceptions). The SVM algorithm operates in two
main phases: training and mapping. In the training phase, the
SVM algorithm takes data samples from the data set D and
tries to find three hyperplanes H0, H1 and H2 as follows:

H0 = {x ∈ Rn : 〈w, x〉+b = 0, w ∈ Rn, b ∈ R}
H1 = {x ∈ Rn : 〈w, x〉+b = -1, w ∈ Rn, b ∈ R}
H2 = {x ∈ Rn : 〈w, x〉+b = +1, w ∈ Rn, b ∈ R}

(1)

see Fig. 2. The region bounded by the H1 and H2 hyperplanes
is called the margin in which no data samples of the training
set are allowed to be in. The H0 hyperplane lies in the
middle between H1 and H2. Note, that the chance of finding
more than three hyperplanes to separate two data groups is
relatively high. However, there is only one optimal solution
that maximizes the margin between H1 and H2. The task is to
find the values w and b so that the margin is maximum. The
solution of this optimization problem is described in [11]. The
distance of xi to the hyperplane H0 is defined as follows:

yi(〈w, x〉+b)
‖ w ‖ ≥ 1, (2)

where the sign of yi indicates the data group to which xi
belongs. In the mapping phase, for a new sample xi it is
checked to which of the two data groups separated by the
hyperplane H0 it belongs. This is done according to the result
of the function F(x)= sign(〈w, x〉+b). If F(x)= +1 the sample
xi is assigned to the data group representing a good switch

Fig. 3. Traffic analysis and policy creation at the Analyzer

performance status, otherwise (F(x)= -1) the sample xi is
assigned to the data group representing a performance degra-
dation of the switch. Interested readers are referred to [11],
[13]–[15] for a detailed explanation of the SVM algorithm.

The reasons for choosing the tuple (f ,∆ f) for evaluating the
forwarding performance of a SDN switch are as follows: The
effort for flow searching and matching within a SDN switch
is proportional to the number and matching fields of flow
entries. Moreover, a SDN switch has a maximum capacity
(fcap) for storing the flow entries. Accordingly, the change
of the number of flow entries indicates the control plane load
(w.r.t. o f _mod and o f _removed messages sent between SDN
controller and SDN switch) affecting both the SDN switch and
the SDN controller.

B. Operational Workflow

Initially, the Statistics Collector sends a request to the SDN
controller to ask for network topology information. Then, it
launches a monitor thread for each connected SDN switch
(step (1) in Fig. 1). The monitoring information is stored in the
shared database. Meanwhile, the Analyzer activates the SVM
engine and performs the training phase using a pre-prepared
training data set, see Section V-A. Next, the Statistics Collector
gets traffic flow statistics from the connected SDN switches
(step (2) in Fig. 1). In regular time intervals (observation
period) - for each SDN switch - a monitor thread counts the
total number of current flows and measures the flow number
changes in order to provide the tuple (f ,∆ f) to the SVM
engine within the Analyzer. The Analyzer then conducts traffic
analysis and policy creation for each SDN switch (step (3) in
Fig. 1).

As illustrated in Fig. 3, in case the SVM engine detects a
performance degradation of a switch i, the destination hosts
whose associated flows are most critical to the performance
of switch i (i.e. have the most flow entries in switch i)
are identified by applying Algorithm 1. Subsequently, the
Analyzer instructs the built-in forwarding application to send

Algorithm 1 Identification of the destination hosts whose
flows are most critical to the performance of switch i

Input: Si = {(h1, f1), (h2, f2), ..., (hk, fk)}: set of destination
hosts and respective number of flow entries associated with
these hosts in switch i, fi =

∑k
c=1 fc: total number of current

flow entries in switch i, p = 1: first index
Output: Hj = {}: set of destination hosts
begin
Sort Si in descending order of the current flow fc (from
highest to lowest numbers)
loop

Hj .append(Si[p])
fremaining = 1+

∑k
c=p+1 fc {One MMOS flow entry is

installed in switch i}
∆ f = fi − fremaining {Delete ∆ f flow entries in switch i}

x = (fremaining, ∆ f)
sign = SVM (x) {Feed x into SVM}
if sign = +1 then

break {Switch i can handle fremaining entries}
else

p = p+1 {Switch i cannot handle fremaining entries}
end if

end loop
return Hj

of_mod messages to remove all full-matching flow entries in
the flow-table of switch i and replace them by MAC matching
only flow entries, i.e. to perform a change from FMS to
MMOS (step (4) in Fig. 1). Furthermore, the DATA App
monitors the number of incoming packets per second (Rpkt)
in switch i individually for all flows, for which the matching
scheme change to MMOS is applied.

