
i

Oversampled Multi-Phase Time-Domain Bit-Error

Rate Processing for Transmitter Testing

By

Rozita Najafi Nejad Nasser

Department of Electrical Engineering

McGill University, Montreal

A thesis submitted to McGill University in partial fulfillment of the requirements

of the degree of Master of Engineering.

Copyright © Rozita Najafi Nejad Nasser 2011

October 2011

i

Abstract

High speed serial interfaces (HSSI) are continually pushed toward operating at

higher speed to meet the demand for higher bandwidth. As a result, the timing

constraints for HSSI devices get tighter. Consequently, HSSI devices experience

issues such as timing jitter and bit-errors. This thesis investigates techniques to

speed up bit-error rate (BER) and jitter testing of HSSI devices.

This work proposes an oversampling-based transmitter test scheme that

accelerates transmitter jitter as well as eye diagram testing through the

deployment of a multi-phase bit-error rate test circuit (BERT). The proposed

scheme creates parallel BERT elements working in conjunction that are able to

digitize the input signal jitter behavior in a multi-phase manner. The more phases

we deploy the faster the test is completed.

We aim to accurately extract the transmitter jitter in time domain and finish the

whole transmitter test within tens of milliseconds. This exceeds the performance

of [2], which by itself was an improvement from seconds to 100 ms.

ii

Résumé

Les interfaces sérielles à haute vitesse voient leur vitesse continuellement

augmentée afin de satisfaire à des exigences de bande passante sans cesse

croissantes. Ces interfaces sérielles doivent donc rencontrer des contraintes

temporelles toujours plus serrées. Ceci a pour conséquence l'apparition de

problèmes de vacillement et d'erreur sur les bits. Ce mémoire explore des

techniques permettant l'accélération des tests de vacillement et de taux d'erreur sur

les bits pour les interfaces sérielles à haute vitesse.

Nous proposons une méthode de test de transmetteur basée sur le sur

échantillonnage qui accélère le test du vacillement et du diagramme de l'oeil par

l'utilisation d'un circuit de test de taux d'erreur sur les bits (BERT) multiphase. La

méthode proposée fait usage de plusieurs éléments de test en parallèle travaillant

ensemble et permet de numériser le comportement du vacillement du signal

d'entrée de façon multiphase. Plus le nombre de phases utilisé est élevé, plus

rapide est le test.

La méthode proposée va au delà de nos résultats obtenus avec les interfaces de

disque SATA [2], soit un temps de test passant de quelques secondes à 100 ms.

Elle permet en effet d'extraire de façon précise le vacillement dans le domaine

temporel et de compléter la totalité du test du transmetteur en quelques dizaines

de millisecondes.

iii

Acknowledgements

First, I would like to thank my supervisor, Professor Zeljko Zilic, for his

guidance, encouragement, patience, and understanding during my master's

studies; his support and insightful advice have always been of amazing value.

This thesis would not have been possible without his support that allowed me to

take part into the NSERC Engaged Program and his constant guidance that

followed.

I would like to thank the crew at DFT Microsystems for the fruitful experience I

had with them. In particular, I wish to thank Mohamed Hafed for giving me the

chance of using research carried out at their company towards the completion of

this thesis. I would also like to thank Carle Banville for providing me information

about existing designs along with his ever useful suggestions and advice. I thank

Nadine Kolment and Cameron Hayne for being willing to help and always finding

time to provide me with their opinions.

I wish to thank Professor Andrwas Swidan who has always been a constant source

of encouragement and support. His useful comments, good advice, and moral

support have been invaluable.

I would like to express my appreciation to Gaetan Gauthier and Simon Bussieres

for offering me internship opportunity at Matox Company for two semesters. This

experience enlightened my first glance of video hardware. I thank Matrox video

iv

hardware group for their friendship, support, and advice throughout my internship

period.

I also thank the students in the MACS lab for their friendship, help, and

motivation. Especially, I would like to thank Omid Sarbishei and Luca Montesi

for taking an interest and having the time to help me in reviewing this thesis.

The most special thanks goes to my sister for her endless love and support; she

was always there offering her unconditional help and assistance through all this

time. My deepest gratitude also goes to my parents and my brother who have

always believed in me and encouraged my pursuit of bigger and better things.

v

Table of Contents

Abstract .. i

Résumé .. ii

Acknowledgements .. iii

List of Figures .. viii

List of Tables ... xi

Chapter 1 - Introduction ... 1

1.1 Motivation .. 1

1.1.1 BER Testing Perspective .. 2

1.1.2 Qualification challenges .. 3

1.2 Contribution ... 5

1.3 Thesis Outline .. 6

Chapter 2 - Background ... 7

2.1 HSSI Structure .. 7

2.2 BER Mechanisms ... 8

2.3 Jitter Impacts to BER ... 9

2.4 Timing Jitter ... 11

2.5 Related Work on Transmitter Jitter Testing ... 13

vi

2.6 BER Bathtub Curve .. 15

2.7 The Dual Dirac Model and RJ/DJ Separation .. 17

Chapter 3 - Existing BERT Implementation .. 19

3.1 Top Architecture (Tx-Pattern & Rx-Pattern) ... 21

3.2 Pattern Transmitter ... 22

3.2.1 The Duplicator .. 23

3.3 Pattern Receiver ... 24

3.3.1 The Decimator .. 26

3.3.2 BERT .. 27

Chapter 4 - Multi-Phase BERT .. 30

4.1 Multi-Phase BERT Design vs. Existing Design 31

4.2 Multi-Phase BERT Implementation ... 39

4.3 MPB Pattern-Receiver .. 40

4.3.1 Multi-Phase BERT Engine .. 46

4.3.2 Comparator ... 46

4.3.3 Sample Counter ... 51

4.3.4 Synchronization .. 52

4.3.5 Register Interface .. 52

4.3.6 Bit Shifter and Pattern-Memory .. 54

vii

4.3.7 Arranging Bit-Error Counts and Calibrated Phases 62

4.4 MPB Possible Cases ... 68

Chapter 5 - Experimental Results .. 72

5.1 Test Setup ... 73

5.2 Synchronization Tests .. 75

5.2.1 Synchronization Tests with Sweeping Tx-Phase Delay 76

5.3 BER-scan Tests .. 76

5.4 Edge-Displacement Tests ... 81

5.5 Extracting Transmitter Jitter ... 86

5.6 MPB Speed Up ... 87

5.7 MPB Enhancement Cost .. 90

Chapter 6 - Conclusions ... 92

6.1 Conclusions .. 92

6.2 Future work .. 94

References ... 97

viii

List of Figures

Figure 1-1 : Block Diagram of a Digital Communication System 2

Figure 2-1 : Block diagram of an HSSI .. 8

Figure 2-2 : Time deviation of the sampling clock causes bit-error 10

Figure 2-3: The signal voltage can fluctuate vertically can cause a bit-error 11

Figure 2-4 : BER bathtub curve in a linear and logarithmic BER scale 16

Figure 2-5 : The BER bathtub graph 17

Figure 3-1 : Top Architecture (Tx-Pattern, Rx-Pattern) 22

Figure 3-2 : Duplicator timing diagram (oversampling-ratio = 2) 24

Figure 3-3 : Decimator timing Diagram (oversampling-ratio= 2) 26

Figure 3-4 : High level block diagram of the BERT... 28

Figure 3-5 : Block diagram of the pipelined Comparator 29

Figure 4-1 : Phase location of extra samples (oversampling-ratio=1, 2) 32

Figure 4-2 : Phase location of extra samples (oversampling-ratio=4) 33

Figure 4-3 : Phase location of extra samples (oversampling-ratio=8) 33

Figure 4-4 : Phase location of extra samples (oversampling-ratio=16) 34

Figure 4-5 : Required interval Rx-phase for a full bathtub (4X) 36

Figure 4-6 :Rx-phase interval required with MPB (4X) 37

Figure 4-7 : Block level diagram of pattern-receiver .. 40

Figure 4-8 : Removing decimator from pattern-receiver 42

Figure 4-9 : Sending data from pattern generator .. 44

ix

Figure 4-10 : Received sampled data at four different.. 45

Figure 4-11 : Alignment of expected bit stream and the sampled bit stream 47

Figure 4-12 : MPB pipeline comparator ... 49

Figure 4-13 : 16 pipeline comparators in parallel with each other for MPB 50

Figure 4-14 : Block level diagram of Bit Shifter .. 54

Figure 4-15 : Replacing Bit Shifter with Duplicator .. 56

Figure 4-16 : Adding multiple Bit Shifters ... 57

Figure 4-17 : Reference pattern valid strobe. .. 58

Figure 4-18: The desired alignment between the expected and received pattern . 60

Figure 4-19. Delaying the received pattern by four clock for alignemnt 60

Figure 4-20 : Hardware implementation of delay ... 61

Figure 4-21 : Including all oversampling-ratios in the design 62

Figure 4-22 : Bathtub plot ... 63

Figure 4-23 : Sweeping Rx-phase gradually to obtain BER-scan plot 64

Figure 4-24 : Arranging bit-error values in order ... 65

Figure 4-25 : Obtaining calibrated phase delays of phases on bathtub plot 66

Figure 4-26 : Arranging calibrated phase delays in order 67

Figure 4-27 : MPB Case 1 – Method Successful .. 68

Figure 4-28 : MPB Case 2 ... 69

Figure 4-29 : MPB case 3 where (oversampling-ratio= 8) 70

Figure 5-1 : BER-scan Result 1 .. 78

Figure 5-2 : BER-scan Result 2 .. 79

x

Figure 5-3: BER-scan Result 3 ... 80

Figure 5-4 : BER-scan Result 4 .. 81

Figure 5-5 : Plot of the number of bit-errors Vs. phase .. 82

xi

List of Tables

Table 3-1 : Target Data Rate Vs. Oversampling-Ratio ... 20

Table 4-1 : Required Shift Interval for a full BER-scan with both methods 35

Table 4-2: Error counters vs. oversampling-ratio ... 48

Table 5-1 : BERT Sync Results for different patterns .. 75

Table 5-2 : Edge-Displacement Test Results .. 85

Table 5-4 : Extracting Transmitter Jitter (Data Rate = 5000 Mbps) 86

Table 5-5 : Extracting Transmitter Jitter (Data Rate = 4000 Mbps) 86

Table 5-6 : Extracting Transmitter Jitter (Data Rate = 4500 Mbps) 87

Table 5-7 : Extracting Transmitter Jitter (Data Rate = 3500 Mbps) 87

Table 5-8 : Speed-Up Obtained at Different Data Rates 88

Table 5-9 : Relative Cost of MPB Method vs. Former Method 90

Table 6-1 : Actual Oversampling-Ratio Ranges ... 92

Chapter 1 - Introduction

1.1 Motivation

Moore’s law continues to drive the semiconductor technology roadmap to double

the number of transistors on an integrated circuit (IC) approximately every two

years; this constantly gives IC systems more functionality and higher

performance. As the feature size of integrated circuits continues shrinking into

submicron technologies, a complex and functionality-rich system needs to have

fast enough input/output (I/O) to be efficient. To achieve better system capability

and performance, I/O speed keeps increasing in advanced IC systems [11].

Decreasing feature size while increasing I/O speed leads to enhanced system

capabilities and performance; however, such advancements also introduce many

signal integrity challenges. Jitter, which is the timing deviation of a signal from its

ideal behavior, is one of the most important challenges. In order to ensure a

reasonable bit error rate (BER), the total available jitter budget must decrease as

I/O speed increases. Other critical challenges include noise and power

consumption. Low power constraints translate into noise being harder to control

and a high signal to noise ratio (SNR) becomes a common issue. Frequency loss

at high data rates is another signal integrity issue. When cost-effectiveness

dictates keeping channel material unchanged, increasing I/O link data rate makes

jitter, noise, and signal integrity issues very challenging [11].

 2

1.1.1 BER Testing Perspective

A digital communication system consists of a transmitter, a communication

channel, and a receiver. The channel, serves as a physical medium to send a signal

from the transmitter to the receiver; it can be a pair of wires, an optical fiber, or

any other communication medium. One problem associated with any

communication system is that it may randomly corrupt the transmitted signal. As

the transmitted signal propagates through the channel, it experiences interference

and dispersion effects. Therefore, all communication systems experience some

form of a transmission error [26].

Figure 1-1 : Block Diagram of a Digital Communication System

Bit-error-rate (BER) is a measure of the performance of a communication

interface [15]. Bit-error rate (BER) is the ratio between the number of incorrect

bits received and the number of total bits received. It quantifies the probability

that a data stream will reach the receiver with bit-errors introduced by the channel

[2].

Bit-error rate (BER) is affected by factors such as the amount of noise in the

communication channel, timing jitter, transmitter power, and the type of

waveforms that are used to transmit information [2].

 3

A bit-error rate tester (BERT) performs a bit-by-bit comparison between the data

stream received from the design under test (DUT) and the data stream generated

by a pattern generator. The DUT can be any communication interface which

receives bit sequences and after certain signal processing it restores the sequences

back [3].

1.1.2 Qualification challenges

High speed serial interfaces (HSSI) are a relatively recent means of high speed

communication between blocks, electronic integrated circuits, circuit boards and

systems. There are numerous HSSI standards addressing different applications;

some of these are SATA, XAUI, and Fiber Channel [4]. High speed serial

interfaces are also finding widespread use in consumer devices such as High-

Definition Multimedia Interface (HDMI), PCIe, and USB [10].

Increasing demand for bandwidth is continuously pushing high speed serial

interfaces (HSSI) toward higher data rates [23]. As silicon vendors are forced to

provide HSSI with higher rates, timing budget is getting tighter; the traditional

“Guaranteed by Design” cannot be applied anymore [4]. For instance, at 10 Gbps,

the Unit Interval (UI) is 100ps, and at 40Gbps, the UI is only 25 ps. To maintain a

reasonable BER (, random jitter should be in the order of sub pico-seconds

or less. Such stringent requirements make development complex and expensive.

As the data rate of HSSI devices keeps increasing, jitter, noise and signal integrity

challenges are bound to become even harder to tackle and stricter silicon

validation will become necessary [23].

 4

Unfortunately, Automated Test Equipment (ATE) cannot always be used for

HSSI testing and validation. Limitations appear on systematic solutions when

data rates go above 6 Gbps [4]; this includes the testing of HSSIs on ATEs. The

pace at which data communication rates increase is faster than the pace at which

test equipment evolves [13][4]. For instance, with today’s fastest ATE

(AWG6000), only jitter tolerance testing of up to 3Gbps is performable [4].

Testing should be as inexpensive and fast as possible. Jitter and bit-error rate

(BER) are just one of the hundreds of parameters to be tested on an average

device. Unfortunately, on a traditional bench it might take hours or days to do

BER or jitter testing [2][15]. In order to keep up with a competitive market, it is

important to develop methodologies that to seek to speed up the BER testing

process.

It is both challenging and expensive to perform transmitter/receiver jitter

tolerance tests [4]. Most standards for serial links require a bit-error-rate (BER)

level of or less [1][2][15]. In order to guarantee a BER level of at

least bits should be run; obviously, this is extremely time-consuming, as

even at 1.5 Gbps it takes almost 2 hours (111 minutes) to transfer all the required

bits. The emergence of new applications requiring lower BER levels, for instance

 make BER testing even more time-consuming [1]. Extraction techniques

such as the dual-Dirac model are used to reduce the long test time [28][27].

 5

1.2 Contribution

We seek techniques to address the urgent need in the semiconductor industry for

cost-efficient solutions to qualify HSSI jitter and BER performance. Our aim is to

improve the speed of bit error rate (BER) testing. Intuitively, this is achieved by

creating parallel bit-error rate test (BERT) elements working concurrently. These

elements must be able to digitize the input signal jitter behavior in a multi-phase

manner. This requires a high bandwidth digitizer to capture the transmitter

bandwidth. The more phases are deployed the faster the test will be. Depending

on the target data rate, we deploy 16, 8, 4, or 2 phases and aim at obtaining BERT

scan plots 16, 8, 4, or 2 times faster. The lower the target data rate, the more of a

speed-up is obtained.

We can also develop accelerated transmitter jitter and eye diagram tests. This data

can be accurately extracted from bit error rate (BER) testing results. Using the

dual-Dirac model [28][27] we extract the jitter components from the BER-scan

plots. Dual-Dirac was used since it enhances the speed of jitter testing by allowing

extrapolation of bathtub curves at lower BER levels.

The overall innovative testing scheme has been verified at data rates up to 6.4

Gbps. The accuracy of the proposed scheme has been verified by comparison with

the existing design. The comparisons were carried out on a DFT Microsystems

DJ60HS Test Module.

 6

1.3 Thesis Outline

In the remainder of the thesis, Chapter 2 presents the background of the research

that was carried out. It first presents an introduction on HSSI technologies and

briefly explains how BER and jitter are related to each other. The chapter

continues with the discussion of transmitter jitter testing solutions and how jitter

components can be extracted from BER-scan plots.

Chapter 3 covers the existing BERT testing scheme. This chapter mainly

describes the implementation techniques used in a DJ60HS test module by DFT

Microsystems Canada Inc. Chapter 4 starts by introducing the multi-phase BERT

concept and explaining how the algorithm improves the performance of BER and

jitter testing. The rest of the chapter covers major design considerations and their

development and implementation.

In Chapter 5 results are presented. We perform different kinds of tests to ensure

the performance and functionality of the multi-phase BERT scheme. Each test is

done multiple times under certain conditions and results are evaluated using

statistical methods. This chapter also includes results concerning the speed

enhancement we have achieved in transmitter testing.

Conclusions and future investigation directions are provided in Chapter 6.

 7

Chapter 2 - Background

High-speed digital interfaces have become a cornerstone of modern

communication. Due to the challenges these interfaces pose, there have been

works done on qualifying and testing timing specifications of high-speed digital

interfaces and some books written on this topic [15][26][27]. While these books

present more detailed description of high-speed interfaces testing, in this chapter

it suffices to explain only the concepts that provide the required background

information of the work done in this thesis. Much of what is state of art is actually

"trade secret"; hence, there aren't many publications in open literature, including

even the patents.

2.1 HSSI Structure

Many of today’s electronic systems make use of high-speed serial links. Some of

these links are: PCI-Express, XAUI, USB, etc. [26]. High speed serial interfaces

(HSSI) make use of a serializer-deserializer transmission scheme called SerDes.

As shown in Figure 2-1 the transmitter includes a synchronizer and a serializer.

The transmitter (Tx) takes in parallel data and converts it into a serial stream

which includes the clock [5]. The receiver (Rx) accepts high speed serial data

from the transmission media makes use of a synchronizer, a deserializer, and a

clock recovery unit to extract the clock and restore data to the original parallel

format [15] [5].

 8

Clock Data Recovery (CDR) circuits are used to extract clock information [25] in

most high speed serial interfaces. The clock is encoded into the data signal in the

transmitter and therefore recovered at the receiver side [23].

Phase-locked loop (PLL) circuitry in the transmitter provides an internal high

clock. It locks the transmitter output rate to the reference clock.

Figure 2-1 : Block diagram of an HSSI [13]

Bit errors in HSSIs are largely due to jitter. The jitter performance of a

Serializer/Deserializer (SerDes) device can be characterized by the jitter found in

the output of the transmitter and by the jitter tolerance of the receiver.

2.2 BER Mechanisms

In serial communication systems, the transmitter, the receiver, or the transmission

media can cause distortion or bit-errors [15]. Many design choices such as chosen

CDR mechanism, PLL bandwidth, encoding/decoding method, and transmitter

 9

power affect the performance of communication interfaces [25][15]. As a

measure of transmission quality of the overall communication system, BER is the

probability of a bit error at the output of the receiver, compared to the input of the

transmitter [15].

By definition, BER is derived by dividing the average number of transmission

errors over the total number of the bits transmitted to the receiver in a specified

time interval.

The test set up for measuring BER mainly consists of a block that compares the

logic state of the data appearing at its two input port. One input contains ideal data

(or transmitted data) and the other input contains received data. The compare

block captures data over a specified amount of bits from this the amount of

transmission errors is identified [26].

2.3 Jitter Impact to BER

An ideal waveform transmitted in a communication system consists of four

components: a high level “1”, a low level “0”, a rising edge (0 to 1 transition) and

a falling edge (1 to 0 transition).

When an ideal signal is transmitted over a communication system, it gets

contaminated by a physical process called noise [15]. Noise deviates an ideal

signal in two different manners; a timing deviation called jitter and an amplitude

deviation referred to as amplitude noise [29].

 10

At the receiver side, the Clock Data Recovery (CDR) samples the actual data

signal at sampling instance , and compares the sampled value with a threshold

voltage . If the value of the data at that instance is bigger than , logic “1” is

received; otherwise, logic “0” is received. The CDR of an ideal receiver samples

data in the middle of each data bit (

) [15].

As shown in Figure 2-2 , under the presence of jitter, the transition edge of the

signal can fluctuate horizontally across the sampling point (along the time axis).

The time deviation can cause a bit error – bit “0” is received as “1” or bit “1” is

received as “0”.

 Figure 2-2 : Time deviation of the sampling clock causes bit-error [29]

If we ignore setup and hold time requirements, timing jitter can cause bit errors

under two different conditions. The first case occurs when either the rising edge

 11

lags behind the sampling instance or the falling edge is ahead of the sampling

instance; here logic “1” is received as logic “0”. The second case occurs when

either the falling edge lags behind the sampling instance or the rising edge is

ahead of the sampling instance; here a logic “0” is received as a logic “1” [15].

Bit errors can also be caused by amplitude noise; if the momentary noise voltage

exceeds the noise margin, a wrong value can be sampled. This can occur even

though the sampling takes place at the correct moment [29].

Transmitted

Waveform 1 1 1 1

1 1 1 1

1111 1

0

0 0

0

0 0

0

0

Received

Waveform

Interpreted

Waveform

Figure 2-3: Signal voltage can fluctuate vertically across the sampling point and cause a bit-

error [29]

2.4 Timing Jitter

Jitter is the time deviation of a periodic signal from its ideal timing with respect to

a reference clock [24]. Jitter is a significant, usually, undesired factor in the

design of almost all communications links such as PCI-e, USB, and SATA [15].

Jitter is composed of deterministic and random components [24]. Deterministic

jitter (DJ) is a type of timing jitter or data signal jitter which is caused by

predictable events. This type of jitter has a bounded peak-to-peak value. Random

http://en.wikipedia.org/wiki/PCI-e
http://en.wikipedia.org/wiki/USB
http://en.wikipedia.org/wiki/SATA

 12

jitter (RJ) is caused by random events and is usually statistically characterized by

a Gaussian distribution quantified by a mean and a standard deviation [24]. Due to

the fact that the peak-to-peak value of a Gaussian distribution approaches infinity,

the distribution is unbounded and the peak-to-peak value is sample size

dependent. Therefore, the peak-to-peak value of random jitter (RJ) is dependent

on both the BER and total jitter which is defined at a certain BER level [15].

The probability density function (PDF) of total jitter (TJ) is obtained by

performing the convolution of the PDF of the deterministic jitter (DJ) and the

random jitter (RJ). Therefore the PDF of TJ is the convolution of the DJ and RJ

PDFs [14].

Usually total jitter (TJ) and deterministic jitter (DJ) are specified separately in

communication standards such as Serial ATA (SATA), XAUI, and fiber channel

[2].

The amount of total jitter depends on the application and is associated with a

certain bit-error rate (BER) [14]. For instance, if the transmitter (Tx) jitter

specifications of an HSSI device requires a BER level of , the amount of

total jitter (TJ) should not exceed 0.3UI. Also, the DJ should not exceed 0.17UI. It

is impossible to directly measure the total jitter (TJ) value at a BER level of

due to long testing time. This leads to the use of an RMS value of the random

jitter (RJ). The RJ limit can be obtained by assuming all TJ contributes to RJ; RJ

should not exceed 0.3 UI at a BER level. The RMS value of the RJ limit

 13

will be 0.021 UI which converts into about 7ps if the data rate is 3 Gbps and into

about 3.5 ps at a 6Gbps data rate [2].

2.5 Related Work on Transmitter Jitter Testing

Jitter measurement and decomposition is important for accurately deriving the

total jitter in a system and for identifying the root causes of jitter. Jitter

decomposition has been investigated for years [18] [19], techniques proposed in

[18][19] were mainly histogram-based analysis. The method proposed in [34]

could extract sinusoid jitter using external ATE. This method was extended [35]

to perform jitter spectral analysis. To ensure accuracy, both methods depend on

external reference clocks and external equipment. However, the jitter

characteristics of a signal may not be necessarily sinusoidal [37]. Assuming the

jitter characteristics of a signal with a double-delta PDF leads to inaccurate

estimating DJ and RJ, as well as the performance of the system [36]. As stated in

[36], PDF of double-delta function would be the convolution of a random

Gaussian-distribution with a sinusoidal function. The method reported in [37] ,

propose a spectral analysis scheme for extracting jitter without requiring an ideal

external sampling clock.

Presently jitter analysis and characterization is performed using various products

on the market. Some of these products perform their analysis on jitter

measurements from time interval analyzers (TIA). Others use sampling

oscilloscope jitter measurements or real-time oscilloscope jitter measurements

[28]. Bit Error Rate Testers are also for jitter testing and validation on bench [2].

 14

However, these solutions cannot be directly applied for in production at-speed

testing because of their low throughput [15].

Today, there are not many systems that can perform jitter compliance testing for

multi-gigabit devices in production [15]. Many jitter test solutions are based on

extra on-chip circuitry or on add-on modules [10][15][17]. These solutions are

limited by their low throughput, low accuracy, or high design complexity of the

loadboard [15].

In [38] a technique for estimating total jitter is described, which pointing out the

limitations of dual-Dirac [33][32] method, proposes a high-order polynomial tail

fitting technique that can estimate jitter at low BER levels. Another approach of

jitter decomposition is presented in [39] which can separate correlated and

uncorrelated components of deterministic jitter. A novel decomposition algorithm

is presented in [40] which investigates Gaussian tail behavior of measured

distributions and determines random and deterministic components of jitter.

The transmitter jitter test solution proposed in [30] is based on the high-speed

digital pins of the Agilent’s 93000 ATE. This approach first builds a bathtub

curve by shifting the compare strobes along the timing axis and level threshold

axis. A jitter separation algorithm is then applied. However, even with a 2ps

resolution, each BER measurement takes about 1 second. Both the test time and

the accuracy need to be improved: the RJ here measured is approximately 1ps

greater than the one measured by the bench [15]. The transmitter jitter testing

scheme presented in [31] is not very accurate; the random and deterministic jitters

 15

reported are respectively 1~2ps and 20ps greater than what measured by the bench

equipment. Also, test parameters can be further optimized to achieve better test

economy [15].

While transmitter testing usually takes seconds, the under-sampling based

transmitter test scheme presented in [2] can accurately extract the transmitter jitter

and finish the whole transmitter testing within 100ms.

Exceeding the current norm of 100 ms, the multi-phase BER-scan approach

presented in this thesis accelerates building bathtub curves; consequently, jitter

components can be extracted in tens of milliseconds. The extraction technique

used in this work is based on the dual-Dirac model [32].

2.6 BER Bathtub Curve

BER-scan is an approach to the measurement of transmitter jitter bathtub-curve is

usually used [28], in measuring transmitter jitter with a BER-scan approach. The

bathtub curve is generated by sweeping the sampling position along the timing

axis and then recording BER at each sampling position [6]. Each sampling

position on the timing axis is referred to as a phase and the total number of bits

transmitted is referred to as the duration of the test.

By sweeping the sampling position through the entire bit period (UI), and

performing transmitter BER measurement (involving a certain number of bits for

each phase) leads to a plot. This plot shows the BER on the vertical axis and the

 16

time phase on the horizontal axis. The time phase is the one of a valid data of a

serial signal.

Figure 2-4 : BER bathtub curve in a (a) linear BER scale and a (b) logarithmic BER scale

[27]

Usually, the two sides of the bathtub plot consist of a measured section and an

extrapolated section. The top section (high BER) is calculated directly from the

measured bit-error (TJ). The lower section (low BER) is calculated by

extrapolation. In the transmitter BER-scan, the dual-Dirac model gives a better

curve fit [28]. For instance, performing transmitter BER testing with a duration of

 bits yields the bathtub curve shown in Figure 2-5. The solid horizontal “lines”

of the top section showing a BER higher than are obtained by a direct bit-

error measurement. On the other hand, the dotted “lines” below a BER level of

 are calculated with extrapolation using the dual-Dirac model.

 17

Figure 2-5 : The BER bathtub graph shows how the estimated BER (TJ) value is

extrapolated from the measured BER (TJ) using the dual-Dirac jitter model.

BER bathtub graphs are useful in visualizing how a desired BER affects the data.

Conversely, these graphs show what BER can be expected from a desired data.

Examination of the intersection between the upper and lower sections of the

plotted curves indicates how well the dual-Dirac model fits the measured jitter

data [28].