In case no performance degradation is detected for switch
i it is checked whether there exists a MMOS policy for any
destination hosts. If an MMOS policy is found, then Algorithm
2 is applied to check the conditions for a change to the FMS
strategy (step (4) in Fig. 1).

Algorithm 2 works as follows: for each switch (which has
MMOS applied) the identified flows respectively destination
hosts are sorted in ascending order w.r.t. the packet rate Rpkt

of the identified flows. For the first destination host in the
list a flow matching scheme change to FMS is applied in
the switch. For that, the built-in forwarding application is
instructed to send of_mod messages to remove all MMOS
flow entries in the affected switches (step (4) in Fig. 1). The
decision about changing the flow matching strategy happens
once per observation period (which is set to 3 seconds in
our implementation). By that strategy we increase the number
of flow entries in a switch only moderately (per observation
period) and avoid large variations in the number of flow
entries.

Algorithm 2 Identification of the MMOS flows/destination
hosts related to switch i for which changing back to FMS is
feasible

Input: Si =
{
(h1,Rpkt1), (h2,Rpkt2), ..., (hm,Rpktm)

}
: set of

destination hosts and respective packet rate of MMOS flows
associated with these hosts in switch i, (fi , fcap): total
number of current flow entries and maximum number of
flow entries in switch i, fextra: number of flow entries that
might be added in switch i
Output: Hj = {}: set of destination hosts
begin
for s = 1; s ≤ m; s++ do

fextra = idle_timeout*Rpkts {Worst case assumption:
each packet is associated with a new entry in switch i}
if (fextra + fi) < fcap then

Hj .append[hs]
else

continue
end if

end for
return Hj

{idle_timeout is a period of time set in a flow entry. If there
is no more incoming packets that matches to the flow entry
since last matched packet, then the flow will be removed
after idle_timeout seconds.}

Fig. 4. DATA deployment example (Enterprise SDN network emulated with
MaxiNet)

V. PERFORMANCE EVALUATION

A. Scenario Setup

The MaxiNet framework [16] is applied to emulate an
enterprise SDN network comprising several SDN switches
(realized via OpenvSwitch), 96 enterprise hosts (24 hosts per
office), 24 enterprise servers (within one server rack) and a
connection to the Internet (see Fig. 4). The emulated enterprise
SDN network runs within one Linux PC and is controlled by
a remote ONOS SDN controller running on another PC. The
Internet hosts are emulated on a third Linux PC. Enterprise
and Internet hosts are running within Linux containers using
Ubuntu images, and the servers are running within Linux
containers using Apache Web server images. For a convenient
configuration we place both the ONOS SDN controller and
the DATA App on the same Linux PC.

Fig. 5. Total number of flow entries in the enterprise SDN network over time for three different traffic loads R

Initially, for training the SVM we generate traffic from
enterprise and Internet users towards the enterprise servers and
among enterprise users and apply the FMS scheme for these
traffic flows. Contrary, for the traffic flows from the servers
towards the enterprise and Internet users (response traffic) we
apply MMOS. We monitor any errors or exceptions indicating
that switches cannot handle new flow requests or that switches
are disconnected from the SDN controller. We capture the
tuple (f ,∆ f) at all SDN switches and set sign = -1 if the
switch performance degrades (due to errors or exceptions);
otherwise, we set sign = +1. These tuple samples are then
used for training the SVM in the Analyzer. We observe that
an SDN switch starts getting overloaded or cannot handle new
flow rules when the current number of flows is around 3000
(fcap). Setting the idle_timeout value (after which the flow
entries are removed) to 10 seconds, the safety threshold for the
packet rate R a switch can handle is 300 packets per second
assuming that each packet belongs to a different flow (worst
case assumption). Accordingly, for the traffic generation we
divide R into three levels: low (R=100), medium (R=200) and
high (R=300).

In our performance analysis we carry out several experi-
ments with different flow matching strategies: MMOS only,
FMS only, Threshold-based (considering the number of flow
entries, fthres , as threshold in the DATA App without applying
the SVM engine) and adaptive (DATA App with SVM engine).
The ONOS controller applies Reactive Forwarding. Further-
more, we implement an IDS application to detect abnormal
traffic. The IDS application is based on a Self Organizing
Map algorithm [17] which classifies traffic by the 4-tuple
average number of packets per flow, average number of bytes
per flow, average duration per flow and percentage of pair-
flows. For the performance analysis we generate traffic from
enterprise and Internet users towards the enterprise servers
and among enterprise users with three different load levels R
= (100, 200, 300). During the experiments we trace the total
number of flow entries in the enterprise SDN network and
extract the average number of packet_in messages per second
to the ONOS controller.