2.7 The Dual Dirac Model and RJ/DJ Separation

In the bathtub-based transmitter jitter measurement, all we can see is the

combined TJ profile; In other words, we see a convolution of the DJ and RJ. In

order to derive the deterministic and random jitter (RJ) components, we need to

work backwards [15].

RJ/DJ analysis separates a signal’s aggregate total jitter into random jitter (RJ)

and deterministic jitter (DJ) components [28]. Separating jitter components,

 18

allows estimating peak-to-peak jitter values at very low BER levels that would

otherwise take too much time to measure directly [15][27]. An additional benefit

of this technique is that it helps diagnose and understand the underlying causes of

jitter [28] . This is because BER gives little information about the mechanism that

causes error but jitter does [29][15].

The dual Dirac jitter model was developed to model the RJ and DJ components of

a digital signal. The reasoning comes from the fact that the deterministic

component of the jitter is bounded [27]. This means that the simplest model for

deterministic jitter is assuming that DJ is comprised of a pair of delta functions. In

this case, the complicated convolution is reduced to a standard complementary

error function [15]. The upper part of the bathtub curve is dominated by the DJ

while the lower part is dominated by RJ [30].

The dual Dirac assumption serves as the model for modern bathtub curve fitting.

The bathtub curve at lower BER levels is extrapolated using the higher BER

values [28][27][15]. The extrapolation results can be verified by performing direct

measurements at the lower BER levels. Therefore we borrow ideas from the

transmitter BER scan for our jitter tolerance extrapolation.

 19

Chapter 3 - Existing BERT Implementation

In this chapter we present BER test technology implemented by DFT

Microsystems and provide a description of key implementation techniques that we

are going to deal with in order to develop Multi-phase BERT scheme.

3.1 Introduction

Multiple data rates are being implemented on single High Speed Serial Interface

(HSSI) devices due to a higher degree of integration. In order to accommodate

multiple data rates on a single high speed serial interface (HSSI) device, the

device needs to be capable of providing multiple rate clock signals. Multiple data

rates can be implemented by changing divider ratios inside the phase locked loop

(PLL) [7]. Phase locked loop is used for clock generation and has a key

component: the voltage controlled oscillator (VCO). By having additional VCOs

multiple data rates can be used within a single HSSI device. When the same PLL

is used to provide multiple data rates, jitter performance at different speeds can

vary. Jitter performance of the voltage controlled oscillator (VCO) of each PLL

can only be optimized at one specific speed; at any speed other than the optimal

one, jitter performance may decrease [7][4]. If multiple data rates within a single

HSSI device are implemented by using different PLLs, the performance at one

data rate does not relate to performance at another data rate [4]. Usually at high

data rates jitter performance is better because the PLL has more dividers; the

modulation clock frequency is higher [8].

 20

The proposed SerDes test solution in [8] makes use of oversampling to cover a

wide range of data rates and at the same time achieve a good performance in

terms of jitter. As the PLL operating frequency range cannot cover the low data

rates, the data is oversampled by a suitable factor, such that the sampling

frequency lies within the acceptable range of the PLL. It should be noted that the

factor by which the signal is oversampled affects the performance in terms of

jitter. In fact, the sampling frequency of the oversampled signal, in spite of being

achievable by the PLL, might become marginal with respect to the PLL operating

frequency range. This could impact the performance, since more jitter exists

closer to the ends of the range of the PLL operating frequency.

Table 3-1 below shows different data rate ranges with respect to their

corresponding oversampling-ratio.

Table 3-1 : Target Data Rate Vs. Oversampling-Ratio

What table 3-1 above indicates is that for the data rates in the range 6400-3200

Mbps no oversampling is done. For 3199-1600 Mbps, the oversampling factor is

two. Likewise, data at rates within the range of 1599-800 Mbps are oversampled

by a factor of four. Data in the range 799-400 Mbps range are oversampled by a

Target Data Rate Oversampling-Ratio Mode

6400 Mbps -3200 Mbps 1 1X

3199 Mbps - 1600 Mbps 2 2X

1599 Mbps - 800 Mbps 4 4X

799 Mbps - 400 Mbps 8 8X

399 Mbps- 250 Mbps 16 16X

 21

factor of eight, and data rates from 399 Mbps to 250 Mbps are oversampled by a

factor of sixteen. As a result, lower data rates are also supported.

Oversampling is implemented by having the PLL output two clocks: one pattern-

clock (the fast clock), and one oversampling-pattern-clock (the slow clock).

Depending on the data rate, the slow clock is the fast clock divided by a factor of

2 (one, two, four, eight or sixteen).

3.2 Top Architecture (Tx-Pattern & Rx-Pattern)

The block diagram in figure 3-1 shows the top level architecture of the Tx and

Rx-patterns. Rx-pattern which is actually the BERT receiver is the main block of

concern, where the sampled bit stream is received from the SerDes and is

compared to the reference pattern from pattern-generator or pattern-memory. We

provide greater detail of each block in the following sections of this chapter.

 22

pattern_generator

TX_PATTERN

ctrl

Address

Data

Pattern

memory

arbiter

Gigabit

Receiver

RX_PATTERN

ctrl
Address

Data BERT

CSR

pattern_generator
Data

ctrl

CSR

duplicator

Decimator

Figure 3-1 : Top Architecture (Tx-Pattern, Rx-Pattern)

3.3 Pattern Transmitter

According to what was mentioned in section 3.1, the gigabit transceiver samples

at the highest speed range the HSSI supports. The pattern-transmitter block

works by having its patter-generator receive a bit stream which it sends to the

serializer (Ser) of the gigabit transmitter.

Bit streams coming out of the pattern-transmitter should be at the rate of the

pattern-clock (fast clock) before entering the transmitter. However, the pattern-

generator generates bit streams at the actual target data rate which is not the

optimal rate except in the range of the oversampling-ratio of one.

 23

Obviously, within the 6400 Mbps -3200 Mbps range no oversampling is done. So,

the oversampling-pattern-clock, the pattern-clock and the clock of the gigabit

transmitter are all the same. However, this is not true when the over-sampling is

not of one. In this case, the data generated by the pattern-generator is based on

the actual target data rate (slow clock) and is hence slower than the data rate at

which the transmitter is tuned to receive from the pattern-transmitter. Data

should be on the fast clock before leaving the pattern-transmitter block. This

should be done in a reasonable way so that the data would not be altered due to

speed differences and can be recovered correctly in the receiver.

We therefore need a clock-domain crossing block in between. This block is

slowly written to (on the slow clock) and is read quickly by means of the fast

clock (which is the pattern-clock). To achieve this, a duplicator is placed right

after the pattern-generator.

3.3.1 The Duplicator

Figure 3-2 shows the timing diagram of the duplicator. pat_clk is the fast clock

and ovrsmpl_pat_clk is the slow clock which here is equal to

 since the

oversampling-ratio is assumed to be two.

Starting from the most significant bit (MSB) the duplicator duplicates each bit an

amount of time equivalent to the oversampling-ratio. For instance, in 2X mode the

duplicator reads two times faster than the writing speed. This means it can start

reading as soon as it has only received half of the data.

 24

afifo_empty

B(1011) C(1100) D(1101) E(111)

pat_clk

afifo_rd_en

afifo_din

A(1010) B(1011) C(1100) D(1101) E(111)afifo_dout

ovrsampl_pat_clk / pat_clk = 0.5

1100dup_dout

A(1010)

1100 1100 1111 1111 0000

ovrsmpl_pat_clk

Figure 3-2 : Duplicator timing diagram (oversampling-ratio = 2)

When the data rate is in the range corresponding to the oversampling-ratio of 16

(399 Mbps - 250 Mbps), ovrsmpl_pat_clk is sixteen times slower than the

pattern-clock (pat_clk). Starting from the MSB each bit is duplicated sixteen

times; in a 32-bit bus, duplicator will start reading after it has received only 2 of

bits of data. Here, reading occurs 16 times faster than writing.

Thus, by adding a duplicator in between the pattern-generator and the gigabit

transmitter, data is always sent from the pattern_transmitter to the receiver at the

correct rate.

3.4 Pattern Receiver

The same reasoning is valid on the gigabit receiver side. The gigabit transceiver

runs and samples data at the highest clock rate possible. Having a look at Figure

3-1 once more, one can see that when sampled data enters the pattern_receiver

there exists a similar, but reversed, issue as with the pattern_transmitter and

receiver.

 25

Sampled data comes to the patter-receiver from the gigabit transceiver and is

therefore on the fast clock (pattern-clock). On the other hand, the bit streams

generated by the pattern-generator are on the oversampled-pattern-clock.

Because the pattern-generator is outputting bit streams consistent with the real

data rate, it is in fact running on the slow clock (ovrsmpl_pat_clk).

As stated before, when the data rate is in any range other than the range where the

oversampling-ratio is one (Table 3-1), ovrsmpl_pat_clk is oversampling-ratio

times slower than the pattern clock (pat_clk).

The pattern-receiver receives more samples from the gigabit receiver than the

number of reference patterns generated by the pattern-generator. The Bit Error

Rate Tester (BERT), which represents the main purpose of the design, will be

comparing bit streams generated by the pattern-generator with bit streams

received from the gigabit transceiver. In case of an oversampling regime, the rate

at which the BERT is receiving samples from the pattern-generator is less than

the rate at which it is receiving bits from gigabit transceiver. The BERT will not

be able to accomplish a reasonable comparison between the two bit streams; it is

not be possible to compare two different bit streams whose number of bits per unit

of time (rate) is not the same. This is the motivation for adding a block called

decimator between the gigabit receiver and the BERT.

 26

3.4.1 The Decimator

Figure 3-3 shows how the decimator works. The decimator is needed to reverse

what the duplicator does. The decimator slows down the speed at which sampled

data from the gigabit transceiver is going to the BER tester; hence, it makes it

comparable to the expected bit stream coming out of the pattern-generator or the

pattern data memory.

As shown in Figure 3-3, data is written in the decimator at the speed of pat_clk

and the decimator reads data at the speed of ovrsmpl_pat_clk. This second clock

is slower than the first except when the sampling ratio is one. This explains why

some of samples are dropped and data received from the gigabit transmitter gets

matched with the expected pattern. This is fundamental for comparison of these

two streams of bits.

ovrsmpl_pat_clk

afifo_empty

A

pat_clk

afifo_rd_en

afifo_din

A B C Dafifo_dout

ovrsampl_pat_clk / pat_clk = 0.5

A B B C C D D E F FE

afifo_wr_en

Figure 3-3 : Decimator timing Diagram (oversampling-ratio= 2)

For instance, with an oversampling-ratio of two, ovrsmpl_pat_clk is two times

slower than the pat_clk. Thus, every other sample is dropped; if 32-bits of data are

 27

received, every other sample will be dropped and only sixteen bits will remain.

These sixteen bits are combined with the sixteen bits of the next 32-bits of data.

Indeed, out of every two 32-bit samples received, the decimator reads only one

32-bit sample. Accordingly, it will drop the samples which were oversampled by

the gigabit transceiver and it will pass samples to the BERT at the pace of the

pattern clock.

When the oversampling-ratio is four (data rates in the range of 1599 Mbps - 800

Mbps), three out of four samples are dropped. This means that for every 32-bits of

data, eight bits are kept. This is done on four 32-bit sets of data in a row to create

a new 32-bit word. The time it takes decimator to read this is four times more the

period of the pattern-clock.

3.4.2 BERT Engine

The main functionality of the Bit Error Rate Tester (BERT) is to compare a

stream of bits received from the gigabit receiver against an expected bit pattern

stored in a memory. The BERT reports the number of mismatches found as the

result of the comparison.

Before the BERT starts its comparison process, the two bit streams must be

aligned. To do so, the BERT performs a synchronization process in order to align

the bit pattern coming from the Gigabit receiver to the bit pattern coming from an

external pattern memory. A bit alignment process is required because the gigabit

receiver deserializes the incoming bits with an arbitrary bit alignment.

 28

Delay

Bit Shifter

Comparator

BERT Controller

Offset

Controller AVALON I/F

rx_pattern

exp_pattern

word_shift

offset

shift

error_cnt

sync_done

comp_done

overflow_err

sync_trig

sync_err

Figure 3-4 : High level block diagram of the BERT.

Synchronization is performed in an iterative process. If the number of mismatches

between the two bit streams is greater than a certain threshold value (for instance

3), then the reference pattern coming from the pattern-memory is shifted by one.

Once again, the pipelined comparator will find the number of bit errors. If the

new amount of errors is still more than the threshold bit error value, the reference

pattern is shifted by one bit once again. This iterative process continues until the

two bit streams are synchronized together which means that the number of

mismatch between them is less than the threshold bit error value.

After synchronization is done, the BERT starts the comparison process. It

compares the two now aligned bit streams in the pipelined comparator. The

pipelined comparator component works as shown in Figure 3-5. It performs a

parallel comparison between bits of the two streams at once, where n is the

 29

width of the reference pattern and the sampled pattern. For comparing each two

bits together an XOR gate is used.

+

=

DATA_IN_A 2
X

DATA_IN_B

LOGIC_0

LOGIC_0
+

=

LOGIC_0

+

=

LOGIC_0

bit 0 bit 1 bit 2
X
-1

2
X

EN_COMP

ERR_CNT

VALID

0

1

Figure 3-5 : Block diagram of the pipelined Comparator

The BERT Controller takes care of controlling the bit error counting process. It

constantly reads the error count from the pipelined comparator adding readings

together. The process stops once the number of the bits received from the two

streams reaches a user defined amount. The number of recorded errors is then

reported. The BERT Controller places the number of bit errors on the register

interface so that it is software accessible software.

 30

Chapter 4 - Multi-Phase BERT

We aim at improving the transmitter bit-error rate (BER) testing speed. This is

achieved by having parallel bit-error rate testers (BERT) working in conjunction;

each tester is to measure the BER value of a different phase. Depending on the

data rate we sample at, we will have 1, 2, 4, 8, or 16 different phases and we will

perform 1, 2, 4, 8, or 16 comparisons in parallel. By the end of the comparison

process we have the bit-error count of multiple phases at the same time. This

indeed accelerates generating BER-scan plots by the corresponding oversampling-

ratio of the pattern data rate being tested. Using dual-Dirac extraction model we

aim to calculate jitter components 1, 2, 4, 8, or 16 times faster.

This chapter mainly deals with the design of a BERT data receiver that enables

reading measurements of multiple BERT engines at the same time. We seek

methods to implement multi-phase BERT by adding the least possible circuitry to

the existing design of the DJ60HS [8]. We would like to perform multiple

comparisons in parallel. Clearly, adding multiple BERT engines enables

performing the comparison of multiple phases all at once. This will require adding

15 other BERT engines; one is already present in the existing implementation.

However, we are looking for the most optimized implementation in terms of

circuit area and testing time. We try to achieve performing multiple and

concurrent bit-error measurements without adding any extra BERT engines. We

should also consider not to compromise on speed by adding extra delays to the

implementation as the aim is to accelerate the bit-error rate testing process.

 31

4.1 Multi-Phase BERT Design vs. Existing Design

The gigabit receiver is sampling more often than the actual data rate would imply;

hence, SerDes is sending extra samples at phases other than the sampling phase

delay. Consequently, the BERT receiver is receiving data at phases that are

brought in by oversampling. For instance, if the gigabit transceiver is set to run at

4 Gbps and the target pattern data rate is 1Gbps, we expect to receive samples

every 1ns but the gigabit receiver is sampling data every 250ps. This is a case

similar to the range that requires an oversampling-ratio of four. The gigabit

transmitter is sending information four times faster than the effective data rate;

therefore, each time it is sending 3 extra samples to the pattern-receiver block.

Figure 4-1 and Figure 4-4 show the phase location of extra samples. These are

brought in by the oversampling feature in different modes as the receiver phase

delay is swept. Dashed lines are the equidistant extra samples we get at other

phases. Solid lines show the actual phase we set the receiver phase delay at. As

we shift the Rx-phase delay a new round of samples is obtained (shown by purple

arrows).

 32

ovrsmpl_pat_clk

pat_clk

ovrsmpl_pat_clk

pat_clk

ovrsampl_pat_clk / pat_clk = 0.5

ovrsampl_pat_clk / pat_clk = 1

UI/2

Figure 4-1 : Phase location of extra samples obtained due to oversampling (oversampling-

ratio=1, oversampling-ratio=2)

 33

ovrsmpl_pat_clk

pat_clk

pat_clk /ovrsampl_pat_clk = 4

UI/4

Figure 4-2 : Phase location of extra samples obtained due to oversampling (oversampling-

ratio=4)

ovrsmpl_pat_clk

pat_clk

pat_clk /ovrsampl_pat_clk = 8

UI/8

Figure 4-3 : Phase location of extra samples obtained due to oversampling (oversampling-

ratio=8)

 34

ovrsmpl_pat_clk

pat_clk

pat_clk /ovrsampl_pat_clk = 16

UI/16

Figure 4-4 : Phase location of extra samples obtained due to oversampling (oversampling-

ratio=16)

The decimator component in the bock level diagram of Figure 3-1 drops these

extra samples found on the incoming bit stream. This is done to make the stream

match the reference pattern.

Thanks to the oversampling feature of the design, we are able to digitize in a

multi-phase manner. This translates into putting extra samples received from the

gigabit transceiver to good use. This is indeed the main motivation for multi-

phase bit-error rate testing (BERT).

It is possible to keep the extra samples and, instead of dropping them, use them to

enable parallel BERT elements. The BERT must be upgraded to be able to

perform multiple bit-error measurements at the same time. If the oversampling-

ratio equals one, there is only one bit-error counter. In 2X mode, where the

oversampling-ratio is two, there are two bit-error counters for two different

phases. Similarly, in 4X, 8X, and 16X modes there are respectively 4, 8, and 16

 35

bit-error counters, each measuring bit-error at different phases. Information from

all bit-error counters can be read and stored at the same time.

In order to build bathtub curves, the sampling delay should be swept over 2UI

with fine time resolution. Using the multi-phase bit-error counting technique, a

bathtub can be generated by sweeping the sampling time delay over just a fraction

of the unit interval (UI) and this is the main factor contributing to speed

improvement with MPB. Regarding the required sweeping interval to obtain

bathtubs, Table 4-1 gives a comparison of the former method with different

ranges of the multi-phase method.

Table 4-1 : Required Shift Interval for a full BER-scan Test with MPB and Former Method

As Table 4-1 suggests, in the case of a target data rate within the range of an

oversampling- ratio of one, the receiver phase delay should be swept over two

unit intervals. On the other hand, we have an improvement with all other target

data rates. Sweeping the sampling delay with a fraction of the UI is sufficient to

obtain a bathtub BER-scan plot. For instance, in 2X mode, each time we are

getting an extra sample at another phase which is at a

 distance from the original

sample. If the receiver phase delay is only swept over half of the unit interval

(UI), (

), the other half will have already been covered by extra samples from

Mode of Operation Former Method MPB

1X 2UI 2UI

2X 2UI UI

4X 2UI UI/2

8X 2UI UI/4

16X 2UI UI/8

 36

the first pair. Hence there is no need to sweep the phase delay over the second half

of the UI as we have already obtain samples at those other phases. Also, in order

to have samples at the second unit interval (UI), the Rx-phase can only be delayed

by half of a UI. Hence, a total delay of one unit interval (UI) is enough to cover

the entire 2UI.

pat_clk

pat_clk /ovrsampl_pat_clk = 4

1
st

Measurement

2
nd

Measurement

n
th

Measurement

. . .

UI/4

Figure 4-5 : Required interval Rx-phase should be swept over to cover one entire UI

(oversampling-ratio=4)

Similarly, in 4X mode, covering a quarter of a (UI) will give samples covering the

whole unit interval (UI). This time, a total delay of two quarters of a UI is

sufficient in order to plot bathtubs.

 37

UI/4 UI/4

Figure 4-6 : Sampling phase interval MPB should be swept over for a full BER-scan test

(oversampling-ratio=4)

The relative reduction of sweeping interval increases as the pattern data rate gets

lower. In 8X mode a total delay of UI/4 is required; in 16X mode a total delay of

UI/8 is required.

The Multi-phase BERT technique also reduces the overhead of communication

between hardware and software. The elimination of significant overhead when

testing multiple phases is another source of speed improvement in the multi-

phase bit-error rate (BER) testing technique. There are at least three software

commands required (though SPI) to get the bit- error count at one certain

sampling phase. One command allows setting the sampling phase delay of a

certain phase, one to start the bit error measurement, and one to obtain the bit-

error count from the hardware. Each software (SPI) command takes much longer

than hardware processing. Using the former method, three SPI commands are

required for any single measured phase of the bathtub. With the new multi-phase

 38

technique, this overhead of communication is reduced. As discussed before, there

is no need to set the sampling delay at any single phase to get the bit-error count

of a specific phase. We now need to set the phase for only a fraction of a UI and

for the rest of the UI. The oversampling feature provides the rest of the samples at

other phases of the UI. The BERT performs bit-error calculation of all the phases

it is receiving at the same time and the results are ready for the software at once.

Three SPI commands are hence required for a smaller amount of phases and using

a fraction of UI instead of 2UI (see table 1). For instance, in 16X mode a full

bathtub (along 2UI) needs us to pass the SPI the following commands: set up the

receiver phase, carry out BERT and store the results of only 1/16 of all required

phases. This, in fact, represents a speed improvement of 15/16*(delay of three SPI

commands) seconds faster.

Another contributing factor to the acceleration of BER testing with the use of

multi-phase BER is indeed performing the bit-error calculation of multiple phases

at the same time. Due to the concurrent feature of the design, bit-error

measurements of all phases received is done in parallel. Within the time the

former design used to measure the BER of one phase, we can now measure the

BER of multiple phases. In 1X, 2X, 4X, 8X, or 16X modes there are respectively

1, 2, 4, 8, or 16 error counters performing bit-error measurements simultaneously.

This is achieved without adding multiple BERT blocks to the implementation

which would requires a lot of circuitry. With minimum added cost we are going to

achieve the measurement of multiple phases at once.

 39

In addition, the BERT used to run on oversampling-pattern-clock, the slow clock.

Now it will run on the fast clock and perform multiple bit-error measurements in

parallel and in less time.

4.2 Multi-Phase BERT Implementation

The goal is to implement the multi-phase bit-error tester while modifying the

existing BERT implementation as little as possible.

Figure 4-7 illustrates the pattern-receiver block. Based on what was said before,

changes will have to be applied only on blocks that rely on data received from the

gigabit receiver. Hence, our focus is on the pattern-receiver and the blocks in its

neighborhood.

 40

Pattern memory

Pattern

memory

arbiter

Pattern

generator
BERT

NIOS

Gigabit

xceiver

SPI INTERFACE STATUS_OK

Figure 4-7 : Block level diagram of pattern-receiver

The objective is to also implement the enhancement with the least possible cost

and circuitry added.

4.3 MPB Pattern-Receiver

Since we are going to perform a transmitter test, our main block of concern is Rx-

pattern (BERT receiver). Here, we receive the sampled data from the gigabit

receiver and evaluate the number of bit-errors.

 41

Two important blocks inside the pattern-receiver are the pattern-generator and

the BERT. The latter performs the comparison between the expected pattern

coming from the pattern-generator (or pattern-memory) and the pattern received

from the gigabit transmitter. Figure 3-1 shows the pattern-receiver in greater

detail.

As discussed in the chapter 3, the decimator runs on the fast clock (pattern-clk)

and it drops the extra samples received from the gigabit receiver. The BERT is

running on the slow clock (oversampling-pattern-clock) since it is comparing two

bit streams which both are both on the slow clock. Obviously, the pattern-

generator, pattern memory arbiter, and pattern memory are all running on the

oversampling-pattern-clock since the reference pattern should be generated at the

actual pattern data rate.

However, with the multi-phase BERT, this scenario is going to change. We would

like to keep all the samples received from the gigabit receiver, even the extra

samples. The extra sample represent samples at other phases which we are going

to use in order to speed up the bit-error rate (BER) testing process. Indeed,

sampled data always enters the pattern-receiver on the fast clock (pattern-clock)

and we do not want to drop the extra samples now. Hence, there is no need to

keep the decimator at the interface of the gigabit transceiver and the pattern-

receiver.

 42

pattern_gen

TX_PATTERN

ctrl

Addr[14:0]

Data[511:0]

Pattern

memory

arbiter

Gigabit

Receiver

RX_PATTERN

ctrl
Addr[14:0]

Data[511:0] BERT

CSR

pattern_gen
Data[31:0]

ctrl

CSR

duplicator

Figure 4-8 : Removing the decimator from pattern-receiver

Simply removing the decimator block from the pattern-receiver does not take

complete care of the intended upgrade. Removing the decimator lets the BERT

run on fast clock; then pattern-generator and pattern memory arbiter should also

run on the fast clock. This will require modifying the pattern-transmitter as well,

since it is using the same pattern memory arbiter as the pattern-receiver in Figure

3-1. Also, we should look for a way to make the pattern-generator generate

reference patterns faster than the actual pattern data rate. However, the issue is not

concerned with having the two bit streams at the same rate. Although we are

receiving oversampling-ratio times more samples from the gigabit receiver, these

samples are not measured at consecutive phases. In order to perform a valid

comparison between the two bit streams, the reference bits should be arranged in

the same special order at which sampled data is received. For instance, in 4X

mode, pattern-generator should send the fifth reference bit after sending the first

 43

reference bit. It should then send the 9
th

, 11
th

 and 2
nd

 bits. After the second

reference bit, it should send the 6
th

, 10
th

, and then the 14
th

 bits.

The pattern-generator frequency is:

 and is sending 32-bit

reference data to the BERT. When switching the pattern-generator to the fast

clock (

 , is it necessary to ensured that the whole 32-bit word is concurrently

latched at the BERT. When putting the pattern-generator clock on the fast clock,

metastability issues may come up. These issues have to be considered when

driving clock enable signals to control when the transaction starts and ends.

So far, the only obvious change needed is the removal of the decimator. For the

rest of the implementation, because of the above explained reasons, we prefer not

to make all the other blocks run on the fast clock. We are looking for the solution

which requires the least possible amount of change to the existing implementation

while minimizing the additional hardware cost. This is because we are going to

evaluate our MPB by comparing its results with the results of the former

implementation.

If we add a FIFO in between the pattern-generator and the BERT, in which data is

written slowly and is read fast out of it, helps fixing the issues. Consider the case

where oversampling-ratio is 4. Fast clock (pattern-clock) is 4 times faster than the

slow clock (oversampling-pattern-clock). We want the 32-bits expected pattern to

be written in the FIFO on the slow clock cycle, then FIFO reads bits 0-7 on first

fast clock cycle, 8-15 on second fast clock cycle, 16-23 on third, and 24-31 on

 44

forth fast clock cycle, illustrated in Figure 4-9. Just, we need to make each

transaction in 32-bits busses; at each fast clock cycle we need to send 32-bits

reference data to the BERT. We need to add reference data in between to make for

the extra samples BERT is receiving from the gigabit receiver.

ovrsmpl_pat_clk

pat_clk

pat_clk /ovrsampl_pat_clk = 4

Figure 4-9 : Sending data from pattern-generator on fast clock rather than slow clock

This is very similar to what duplicator does in the pattern-transmitter. Bits 0-7

can be duplicated each four times to make the first 32-bit data. Similarly,

duplicating each bit of the bits 8-15, 16-23, 24-31 four times will give the second,

third, and fourth 32-bits expected data to the BERT.

One important advantage of putting a duplicator before the BERT is that it will

make the expected data matched with the sampled data received from the gigabit

receiver. For instance,

 45

Figure 4-10 shows what is received for a data rate in the range of oversampling-

ratio of 4. Each four bits coming in a row are not in fact measured at one

particular phase; they belong to four different phases, each with a distance of

 from the next one. Similarly, the second bits of the sampled data

of each of the four phases come one after each other, after all the first bits are

received.

ovrsmpl_pat_clk

pat_clk

Oversampling-Ratio= 4

Sampling the

Received Data

Duplicating the

Expected Pattern

00001111222233334444555566667777

Figure 4-10 : Received sampled data at four different phases sent in a 32-bit bus. Duplication

of each reference bit inside the duplicator makes the expected pattern bit streams in the

same format as the bit stream coming from the gigabit receiver.

Putting a duplicator in between the pattern-generator and BERT will handle

sending reference data from slow clock to fast clock. There are also some control

signals from pattern-generator to BERT or from BERT to pattern-generator

 46

which require clock domain changes. Signals from the fast clock to the slow clock

domain are not recognized in the slow clock domain, since it is only a fraction of

a bit in slow clock domain.

4.3.1 Multi-Phase BERT Engine

Considering the high-level block diagram of the BERT shown in Figure 3-4, we

are looking for a way to implement a new BERT engine, multi-phase BERT

engine, which is capable of taking care of all of the tasks currently the BERT

engine takes care of, but for multiple phases.

4.3.2 Comparator

 Pipeline comparator of the existing BERT can compare the two 32-bit bit streams

together at once (See Figure 3-5).