B. Result Analysis
1) Total number of flow entries in the enterprise SDN

network: Fig. 5 shows that the MMOS scheme naturally

TABLE I
AVERAGE packet_in RATE (PKTS/S) TO THE SDN CONTROLLER FOR

DIFFERENT TRAFFIC FLOW RULE AGGREGATION SCHEMES AND TRAFFIC
LOADS R

Threshold- Threshold-
Schemes MMOS FMS based based DATA

(0.5 fcap) (fcap)
R=100 0.066 187.33 180.33 183.33 184.33
R=200 0.066 369.33 340.33 368.33 363.33
R=300 0.066 562.33 387.33 553.33 393.33

accounts for a very small amount of flow entries in all cases,
and that the FMS, the DATA and Threshold-based strategies
are not much different for low and medium traffic load. In
case of high traffic load, the total number of flow entries
is still beyond a critical level both for the DATA as well
as the Threshold-based scheme (with fthres = 0.5 fcap). This
is due to the fact that despite increasing traffic flows, these
two mechanisms significantly reduce the number of new flow
entries by changing to MMOS in order to prevent performance
degradation of the SDN switches. Contrary the FMS and
the Threshold-based scheme (with fthres = fcap) continue to
generate more and more flow entries which quite soon has
negative effects (errors and exceptions) on both the built-in
forwarding application of the SDN controller and some SDN
switches leading to a gradual performance degradation. Finally
the SDN controller and some switches suspend their operation.
A low total number of flow entries remains due to the few
switches which are still operational.

2) Average packet_in message rate to the ONOS controller:
In Table I the average number of packets per second (packet_in
rate) arriving at the built-in forwarding application quering
for new flow rules is shown. It can be seen that, contrary
to the FMS and the Threshold-based scheme (with fthres =
fcap), for all traffic load levels, the Threshold-based scheme
(with fthres = 0.5 fcap) and the DATA scheme allow the ONOS
controller to have an acceptable packet_in rate and guarantee
that the SDN switches are not getting degraded. Besides, they
significantly reduce the workload of the built-in application
due to the lower number of new flow queries.

3) Errors and exceptions: An important criterion for the
performance evaluation of the DATA approach is the time
until an error or exception (observed by the ONOS) occurs

TABLE II
DETECTION RATE (%) OF OUR IDS APPLICATION FOR DIFFERENT TRAFFIC

FLOW RULE AGGREGATION SCHEMES AND TRAFFIC LOADS R

Threshold- Threshold-
Schemes MMOS FMS based based DATA

(0.5 fcap) (fcap)
R=100 0.0 98.6 97.8 97.5 98.8
R=200 0.0 98.7 82.45 97.9 97.5
R=300 0.0 0.0 81.23 0.0 97.8

because of an overloaded SDN switch in the network. Our
results show that the FMS and the Threshold-based scheme
(with fthres = fcap) cause disconnected channels errors and
FlowRuleManager exceptions in the ONOS controller after 7
to 10 seconds since the high traffic load (R = 300) is generated.
For the other traffic load cases no errors and exceptions are
observed.

4) Detection rate of the IDS application: We assume that
attackers from both the enterprise and the Internet launch
a DDoS TCP SYN flooding attack to the enterprise Web
servers. We measure the DDoS attack detection rate of our IDS
application. The results in Table II show that there is no alert in
case of MMOS for all traffic loads because all traffic towards
the Web servers is grouped into one flow entry at all switches.
Hence, the IDS application can not recognize the DDoS attack.
In case of low and medium load, with FMS, Threshold-based
(with fthres = fcap) and DATA a TCP SYN flooding attack is
detected by the Self Organizing Map algorithm (with quite
similar detection rate). The Threshold-based scheme (with
fthres = 0.5 fcap) accounts for a less attack detection rate due to
the fact that traffic flows towards the Web servers are handled
with MMOS whenever the threshold is reached. In our DDoS
attack scenario the attacker tries to send as fast as possible TCP
segments with different source TCP ports to the victim (Web
servers). This leads to the installation of new flows entries in
the SDN switches. Therefore, it is easy for the IDS application
to gather traffic flow information and detect the attack. In the
high load case and for FMS as well as for the Threshold-
based (with fthres = fcap) scheme, the operations of the SDN
controller and some switches are suspended. That makes the
IDS application unable to gather traffic information from the
SDN controller and detect the attack. On the contrary, with
DATA, all SDN network components stay operational and the
IDS application can gather detailed information about the new
traffic flows and thus detect the TCP SYN flooding attack.
DATA yields a detection rate that is 16.5% higher compared
to the Threshold-based scheme (with fthres = 0.5 fcap). Con-
sequently, our novel DATA solution can efficiently provide
useful information for security analysis avoiding the drawbacks
of the other flow matching schemes.

VI. CONCLUSION

In this paper, we propose a destination-aware adaptive
traffic flow rule aggregation mechanism (DATA) to adapt
the number of flow table entries in SDN switches according
to the level of detail of traffic flow information that other
mechanisms (e.g. for traffic engineering, traffic monitoring,
intrusion detection) require and at the same time prevent SDN

switch performance degradation. Our performance evaluation
proves that the DATA solution outperforms legacy flow rule
matching schemes. In our future work, we are going to adapt
DATA as integrated application for common SDN controllers.

ACKNOWLEDGMENT

This work has been performed in the framework of the
Celtic-Plus project SENDATE Secure-DCI, funded by the
German BMBF (ID 16KIS0481).

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, pp. 1617–1634, Third 2014.

[2] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Computer Networks,
vol. 71, pp. 1 – 30, 2014.

[3] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud computing
networking: challenges and opportunities for innovations,” IEEE Com-
munications Magazine, vol. 51, pp. 54–62, July 2013.

[4] “Description of the onos controller, available at www.onosproject.org.”
[5] “Description of the opendaylight controller, available at www.

opendaylight.org.”
[6] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past: Scalable

ethernet for data centers,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’12, (New York, NY, USA), pp. 49–60, ACM, 2012.

[7] B. Leng, L. Huang, X. Wang, H. Xu, and Y. Zhang, “A mechanism
for reducing flow tables in software defined network,” in 2015 IEEE
International Conference on Communications (ICC), pp. 5302–5307,
June 2015.

[8] S. Luo, H. Yu, and L. M. Li, “Fast incremental flow table aggregation
in sdn,” in 2014 23rd International Conference on Computer Commu-
nication and Networks (ICCCN), pp. 1–8, Aug 2014.

[9] A. Mimidis, C. Caba, and J. Soler, “Dynamic aggregation of traffic flows
in sdn: Applied to backhaul networks,” in 2016 IEEE NetSoft Conference
and Workshops (NetSoft), pp. 136–140, June 2016.

[10] M. Rifai, N. Huin, C. Caillouet, F. Giroire, J. Moulierac, D. L. Pacheco,
and G. Urvoy-Keller, “Minnie: An sdn world with few compressed
forwarding rules,” Computer Networks, vol. 121, pp. 185 – 207, 2017.

[11] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines: And Other Kernel-based Learning Methods. New York, NY,
USA: Cambridge University Press, 2000.

[12] G. Blanchard, O. Bousquet, and P. Massart, “Statistical performance of
support vector machines,” Annals of Statistics, vol. 36, pp. 489–531,
2008.

[13] T. V. Phan, T. V. Toan, D. V. Tuyen, T. T. Huong, and N. H. Thanh,
“Openflowsia: An optimized protection scheme for software-defined
networks from flooding attacks,” in 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE), pp. 13–18, July
2016.

[14] T. V. Phan, N. K. Bao, and M. Park, “A novel hybrid flow-based handler
with ddos attacks in software-defined networking,” in 2016 Intl IEEE
Conferences on UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, pp. 350–
357, July 2016.

[15] T. V. Phan and M. Park, “Efficient distributed denial-of-service attack
defense in sdn-based cloud,” IEEE Access, pp. 1–1, 2019.

[16] P. Wette, M. Dräxler, and A. Schwabe, “Maxinet: Distributed emulation
of software-defined networks,” in 2014 IFIP Networking Conference,
pp. 1–9, June 2014.

[17] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in IEEE Local Computer Network Con-
ference, pp. 408–415, Oct 2010.

www.onosproject.org
www.opendaylight.org
www.opendaylight.org

	I Introduction
	II Common SDN Flow Matching Strategies and Their Implications
	III Related Work
	IV Destination-aware Adaptive Traffic Flow Rule Aggregation Mechanism
	IV-A DATA Architecture
	IV-A1 Built-in Forwarding Application
	IV-A2 DATA App

	IV-B Operational Workflow

	V Performance Evaluation
	V-A Scenario Setup
	V-B Result Analysis
	V-B1 Total number of flow entries in the enterprise SDN network
	V-B2 Average packet_in message rate to the ONOS controller
	V-B3 Errors and exceptions
	V-B4 Detection rate of the IDS application

	VI Conclusion
	References