In multi-phase BERT each 32-bits of expected pattern (out of the duplicator) and

sampled data are like below (in case of oversampling-ratio of 4):

00001111222233334444555566667777

In 4X mode, bits 0, 4, 8, 12, 16, 20, 24, 28 of the two bit streams should be

compared together since they are related to the first phase. Bits 1, 5, 13, 17, 21,

25, 29 are for the second Rx-phase. Likewise the rest of the bits are the data of the

two other Rx-phases (See Table 4-2).

 47

Since the decimator has been removed, any 32-bit contains the data for 4 different

phases, which is 8 bits for each phase. However, 8 bits of each phase are not

received in row. The second bit of each phase is received only after the first bit of

all of the phases of the oversampling-ratio are received. For the comparison

process, there should be multiple error counters which each track the number of

mismatch of only one of the phases.

Figure 4-11 : Shows that as explained before, both the expected bit stream and the sampled

bit stream coming from the gigabit receiver are in the same format and 4 error counters are

each evaluating bit-error value of 4 different phases by comparing the bits of the same color.

At each mode, the number of different phases is equal to the oversampling-ratio

of that range. The number of error counters needed is also equal to the

corresponding oversampling-ratio. For this, we need at least four comparators if

the oversampling ratio is four, eight if the oversampling ratio is eight, sixteen

comparators for oversampling ratio of sixteen, etc. The maximum number of error

counters required is 16, since there are 16 error counters needed in 16X mode,

each counting the number of bit-errors of one of the sixteen phases.

 48

In 2X mode we have two error-counters, one compares even bits, one compares

odd bits. Even bits belong to the first phase, and odd bits belong to the second

phase.

Table below shows the number of error counters and bit indices that should be

compared together at each oversampling-ratio range.

Table 4-2: Error counters vs. oversampling-ratio

We implement multiple pipeline parallel comparators each counting bit-errors of

one individual phase. We define a control input signal for each of the

comparators. The control input determines which bits of the bit streams should be

Oversamling Ratio 1X 2X 4X 8X 16X

Number of Error Counters 1 2 4 8 16

Bit indices of the 1st phase 0-31 0,2,4,6,...,30 0,4,8,...,28 0,8,16,24 0,16

Bit indices of the 2nd phase None 1,3,5,7,...,31 1,5,9,..,29 1,9,17,25 1,17

Bit indices of the 3rd phase None None 2,6,10,...,30 2,10,18,26 2,18

Bit indices of the 4th phase None None 3,7,11,...,31 3,11,19,27 3,19

Bit indices of the 5th phase None None None 4,12,20,28 4,20

Bit indices of the 6th phase None None None 5,13,21,29 5,21

Bit indices of the 7th phase None None None 6,14,22,30 6,22

Bit indices of the 8th phase None None None 7,15,23,31 7,23

Bit indices of the 9th phase None None None None 8,24

Bit indices of the 10th phase None None None None 9,25

Bit indices of the 11th phase None None None None 10,26

Bit indices of the 12th phase None None None None 11,27

Bit indices of the 13th phase None None None None 12,28

Bit indices of the 14th phase None None None None 13,29

Bit indices of the 15th phase None None None None 14,30

Bit indices of the 16th phase None None None None 15,31

 49

compared together. It basically masks the bits which should not be considered in

that comparator. Thus, we will have 16 pipeline comparators each as below.

Figure 4-12 : MPB pipeline comparator

CTRL_P is to select which bits to mask and which ones to compare. The mask is

defined differently depending on the oversampling-ratio and index of the current

comparator (from 0 to 15). Table 4-2 shows which bits should be compared for

each counter at a certain oversampling-ratio.

 For instance, when oversampling-ratio is one, the control input of the first error-

counter is all ones to enable comparison of all of the bits. The rest of the counters

are not needed in 1X mode, so all the bits should be masked out.

 50

When the oversampling-ratio is two, the control input of the first counter is

“0101’0101’0101’0101’0101’0101’0101’0101” to specify bits 0, 2, 4, 6, 8, 10,

12, 14, 16, …, 30 bits.

Figure 4-13 shows the code for the control input of some of the comparators. The

code is based on Table 4-2.

Figure 4-13 : Sixteen pipeline comparators in parallel with each other for MPB

DECIMATOR-FACTOR-P is indeed the oversampling-ratio. The control input of

each comparator is calculated depending on the corresponding oversampling-

 51

ratio. For example, regarding “comp15”, the control input for all the

oversampling-ratios except 16 is all zeros. Because 2X modes needs 2

comparators, 4X mode requires 4, 8X needs 8, and only 16X mode needs 16

comparators since it is reporting mismatch errors of 16 different phases.

4.3.3 Sample Counter

It should be noted that the new parallel comparators are not reporting the number

of mismatches in a 32bit comparison; depending on the oversampling-ratio in

16X, 8X, 4X, and 2X, each comparator is respectively measuring the number of

mismatches in 2, 4, 8, and 16 bit comparisons. This is especially important since

BER testing is normally done involving a specified duration (total number of

bits), and somewhere we should count the number of the bits we compare.

The sample counter is used to count the number of samples the BERT has

compared. As in the existing implementation, the pipeline comparator is used to

measure the bit-errors within 32-bit of the input bit streams. Each time the BERT

Control unit receives a mismatch result from the comparator, it adds 32 to the

sample counter. In order to skip having adding more states to the state machine,

which is inside the BERT Control and is deciding when to terminate the BER

testing process, we add a multiplexer for the sample counter. This is simpler and

requires less circuitry. Depending on the mode of operation (oversampling-ratio),

the sample counter is respectively incrementing 32, 16, 8, 4 and 2 for

oversampling-ratios of 1, 2, 4, 8, and 16.

 52

Since all of the error counters are subject to change at the same time, only one

sample counter is enough to count the number of bits compared at each moment.

All the 16 total error counters, which continually sum up the bit-error count

results of each of the pipeline comparators, are latched to the registry once sample

counter reaches the user-defined duration of bits.

4.3.4 Synchronization

Bit-error testing process starts with synchronizing the two bit streams together.

Synchronization is an iterative process. It performs bit-error measurement

between the two streams till the number of mismatch is less than the certain

threshold value. If the total number of bit-errors is more than the threshold value,

the two bit streams are not aligned and reference pattern is shifted and bit-error is

measured again. For this, total error counter is compared with the threshold bit-

error value. In multi-phase BERT, there are 16 different total error counters. We

only consider the first phase (0
th

 error-counter) for synchronization. We know

different phases have fixed known (constant) distance between each other, so if

we synchronize the first one all of them will be synchronized.

4.3.5 Register Interface

After the 16 total error-counters are measured for the specified duration, all of

them are ready at the same time to be read with software. In order to make the 16

error-counters accessible to the software, they should be put on the register

interface of software and hardware.

 53

Compared to the former method that there was only one error-counter, we need 15

more registers. If there are not enough registers available at the register interface;

even though, that is the most optimum way in terms of speed, other way out

should be sought.

In order to keep the existing format, we send each error-counter out to the

software through one door. While trying to put error-counters on the register

interface one by one, it should be ensured that hardware does not write them into

the register faster than software can read.

At each mode, there are oversampling-ratio error counters. Although, all of them

are measured at exactly the same time we cannot pass them to software all at the

same time, or even, with a clock cycle difference. First of all, software is slower

than hardware, so even if hardware changes the content of the register, software

will not recognize it. For that software should be let always checking the content

of the register to detect the new value, but in that case software could not do

anything else.

Adding a new register which addresses the phase index on the register interface

will help solving this issue. Each time the BERT measurement is ready, software

starts writing from 0 to (oversampling-ratio minus one) to this register. Anything

software writes in the new phase-address register is the index of the error counter

in hardware writes the corresponding error counter of that index on the error –

counter register. In fact, instead of 16 writes in a row, hardware performs one read

and one write 16 times.

 54

4.3.6 Bit Shifter and Pattern-Memory

When the number of bit-errors measured is more than the threshold value a shift is

requested from the BERT Controller unit to the Bit Shifter. The Bit Shifter as

shown in Figure 4-14, is in fact a 16 line circular buffer where each line holds 32

bits. If the number of shifts requested is less than 32 bits, the shift will be done

inside the internal bit shifter. When the number of the requested shifts is between

32 to 512, the address of the circular buffer is incremented by an integer value of:

 ; the remainder is shifted inside the internal bit shifter.

Offset Controller

Bit Shifter

addr cnt

offset cnt

local word select

(circular buffer)

bit shifter

(internal)

“X” most

significant bits

“Y” least

significant bits

Data from

Pattern

Generator

Data to

comparator

shiftFrom

BERT

Controller

To

Pattern

Generator

word_shift

exp_pattern data_out

to BERT

Controller

Figure 4-14 : Block level diagram of Bit Shifter

The longer the pattern is the more the synchronization process may take. Longer

patterns generally require more shifts to get synchronized. The maximum number

of shifts required for a pattern to synchronize is equal to the length of the pattern.

 55

User defined patterns are can be stored in pattern memory. If a pattern is longer

than 512 bit, it may need more than 512 shifts, and the circular buffer cannot

handle that. In such cases, the pattern memory address will be incremented by the

rounded value of

 and the rest of the shifts will be

handled in the Bit Shifter. Incrementing the address of the pattern memory address

is equal to a shift of 512 bits, since data in memory is stored in 512 bits blocks.

Regarding the multi-phase BERT this implementation seemed to cause problems.

For instance, consider the case where the oversampling-ratio is 4. The Bit Shifter

block which is apparently holding 512 bits of the expected pattern in its circular

buffer is in fact holding the expected pattern data which is now passing through

duplicator; therefore, it is actually holding 128 bits and each bit has been

duplicated four times to make a total of 512 bits. If the BERT Controller block

asks for a shift which is more than 512 bits, this cannot be handled inside the Bit

Shifter. The Bit Shifter will ask the pattern memory to increment the memory

address by one and the remainder of the shift is done inside Bit Shifter. The

problem is that this is in fact skipping 512-128=384 bits of the expected pattern

data stored in the pattern memory: these 384 bits are not passed to the circular

buffer yet, and now memory address is being incremented by one and it is

skipping the 384 bits!

The Bit Shifter is currently inside the BERT, after Duplicator. First thing that

comes to mind is to change the hierarchy of the Bit Shifter and the Duplicator.

Then, any shift request is handled first and the duplication is done after.

 56

Figure 4-15 : Replacing Bit Shifter with Duplicator

However, this does not work, since shifting and duplicating are not commutative.

The example below shows that to first duplicate and then shift or to first shift then

duplicate, does not give the same result.

An alternative solution may be to have multiple Bit Shifter blocks. In this case, in

the range of the oversampling-ratio of 16 we need to have 16 Bit Shifters. Each of

the Bit Shifters has a delay and a circular buffer, which all gets 16 times more.

Example:

01010110:

 First shifting by one bit then duplicating each bit 4 times:

1) Shifting by one: 00101011
2) Duplicating: 0000 0000 1111 0000 1111 0000 1111 1111

 First duplicating each bit 4 times then shifting by one bit:
1) Duplicating: 0000 1111 0000 1111 1111 0000

2) Shiting: 0000 0111 1000 0111 1000 0111 1111 1000

 57

Oversampling-Ratio=1

Oversampling-Ratio=2

Oversampling-Ratio=4

Oversampling-Ratio=8
Oversampling-Ratio=16

Figure 4-16 : Having multiple Bit Shifters to support different oversampling-ratios

Another option is to increase the number of entries in the circular buffer, so that it

can have 15*16 lines more. This also requires adding considerable circuitry and

delay to the existing one.

Assuming that the oversampling–ratio is 4, at a shift request of more than 512

bits, we can tell the Pattern Memory Arbiter to start sending expected pattern

from bit instead of incrementing the memory address by one. Normally,

incrementing the memory address by one is equal to sending the reference pattern

from 512 bits after. Since now the oversampling-ratio is four, sending

bits from Pattern Memory, fills in the circular buffer. In other oversampling-ratio

ranges, after there is a request of 512 bits shift from the BERT, instead of

incrementing the memory address by one, we start sending the from the

 bit of the current memory address.

 58

Each memory address contains 512 bits of the reference pattern. 512 bits of the

Pattern Memory is passed to the BERT in 32-bit blocks; that takes 16 clock

cycles. This is achieved with two 4-to-1 multiplexers. Consider DATA_IN_VALID

signal in gets asserted by Pattern Memory Arbiter every 16 clock cycle when a

new 512-bit is ready to be sent to the BERT.

0 14121110987654321 15

DATA_IN_VALID

Figure 4-17 : Reference pattern is sent on the rising edge of DATA_IN_VALID from pattern

memory. Pattern Memory Arbiter sets the DATA_IN_VALID. The 512 bits of the reference

pattern is sent in sixteen 32-bit packets.

Therefore, starting to send from the 128
th

 bit of a pattern memory address is in

fact starting sending expected pattern from the 5
th

 (index 4) 32-bit packet. When it

reaches the 16
th

 packet it should wait for four clock cycles till DATA_IN_VALID

gets asserted once more and memory sends new 512 bits. The counter starts

counting from the initial value we provide, to 15. When it reaches 15 and since

DATA_IN_VALID is not set, the counter does not reset and keeps counting, it start

re-counting from 0; this means that it sends the data which it had to skip sending.

Having an extra 512 flip flops to look into future takes 512 flip flops of the

available register resources. Then when the index of the 32-bit packets of pattern

memory reaches 15, from the next cycle on we can start sending from the next

512 flip flops which are holding the reference pattern of the next memory address.

 59

However, this could only solve the problem of sending wrong data when it

reaches the end of the first 512. Again, for getting a new 512-bit of Pattern

Memory we have to wait for the next VALID_DATA_IN, which comes few clock

cycles later.

When the oversampling-ratio is 16, 8, 4, or 2, after each request of 512-bit shift,

instead of incrementing memory address we can start sending from respectively

32
th

, 64
th

, 128
th

 or 256
th

 bit. This is two wait respectively 1, 2, 4, or 8 clock cycles

for the next 512-bit of the reference pattern to come.

Sending junk data while waiting for the next VALID_DATA_IN, may be an

alternative to having extra flip flops to look into future. For example, in the case

of an oversampling-ratio of 4, during the last 4 clock cycles that we are waiting

for the new 512-bit of the reference pattern, we can send all junk data that is not

relevant to the reference pattern. Considering that if it is going to synchronize, it

will definitely skip the junk data and synchronize after, this makes the solution

sound reasonable. Still, this does not solve the problem we had with other

approaches.

Originally, we wanted to start sending from the

 bit of the

current memory address whenever there was a request of 512 bit shifts from the

BERT. For instance, when the oversampling-ratio is four we would like to start

from the 128
th

 bit, which is the 4
th

32-bit packet of the reference pattern. In fact

we wanted to shift expected pattern 4*32 bits forward. Figure 4-18 shows the

alignment which corresponds to a shift of 512 bits in the range of oversampling-

 60

ratio of 4. It is actually shifting the reference pattern from Pattern Memory by

 bits, since the reference bits will be duplicated four times before going

to the BERT. 128 bits is sent within the first four 32-bit packets (0 to 3) sent in the

first four clock cycles.

EP

LL60 14121110987654321 15

EP

LL60 14121110987654321 15

Expected

Pattern
Received

Pattern

Figure 4-18 : When there is a shift request of 512 bits, considering each cube to be a 32-bit

packet, we would like the get the above alignment between the expected pattern and the

received pattern (oversampling-ratio is 4)

Instead of shifting expected pattern four clock cycles forward to get the alignment

shown in Figure 4-18, we can delay the sampled pattern received from gigabit

receiver by four clock cycles. The figure below shows that delaying the received

pattern four clock cycles makes the same packet alignment as shown in Figure

4-18.

EP

LL60 14121110987654321 15

EP

LL60 14121110987654321 15

Expected

Pattern
Received

Pattern

Can be generated with 4 clock cycle delay

Figure 4-19 : Delaying the received pattern by four clock cycles to make for 512-bit shift

request alignment (in case of oversampling-ratio of 4)

Figure 4-20 shows that having four 32-bit registers in a row delay the received

pattern by four clock cycles. Originally, we wanted to compare the received

 61

pattern with the reference pattern shifted 128 bit shifts forward. Keeping reference

pattern constant and instead shifting the received pattern 128 bits backward gives

the same alignment. Shifting the received pattern backward in fact can be

achieved by delaying the received pattern coming from the gigabit transceiver.

0 14121110987654321 15

EP

LL60 14121110987654321 15

Comparison

Expected

Pattern

Received

Pattern

0

A

H

Q1

Q8

ENB

Register(32-bit)
Sending for comparison

A

H

Q1

Q8

ENB

Register(32-bit)

A

H

Q1

Q8

ENB

Register(32-bit)

A

H

Q1

Q8

ENB

Register(32-bit)

4

Figure 4-20 : Hardware implementation of delaying the received pattern by four clock cycles

In order to make the design compatible for all the oversampling-ratios (all

possibilities), we use the implementation shown in Figure 4-21. In case of

oversampling-ratio of 1 there is no need to delay the received pattern. When

oversampling ratio is two and there is a request of 512-bit shift, the received

pattern is delayed by 8 clock cycles. Similarly, for oversampling-ratios of 4, 8, or

16 respectively 4, 2, or 1 clock cycle delay of the received pattern is required at

the request of 512 bits.

 62

Delay

(1T)

Delay

(1T)

Delay

(1T)

MUX

Oversampling-Ratio=1

Oversampling-Ratio=16

Oversampling-Ratio=8

Delay

(1T)

. . .

O
v

e
rs

a
m

p
li
n

g
-R

a
ti

o
=

2

O
v

e
rs

a
m

p
li
n

g
-R

a
ti

o
=

4

4T Delay

Figure 4-21 : Including all oversampling-ratios in the design

4.3.7 Arranging Bit-Error Counts and Calibrated Phases

With multi-phase BERT we are receiving multiple bit-error values, but they do

not belong to one specific Rx-phase. We receive 16, 8, 4, 2, or 1 bit-error values

which are corresponding to 16, 8, 4, 2, or 1 different phases which are not for

successive points on the bathtub plot. Consider the bathtub plot shown in Figure

4-22, where oversampling-ratio is assumed to be 4. The red circles are the first

results obtained from setting the Rx-phase delay on the first point. We get the bit-

error values of all the phases shown in red circles on the bathtub. But as we see in

Figure 4-22 they do not constitute consecutive points of the bathtub. The Rx

phase is swept over the distance between the first and second red circle points, to

get all the required points of one side of the bathtub. The distance between two

successive phase delays is the phase-step or phase resolution.

 63

. . .

. . .
. . .

. . .

Figure 4-22 : Bathtub plot

With the former design, if in order to have a bathtub receiver phase delay is swept

over the interval between a given start-phase and end-phase with a distance of

certain step-phase, the total number of points BER measurement that should be

measured is equal to:

With the multi-phase BERT method, the number of elements required to have the

BER value of the same points of the bathtub curve, is approximately

 times less.

For any user defined start-phase, end-phase, and phase-step, first the number of

number of UIs that can be fit within the interval between the start-phase and end-

phase, is calculated. In order to cover each UI, starting from the start-phase,

incrementing by the phase resolution (phase-step), we sweep the Rx-phase delay

 64

to

. For each phase within this interval that Rx-phase delay is

set at that point, the phase address register, which we used to address different

phases within one MPB measurement, is written from 0 to (oversampling ratio-1)

to get the bit-error value of the other phases.

ovrsmpl_pat_clk

pat_clk

pat_clk /ovrsampl_pat_clk = 4

1
st

Measurement

2
nd

Measurement

n
th

Measurement

Figure 4-23 : Sweeping Rx-phase gradually to obtain BER-scan plot

The error count for each phase should be stored in an array which holds all the

bit-error results; however, as discussed before, the error-counts we get at the same

time are not for successive points. This should be considered while filling in the

Results array; bit-error result of each phase should be stored in the right index of

the Results array.

Each time receiver phase delay is set at a certain phase delay value, hardware

gives the exact calibrated phase delay of the point where BER measurement was

 65

actually done; i.e., the exact phase that receiver phase was eventually set at [21].

With multi-phase BERT method, we are not sweeping the receiver phase delay

over entire phases; we cannot get the calibrated phase of all of the points back

from hardware.

………………..
First Measurement ,First Counter

First Measurement ,Second Counter

First Measurement , Third Counter

First Measurement , Forth Counter

Second Measurement ,First Counter

Second Measurement ,Second Counter

Second Measurement , Third Counter

Second Measurement , Forth Counter

Third Measurement ,First Counter

Third Measurement ,Second Counter

Third Measurement , Third Counter

Third Measurement , Forth Counter

. . .
. . .

. . .
. . .

0

1

2

3

Figure 4-24 : Arranging bit-error values in order

 66

We only have the calibrated phase delay of those phases at which we actually set

the sampling phase delay. This is only

 of the UI. For the rest of

the phases, their calibrated phase delay is obtained with adding multiples of

 to the calibrated phase delay of the phases within the first

 part of the UI.

ovrsmpl_pat_clk

pat_clk

pat_clk /ovrsampl_pat_clk = 16

We have calibrated phase

delay of the first phase

(cal_phase_0)

0 1110987654321 15141312
. . .

UI/16

2*UI/16

3*UI/16

15*UI/16

Figure 4-25 : Obtaining calibrated phase delays of phases on bathtub plot

Storing all the calibrated phase delays in another array has the same issue as the

Results array. The calibrated phases obtained in a row are not for successive

indices of the array. This should be considered as we calculate the calibrated

phases to make sure we are storing them at the right indices of the array.

 67

………………..
1st Measurement ,1st Phase: cal_phase_0

1st Measurement , 1st Phase: cal_phase_0+UI/4

1st Measurement , 1st Phase: cal_phase_0+2*UI/4

1st Measurement , 1st Phase: cal_phase_0+3*UI/4

2nd Measurement , 2nd Phase: cal_phase_1

2nd Measurement ,2nd Phase: cal_phase_1+UI/4

2nd Measurement , 2nd Phase: cal_phase_1+2*UI/4

2nd Measurement , 2nd Phase: cal_phase_1+3*UI/4

3rd Measurement ,3rd Phase: cal_phase_2

3rd Measurement , 3rd Phase: cal_phase_2+UI/4

3rd Measurement , 3rd Phase: cal_phase_2+2*UI/4

3rd Measurement , 3rd Phase: cal_phase_2+3*UI/4

. . .
. . .

. . .
. . .

0

1

2

3

Figure 4-26 : Arranging calibrated phase delays in order. For each set of measurements we

will only get the calibrated phase delays of the first phases. For the rest we will obtain their

calibrated phase delay with calculation, by adding multiple fractions of UI to the calibrated

phase delay of the first phase.

 68

4.4 Multi-Phase BERT Possible Cases

Theoretically, multi-phase BERT will work when

 can fit an

integer number of phase resolutions within itself; that is:

In this case, multi-phase BERT measures the BER at exactly the same phases as

the ones the user had set. For instance, consider Figure 4-27. The red arrows are

showing the phases the user wants to have BER measured on them. Assuming the

oversampling-ratio is 8, starting to sweep the Rx-phase delay through the first

interval, we can measure the BER value at exactly the same phases the user had

specified.

Red arrows show the phases we wish to have BER

measurement on

By setting the Rx-phase delay on the first left most

purple, blue, or green array we will have BER

measuremnt on all the phases shown by purple, blue,

or green arrays

Figure 4-27 : MPB Case 1 – Method Successful

If the distance between different phases of an oversampled data is not a multiple

of phase resolution (step), which is:

 69

All of the phases BER is evaluated, do not exactly match with the ones user has

specified; there is always an offset between them. This is shown in Figure 4-28,

where the oversampling-ratio is assumed to be 8. Red arrows (first row arrows)

show the phases the user wants the BER measurement on. Purple arrows (second

row arrows) show the phases where we measure BER value by setting the Rx-

phase delay on the first phase. In order to get the BER measurement for rest of the

phases, if Rx-phase is delayed by phase resolution, second round of BER

measurements is obtained, which are shown with blue arrows (third row arrows).

As shown they do not overlap with the remaining red arrows. We cannot shift

more since this is 8X mode; the multi-phase BERT idea was to shift receiver

phase delay within

 (generally

) not the entire UI.

Red arrows show the phases we wish to have BER

measurement on

By setting the Rx-phase delay on the first left most

purple or blue array we will have BER measuremnt on

all the phases shown by purple or blue arrays

Figure 4-28 : MPB Case 2 – Although the samples might not exactly overlap with the ones

user defines, MPB can handle this for the purpose of plotting BER-scan plots

Still, this does not cause a problem in generating bathtubs. What we do is that we

take the phase resolution to sweep the Rx-phase delay between the starting of

each UI to

,once the Rx-phase delay reaches there we have

already all the BER values and calibrated phase delays calculated. We know that

 70

these calibrated phase delays are not the actual ones user had requested but we

report the actual calibrated phases to the user. Bathtub curves are plotted based on

the BER-results array and the calibrated-phases array we obtain and are properly

corresponding to each other.

The only other mathematical issue with the multi-phase BERT that might come

into mind is when:

Red arrows show the phases we wish to have BER

measurement on

By setting the Rx-phase delay on the first left most

purple, blue or green array we will have BER

measuremnt on all the phases shown by purple, blue,

or green arrays

Figure 4-29 : MPB case 3 where

 (oversampling-ratio= 8)

This case is shown in Figure 4-29. When phase resolution is bigger than the

distance between oversampled phases (

), multi-phase BERT

will not be able to handle this case.

However, this situation is almost impossible to happen. Below is the worst case

considered when the data rate is really low and the UI length is relatively longer;

hence,

 is maximum. For example, if the data rate is 250Mbps,

 71

UI period is 4000 ps. This is within the range of oversampling-ratio of 16;

 . This means only when enters a phase resolution

bigger than 250ps, multi-phase BERT is not applicable. Taking into account that

the BER values are going to be used in plotting bathtubs where all the challenge

comes up as the phase resolution gets smaller and is the desired result, we can

assume that this condition never happens.

 72

Chapter 5 - Experimental Results

All of the modifications mentioned in Chapter 4 were implemented in the

firmware of the DJ60HS Test Module of DFT Microsystems Canada Inc. The

goal was to validate the proposed multi-phase BERT and establish what actual

speedup can be obtained.

This chapter first explains the test set up for the tests performs. The rest of the

chapter includes the results of the experimental tests performed on multi-phase

BERT in order to ensure its functionality and performance.

We start with the synchronization tests, since synchronization is the first and most

important task of the BERT engine, without which the two bit streams will not get

aligned and BERT will not report the right number of mismatch. We do the

synchronization tests both with delaying transmitter phase delay and without

delaying transmitter phase delay.

We then check the BER-scan test results to see whether by sweeping the receiver

phase delay over 2UI we can have bathtub curve plots. To ensure the reliability of

the bathtub curves generated we perform multiple BER-scan tests under the same

conditions to track the edge displacement of the bathtub curves.

We also perform another set of BER-scan tests extract the jitter components of the

bathtub-curves. We compare the results of the jitter components of each test with

the results of the same test with the former design.

 73

In the two last sections of this chapter, we investigate the speed up achieved with

multi-phase BERT technique and we look into the cost of this enhancement.

5.1 Test Setup

We perform all the tests in serial loopback. The most popular solution for multi-

gigabit Serializer/Deserializer (SerDes) testing in production, is to loop back the

output of the transmitter to the input of the receiver. This loopback which may be

done either internally or through the loadbord [15][16], compares the output of the

receiver to the expected result. In many cases loopback test is the only commonly

used test to cover a Serializer/Deserializer (SerDes) device. Also, loopback test is

very popular because of its simplicity and high throughput [2].

DJ60HS gives us the option to do serial loopback either internally, by having the

corresponding bit set in the FPGA implementation, or externally connecting the

transmitter to the receiver with a cable. We perform the tests in internal serial

loopback.

Figure 5-1 shows how external serial loopback test is performed. It basically

connects the transmitter side to the receiver side. While we do not inject any extra

jitter into the system, results of the loopback jitter test show the amount of noise

existing within the system.

 74

Ctrl
Addr.

Serial Loopback

Data

BERT

Pattern

Generator

Pattern

Memory

Arbiter

Tx-Output

÷32

SIPO

÷32

PISO

Ref Clk Ref Clk

Serial Input-Parallel Output Parallel Input-Serial Output

Figure 5-1 : Serial Loopback. A cable connects the transmitter to the receiver side.

BERT scan plots can be obtained by having the clock recovery unit (CDR)

disabled and sweeping the sampling delay for the BER test through the whole unit

interval (UI) with fine resolution. The phase resolution, which is also referred to

as phase step, determines the accuracy of the test for extracting jitter components.

Before each BER measurement, we perform a synchronization test to align the

two bit streams. Otherwise, the bit-error value reported by the BERT engine is not

valid. Then, we sweep the receiver phase delay starting from the start-phase to the

end-phase. In order to get a full bathtub curve we sweep the sampling delay over

2UI.

Using dual-Dirac model we separate a signal’s aggregate total jitter into random

jitter (RJ) and deterministic jitter (DJ) component. Below a certain BER value, the

BER will be dominated by the random jitter which follows a Gaussian

distribution. This allows extrapolating the bathtub curve at lower BER levels

[28][27][15]. Extrapolation allows us performing the BER test involving less bits

(duration), which helps us get around doing very long test times.

 75

5.2 Synchronization Tests

Synchronization is the first and most important step of the bit-error rate testing

process in our design. Before each BER measurement first the two bit streams

should be synchronized together; otherwise, bit-error values are not reliable

values.

Synchronizing longer patterns generally takes more time. For instance, if a pattern

is 20 bits long, it might take up to 20 bit-shifts for synchronizing; whereas, a 800-

bits pattern might require 800 bit-shifts. During the synchronizing process, the

BERT Controller repeatedly sends different shift requests to the Bit Shifter block.

Bit Shifter block by itself was one of the challenges of multi-phase BERT design,

especially for longer patterns. If it is not implemented correctly and made

compatible with the entire design, it will cause failure in the synchronization

process. The following table summarizes the results of sync results of different

patterns.

Table 5-1 : BERT Sync Results for different patterns

 76

It should be mentioned that for Sync tests, we enable clock data recovery (CDR).

CDR skips the edges and moves around the centre of the UI where there is less

bit-error probability [21].

5.2.1 Synchronization Tests with Sweeping Tx-Phase Delay

 Since in the Bit Shifter block, after the bit shift request reaches 512 bits we delay

the received bit stream from the gigabit transmitter and the functionality of the

sync function highly depends on this block, we should make sure that sync is done

successfully no matter what the transmitter phase delay is. With generating a loop

which constantly increases the transmitter phase delay and runs a bathtub we

verify sync performance of MPB in case of delaying the transmitter. For all of the

settings in Table 5-1 we tried the above test and it could successfully sync for all

values of transmitter phase delay with the length of one UI.

5.3 BER-scan Tests

Our final goal was to be able to do BER-scan tests and extract jitter information

from the bathtub plots.

In order to plot a full bathtub curve, receiver phase delay needs to be swept over

2UI. For instance, at 5Gbps, if we set the start-phase to -400ps and end-phase to

400ps, with a phase resolution of 1ps we need to perform 801 BER

measurements. In order to guarantee a BER level of , more than bits

should run for each test. Each BER measurement takes a minimum of 200 s. Also,

there is about 0.1 ms overhead time for each BER measurement. This means, that

 77

the total BER-scan test takes more than 801*(200+0.0001) seconds that is about

30 minutes. At lower data rates not only the number of phases we have to do the

BER measurement on gets more, but also each BER test takes more time. For

instance, at 250 Mbps, the total BER-scan test takes more than

8801*(4000+0.0001) seconds. In order to get around performing very long test

time, we perform the BER-scan test involving less number of bits (duration) and

extrapolate the curve at lower BER levels.

As mentioned in section 2.7, separating deterministic and random components of

the total jitter (TJ), allows estimating peak-to-peak jitter values at very low BER

levels that would otherwise take too much time to measure directly. The dual-

Dirac model which we use for extraction, gives a better curve-fit [28][27].

The solid horizontal “lines” of the top section of all of bathtub curves we show in

this chapter are obtained by a direct bit-error measurement and the dotted “lines”

below a BER level of are calculated with extrapolation using the dual-Dirac

model.

While implementing multi-phase BERT we made several assumptions and there

were different possible cases we discussed. This is where we can verify whether

those assumptions were right and whether our design is robust to any condition or

not. We will achieve this by observing whether we have bathtub curves without

any bumps and discontinuities. Also, we will try to see whether we have

discontinuities, glitches, etc.

 78

First, we would like to verify whether the idea of the adding fractions of UI period

to the calibrated phase of the first Rx-phase to get calibrated phase delays at other

Rx-phases. We will observe whether each BER-scan test results can be plotted as

bathtub shaped curves without any glitches and discontinuities.

Figure 5-2 is the bathtub result of one of the BER-scan tests done.

Figure 5-2 : BER-scan Result 1

We now look into the cases discussed in section 4.4. While Figure 5-3 shows an

example of the first case, Figure 5-4 and Figure 5-5 demonstrate the

successfulness of the method under the conditions of case 2.

Data Rate: 5Gbps

End Phase: -400 ps

Start Phase: 400 ps

Phase Resolution: 1 ps

Type of Pattern: PRBS-5

BERT Duration: Bits

 79

Figure 5-3 : BER-scan Result 2 - case 1.

 is an integer multiple of phase

resolution (1 ps)

Data Rate: 250Mbps

End Phase: -4400 ps

Start Phase: 4400 ps

Phase Resolution: 1 ps

Type of Pattern: PRBS-9

BERT Duration: Bits

 80

Figure 5-4: BER-scan Result 3 – Case 2. UI is not an integer multiple of the phase resolution

(3ps), still BER-scan results obtained with MPB generate a fine bathtub curve

Data Rate: 5Gbps

End Phase: -400 ps

Start Phase: 400 ps

Phase Resolution: 3 ps

Type of Pattern: PRBS-9

BERT Duration: Bits

 81

Figure 5-5 : BER-scan Result 4 (without extrapolation) – Case 2. UI is not an integer

multiple of the phase resolution (11ps), still BER-scan results obtained with MPB generate a

fine bathtub curve

This results show that multi phase BERT is able to generate perfect bathtub-

shaped plots.

5.4 Edge-Displacement Tests

We will not bring a close to our evaluation and verification by just observing

whether BER-scan tests will result to nice bathtub plots or not. We would like to

verify whether bathtubs generated by MPB will completely overlap the bathtubs

generated with the former method under exactly the same conditions and settings.

Comparing the average location of the bathtubs is a good estimate for verifying

the reliability of MPB method. To achieve this we will compare the edge

Data Rate: 5Gbps

End Phase: -400 ps

Start Phase: 400 ps

Phase Resolution: 11 ps

Type of Pattern: PRBS-9

BERT Duration: Bits

 82

locations of the two bathtubs. Edge of a bathtub is the halfway transition point

which is usually more stable than the other points of the bathtubs [27].

A lot of BER-scan verification tests are done by monitoring the bathtub edge

displacement [27]. For our case, we will monitor edge displacement of each

implementation and we will compare the results together.

We know that bathtub curves are logarithmic functions of the number of errors

versus phase. For now if we do not consider the logarithmic form and only

consider the plot of number of bit-errors versus receiver phase, at the center of the

UI the number of errors is always zero, then as we get closer to the edges the

number of bit-errors per phase gets bigger till it reaches its maximum value at

about the edge of the UI.

 (Number of errors)

 (phase)

Figure 5-6 : Plot of the number of bit-errors Vs. phase

For non-clock patterns, the maximum number of errors can be approximated with

 ; where, duration is the number of bits the

BER test is being run at each phase and transition density is

.

The illustration of above equation for approximation of maximum number of

 83

errors is that at each transition between 0 and 1, if the signal is misshaped the

sampled bit will be different from the expected pattern because it will take the

adjacent bit as the sample of the current bit. In fact at each transition there is

always

 probability to fall to the other bit (which is different) and sample the

wrong value. Based on this for any pattern under test for a selected duration the

maximum and minimum of bit-errors can be always determined. Edges of the bit-

error curve are in fact half distance between the minimum and maximum. The

edges of each bit-error curve are one good criteria of each bathtub which we

would have to first of all make the edges stable for the bathtub.

For each setting we do the above test 100 times on both the former design and

MPB. We calculate the average and standard deviation of calibrated phase of each

transition and then evaluate the result as explained below with benefiting from

confidence interval and confidence limit definition.

 Since we are trying to estimate the mean phase delay of each edge in the

population, we choose the mean calibrated phase of the former design as

the sample statistic.

 Select a confidence level. The confidence level describes the uncertainty

of a sampling method. Often, researchers choose 90%, 95%, or 99%

confidence levels; but any percentage can be used [22][12]. In our case we

choose a 95% confidence level.

 Find the margin of error. Margin of error can be calculated by [22]:

 84

 Specify the confidence interval. The uncertainty is denoted by the

confidence level. And the range of the confidence interval is defined by

the following equation [22].

For instance consider the first set of tests.

- Find standard error. The standard error (SE) of the mean is:

- Find critical value. The critical value is a factor used to compute the

margin of error. To express the critical value as a t score (t*), follow

these steps [22].

o Compute α:

 –

o Find the critical probability (p*):

o Find the degrees of freedom (df):

o The critical value is the t score having 99 degrees of freedom

and a cumulative probability equal to 0.975. From the t

Distribution Calculator, we find that the critical value is 1.96.

- Compute margin of error (ME) [12][22]:

- Specify the confidence interval. The range of the confidence interval is

defined by the [12] [22]. And the

 85

uncertainty is denoted by the confidence level. The 95% confident

interval is .

We can conclude that if we would like our design to meet the 95% confidence

level the population mean of the calibrated phase delays should fall within the

95% confident interval of the former design [12].

Table 5-2 summarizes the results of edge displacement tests performed on both the

former design and MPB at different data rates. As shown in the figure at all of the

data rates average of the edge displacement of bathtub plots obtained with MPB

are all within the 95% confidence interval of the former design’s.

Table 5-2 : Edge-Displacement Test Results

Test Settings
Data Rate

(bps)
Mode

 Right Edge

Phase

AVERAGE

(ps)

 Right

Edge

Phase

STD (ps)

 Left Edge

Phase

AVERAGE

(ps)

 Left

Edge

Phase

STD (ps)

% MPB within 95%

confidence level

(min of right and left

result)

Start=-400 ps, End=400 ps 63750000000 1X 95.0625 0.98 -60.25 0.67 98% (Pass)

Start=-400 ps, End=400 ps 31875000001 1X 41.125 0.56 -275.9375 0.84 97% (Pass)

Start=-500 ps, End=500 ps 15625000001 2X 218.215 0.68 -421.92 0.677 96% (Pass)

Start=-500 ps, End=500 ps 31875000000 2X 22.8125 1.2 -282.9375 0.65 95% (Pass)

Start=-500 ps, End=500 ps 15625000000 4X 116.68 0.989 94.93 0.53 96% (Pass)

Start=-500 ps, End=500 ps 7812500001 4X -59.8125 0.79 -95.25 0.59 95% (Pass)

Start=-500 ps, End=500 ps 7812500000 8X 119.875 0.34 101.125 0.987 96% (Pass)

Start=-400 ps, End=400 ps 3906250001 8X -48.75 2.03 -86 1.7 97% (Pass)

Start=-400 ps, End=400 ps 3906250000 16X -192.875 1.125 -212.0625 0.35 95% (Pass)

 86

5.5 Extracting Transmitter Jitter

BER-scan plots are used to extract transmitter jitter components, including

random jitter (RJ), total jitter (TJ), and deterministic jitter (DJ). Jitter extraction is

done using dual-Dirac model [15][27].

The dual-Dirac model separates total jitter into two subcomponents, random (RJ)

and deterministic jitter (DJ) [28]. Random jitter is defined to have a Gaussian

PDF and deterministic jitter PDF is defined to be composed of two Dirac delta

functions [32][33]. When DJ and RJ are convolved together, they form a new

PDF that closely matches the TJ’s PDF at low BER levels [28][27].

 In order to verify MPB implementation and determine the tradeoffs involved in

terms of jitter, we will perform multiple (100 times) tests on both implementations

and will compare the results.

Table 5-3 : Extracting Transmitter Jitter (Data Rate = 5000 Mbps)

Table 5-4 : Extracting Transmitter Jitter (Data Rate = 4000 Mbps)

Data Rate =

5000 Mbps

AVERAGE

(Former)

STDEV

(Former)

MIN

(Former)

MAX

(Former)

AVERAGE

(MPB)

STDEV

(MPB)

MIN

(MPB)

MAX

(MPB)

RJ Statistics 4.63 0.133 4.36 4.82 5.28 0.105 5.01 5.58

DJ Statistics 3.55 1.12 1.74 5.56 1.67 0.692 0.254 3.35

TJ Statistics 66.838 0.74579 65.266 68.692 73.854 0.88655 71.933 76.598

BER Level 1.00E-20 1.06E-35 1.00E-20 1.00E-20 1.00E-20 1.06E-35 1.00E-20 1.00E-20

Data Rate =

4000 Mbps

AVERAGE

(Former)

STDEV

(Former)

MIN

(Former)

MAX

(Former)

AVERAGE

(MPB)

STDEV

(MPB)

MIN

(MPB)

MAX

(MPB)

RJ Statistics 5.09 0.175 4.63 5.58 5.77 0.158 5.42 6.16

DJ Statistics 3.91 1.17 0.956 7.35 3.91 0.935 0.457 4.93

TJ Statistics 73.512 1.2778 70.617 79.326 81.387 1.385 78.762 85.274

BER Level 1.00E-20 1.06E-35 1.00E-20 1.00E-20 1.00E-20 1.06E-35 1.00E-20 1.00E-20

 87

Table 5-5 : Extracting Transmitter Jitter (Data Rate = 4500 Mbps)

Table 5-6 : Extracting Transmitter Jitter (Data Rate = 3500 Mbps)

As shown in the tables above, the total amount of jitter related to the multi-phase

BERT is greater than for the former design. The reason is that it takes a while for

power supply to stabilize, and since MPB is running on a faster clock it waits less

for this state and it results to more jitter.

5.6 Multi-Phase BERT Speed Up

We are going to verify the actual speed up factor in running a full BER-scan test

at different data rates. For this we run each test under certain conditions (pattern,

data rate, start-phase, end-phase, phase-resolution, duration, etc.) 100 times

different data rates and record the time it takes the tool to plot the bathtubs,

compare with the previous method. Table 5-7 summarizes the results obtained.

Average run time required to run a BER-scan test in order to get a full bathtub

plot is mainly dependent on factors such as, the number of phases BER

Data Rate =

4500 Mbps

AVERAGE

(Former)

STDEV

(Former)

MIN

(Former)

MAX

(Former)

AVERAGE

(MPB)

STDEV

(MPB)

MIN

(MPB)

MAX

(MPB)

RJ Statistics 5.42 0.323 4.32 5.96 5.23 0.104 4.99 5.54

DJ Statistics 3.46 1.89 0.979 8.59 4.2 0.743 2.25 5.76

TJ Statistics 77.563 3.259 65.543 84.698 75.79 0.76015 74.057 78.607

BER Level 1.00E-20 1.06E-35 1.00E-20 1.00E-20 1.00E-20 1.06E-35 1.00E-20 1.00E-20

Data Rate =

3500 Mbps

AVERAGE

(Former)

STDEV

(Former)

MIN

(Former)

MAX

(Former)

AVERAGE

(MPB)

STDEV

(MPB)

MIN

(MPB)

MAX

(MPB)

RJ Statistics 7.49 16.8 4.88 174 6.11 0.114 5.87 6.39

DJ Statistics 16.7 95.6 0.39 962 4.86 0.857 2.79 6.56

TJ Statistics 119.14 325.98 77.253 3341.4 88.414 0.75765 86.829 90.307

BER Level 1.00E-20 1.06E-35 1.00E-20 1.00E-20 1.00E-20 1.06E-35 1.00E-20 1.00E-20

 88

measurement is performed on which is actually phase-resolution. The more

accuracy we are looking for the smaller phase-resolution (phase-step) is set, hence

there are more phases that BER should be tested on. The tests we performed are

with the minimum phase-resolution supported which is 1 ps. BER test also

depends on the duration of the tests. BERT duration may also be called BERT

length; it determines the number of bits tested at each phase. Following tests have

been done with BERT duration of 10000000 (10 million) per phase.

Table 5-7 : Speed-Up Obtained at Different Data Rates

BER-scan test run time is mostly dependent on the target data rate. Observing the

average run time with former design will confirm. At lower data rates the UI is

longer. If we would like to keep the accuracy of the test by continuing with the

same phase resolution (1ps), that will require performing BERT on many more

Data Rate Mode
Run Time

(Former)

Run Time

(MPB)

Speed Up

Factor

6400 1X 4.27 4.3 0.993

6000 1X 4.816 4.84 0.995

5000 1X 4.4116 4.4382 0.994

4500 1X 4.9847 5.02 0.992

4000 1X 5.3019 5.3496 0.991

3500 1X 6.2039 6.2597 0.991

3000 2X 15.15 8.851 1.712

2500 2X 19.782 11.601 1.705

2000 2X 28.021 16.58 1.69

1562 4X 41.123 11.1143 3.7

1550 4X 42.008 11.451 3.6658

800 4X 132.61 36.2322 3.66

750 8X 149.22 20.437 7.301

400 8X 476.74 65.66 7.26

370 16X 386.26 29.914 12.912

250 16X 821.73 63.7 12.9

 89

phases. For instance at 5000 Mbps, sampling phase delay is swept over -400 ps to

400 s interval with a phase resolution of 1 ps. At 250 Mbps, the minimum interval

sampling delay should be swept over in order to get a full bathtub plot is -4400 ps

to 4400 ps. Setting phase resolution to 1 ps, this requires performing BER

evauation on 8801 phases, this is 11 times more compared to 801 phases required

at 5000 Mbps.

Furthermore, considering that each time Rx-phase is set by software and then

hardware passes the bit-error value to software, will give an idea of how much the

problem of overhead of communication will get worse for too many phases.

We were expecting speed up factor of respectively 1, 2, 4, 8, or 16 in 1X, 2X, 4X,

8X, 16X mode. The speed enhancement actually achieved (Table 5-7) shown is

less than what we expected. Since we did not add more registry for the extra error

counters in our implementation we are not reading all the 16 error-counters at the

same time. This causes a difference between the actual speed up achieved and the

one we expected theoretically. Instead of reading all the bit-error values at once,

we are reading them one by one each time by first writing the phase index and

reading the value. Also, this overhead is the reason that the tests are slower than

before in 1X mode. In 1X mode the overhead of communication has been

increased, because instead of getting the bit-error value with one read command,

we now require one read and one write command to get each bit-error value from

hardware.

 90

5.7 MPB Enhancement Cost

This section investigates the tradeoffs that are involved in accelerating BERT with

multi-phase technique.

The relative cost of speed enhancement is verified by probing- how many extra

logic cells, flip-flops, embedded FPGA memory, etc. [9] have been used to

implement multi-phase BERT.

Table 5-8 : Relative Cost of MPB Method vs. Former Method

As shown in Table 5-8, relative cost of multi-phase BERT is very close to the

former design. The only visible difference is in logic utilization which MPB uses

5% more logic. 5% increase in logic utilization by MPB is comprised of 4%

increase in combinational ALUTs and 3% increase in dedicated logic registers.

MPB implementation takes about 2000 (2112) more flip flops. That’s about 8% of

Former Design MPB Design

Family Stratix II GX Stratix II GX

Device EP2SGX90FF1508C3 EP2SGX90FF1508C3

Logic Utilization 48% 53%

Combinational ALUTs 20,947 / 72,768 (29%) 23,804 / 72,768 (33%)

Dedicated Logic Registers 23,144 / 72,768 (32%) 25,256 / 72,768 (35%)

Total Registers 23273 25385

Total Pins 466 / 739 (63%) 458 / 739 (62%)

Total Virtual Pins 2 2

Total Block Memory bits 2,520,760 / 4,520,488 (56%) 2,521,265 / 4,520,488 (56%)

DSP Block 9-Bit Elemens 8 / 384 (2%) 8 / 384 (2%)

Total GXB Receiver Channels 16 / 16 (100%) 16 / 16 (100%)

Total GXB Transmitter Channels 16 / 16 (100%) 16 / 16 (100%)

Total PLLs 5 / 8 (63%) 5 / 8 (63%)

Total DLLs 0 / 2 (0%) 0 / 2 (0%)

 91

total number of registers required for the entire design. The total number of pins

in MPB has been decreased by 1%.

Also, it does not take much longer executing multi-phase BERT firmware.

 92

Chapter 6 - Conclusions

6.1 Conclusions

This thesis has presented an oversampled multi-phase time-domain BER

processing for transmitter testing. With improving BER-scan testing speed, jitter

testing has been accelerated; jitter components can be extracted from the BER-

scan plots which are now built faster. Eye diagram tests which normally take

hours can also be generated faster since they are obtained with performing

multiple BER-scan tests. Also, the speed enhancement obtained allows us to

perform the tests with the best accuracy which is 1ps phase resolution. Accuracy

is an important issue in jitter testing, but normally because of long test times

smaller phase resolutions are skipped.

Using time domain oversampling we were expecting respectively 1, 2, 4, 8, or 16

times speed up in bit-error rate processing in 1X, 2X, 4X, 8X, and 16 X modes.

Table below summarizes the data rates defined in each mode.

Table 6-1 : Actual Oversampling-Ratio Ranges

The speed up we actually obtained is a bit different from what we expected. This

is because of the way we implemented the method. It causes overhead of

Target Data Rate Oversampling-Ratio Mode

6400 Mbps -3187.5 Mbps 1 1X

3187 Mbps - 1562.5 Mbps 2 2X

1562 Mbps - 781.25 Mbps 4 4X

781 Mbps - 390.625 Mbps 8 8X

390.625 Mbps- 250 Mbps 16 16X

 93

communication by not providing sufficient registers for all the bit-errors evaluated

by hardware. Although, we are computing the bit-error values of multiple phases

in parallel at once, we are not passing them to the software all simultaneously. It

is just because we wanted to first make sure that the method actually improves the

speed and works fine before changing the registry interface. For better speed

performance the best is to benefit from the parallelism of multiple error-counters

while passing the bit-error values to the software. This can be done simply by

adding 15 registers to the register interface.

The developed scheme has been tested at different data rates with different

patterns, duration, resolution, etc. each multiple times. All known worst case

scenarios have been considered.

The reliability of the developed scheme has been verified by evaluating the

statistical results of several tests such as BER-scan, edge-displacement, jitter

decomposition, and eye diagram tests. We have verified whether the scheme can

successfully build bathtub plots and eye diagrams and have confirmed the results

by comparing them with the results of the tests done with the former scheme

under the same conditions. Consistency of MPB scheme results is verified by

performing multiple tests and extracting jitter components of all of them and

evaluating the statistical values such as average, and standard deviation.

Finally, we have investigated the tradeoffs that are involved in accelerating BERT

with multi-phase technique. The relative cost of speed enhancement in terms of

extra logic cells, flip-flops, embedded FPGA memory, etc. has been verified. The

 94

speed enhancement is achieved with little increase logic utilization and 2000

registers added.

6.2 Future work

In future, this work can be expanded for incorporation with multiprocessor design

[41][42][43], for enhancing debug features [44], in reliable networks on chip

[45][46], as well as reversible [47], embedded high-density memory [48] design,

and the extension is possible with transform-based techniques under lack of

available data [49]. Finally, the low-power [50] and the sequential design test [51]

can be applied.

Moreover, in future, Bit-error rate (BER), BER-scan, jitter, and eye diagram tests

can be further improved in terms of speed. Bypassing the overhead of

communication by providing enough registers for all of the parallel error-counters

is the first step to achieve this. Having sufficient registers to make all the

calculated bit-error values accessible to software at the same time, instead of

passing them all through one port one by one, will make the speed up closer to

what we had expected. That is to improve the speed respectively by about 16, 8, 4,

2, and 1 times faster in 16X, 8X, 4X, 2X, and 1X mode.

Also, observing the bit-error values of all of the phases within the interval of 2UI,

which is required to build a full bathtub curve, will give another hint to improve

the speed performance of the BER-scan test.

 95

We know a bathtub curve is indeed the logarithmic plot of the total number of bit-

errors at each phase versus phase. At the center of the UI the number of errors is

always zero. That's why bathtub plot goes to minus infinity in the middle of UI.

As we get closer to the edges the number of bit-errors per phase gets more till it

reaches its maximum value at about the edges where the bathtub plot gets flat

(constant). The transition usually happens faster; i.e., compared to the number of

phases their bit-error value is either zero or maximum; the transition takes very

few phases to rise up from 0 to the maximum value. This is while jitter

components are extracted mostly based on the bit-error values of the transition.

On the other hand, to achieve better accuracy we normally select the smallest

phase resolution (1 ps). For instance, at 3000 Mbps to have a full BER-scan plot

with good accuracy, start-phase = -899 ps, end-phase = 899 ps, and phase-

resolution = 1 ps. This requires performing 1799 BERTs. There are 1799 phases

BERT is performed on, but a transition from 0 to maximum is done in only 40

phases (40 ps). Considering the other transition which is from the maximum bit-

error value to 0 also takeing 40 ps, we are doing about 1719 extra measurements.

They are extra because we know that as bit-error value reaches 0 or its maximum

value it will keep constant for a while. Therefore, there is no need to measure the

same value over and over. At 250 Mbps the sampling delay is swept over the

interval between -4400 ps and 4400 ps, with a time resolution of 1 ps, BER-scan

requires 8801 BER measurements. As each transition takes about 60 ps, we need

the accurate bit-error value at only 120 phases (integer phases).

 96

We can have a scheme that goes through the center of UI with bigger phase

resolution then slows down for better accuracy only when it is close to the

transitions. This will certainly skip a lot of unnecessary measurements and speeds

up BERT more than we have achieved. The speed-up is particularly useful as the

data rate gets lower, since as target data rate gets slower, the UI keeps increasing.

The ratio of the phases, at which or close to which the transitions occur, is much

smaller than the total number of phases of the BER measurement. This involves

many unnecessary measurements. This is the reason why BER-scan tests gets

really slower at lower data rates.

 97

References

[1] Y. Fan, Y. Cai, L. Fang, A. Verma, B. Burcanowski, Z. Zilic and S.

Kumar, “An Accelerated Jitter Tolerance Test Technique on ATE for

1.5GG/s and 3GB/s Serial-ATA,” Proceedings of IEEE International Test

Conference, Oct. 2006

[2] Y. Fan, Y. Cai and Z. Zilic, "A High Accuracy, High Throughput Jitter

Test Solution on ATE for 3 Gbps and 6 Gbps Serial-ATA," Proceedings of

IEEE International Test Conference, Oct. 2007

[3] Y. Fan and Z. Zilic, “Bit Error Rate Testing of Communication Interfaces,”

IEEE Transactions on Instrumentation and Measurements, Vol. 57, No. 5,

pp. 897-906,May 2008

[4] Y. Fan and Z. Zilic, "A Versatile Scheme for Validation, Testing and

Debugging of High Speed Serial Interfaces," Proceedings of IEEE High

Level Design Validation and Test Workshop, HLDVT’09, Nov. 2009

[5] Y. Fan and Z. Zilic "Accelerating Jitter Tolerance Qualification for High

Speed Serial Interfaces," Proceedings of the 10th International Symposium

on Quality Electronic Design, ISQED'09, March. 2009

[6] Tektronix, "Jitter Measurement and Timing Analysis," Product guideline,

http://www.tek.com/applications/serial_data/jitter.html

[7] T. Miyazaki, M. Hashimoto and H. Onodera, “A Performance Prediction of

Clock Generation PLLs: A Ring Oscillator Based PLL and an LC

 98

Oscillator Based PLL,”IEICE Transactions on Electronics 2005 E88-C (3):

437-444

[8] DFT Microsystems Canada Inc., DJ60HS Test Module/ Solutions

[9] Altera Corporation. Section I. Stratix II Device Family Data Sheet, May

2007

http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf

[10] M. Hafed, D. Watkins, C. Tam, and B. Pishdad, “Massively Parallel

Validation of High-speed Serial Interfaces Using Compact Instrument

Modules,” Proceedings of IEEE International Test Conference, 2006

[11] M. P. Li, Jitter, Noise, and Signal Integrity at High-Speed, Prentice Hall,

2007

[12] A. Papoulis, Probability, Random Variables, and Stochastic Processes,

New York: McGraw-Hill, 1984

[13] ITRS. The International Technology Roadmap for Semiconductors, 2007

Edition

[14] Y. Fan and Z. Zilic, "Qualifying Serial Interface Jitter Rapidly and Cost-

effectively," Springer Journal of Electronic Testing: Theory and

Applications, Volume 26, 2010,17 pages, DOI: 10.1007/s10836-009-51315

[15] Y. Fan and Z. Zilic, "Accelerating Test, Validation and Debug of High

Speed Serial Interfaces", Springer, 2011. ISBN: 978-90-481-9397-4

[16] T. Yamaguchi, “Loopback or Not,” Proceedings of IEEE International

Test Conference, 2004, p. 1434

http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf

 99

[17] Y. Cai, B. Laquai, and K. Luehman, “Jitter Testing for Gigabit

SerialCommunication Transceivers,” IEEE Design & Test of Computers,

Vol. 19, Issue 1, Jan, 2002

[18] W. Dalal and D. Rosenthal, “Measuring Jitter of High Speed Data

Channels Using Undersampling Techniques,” Proceedings of IEEE

International Test Conference,1998

[19] M. Li, J.Wilstrup, R. Ressen and D. Petrich, “A New Method for Jitter

Decomposition through Its Distribution Tail Fitting,” Proceedings of IEEE

International Test Conference, 1999

[20] Altera Corporation. Mercury Programmable Logic Device Family Data

Sheet, San Jose, California, January 2003

[21] M. Hafed, N. Abaskharoun and G. W. Roberts, “A Stand-Alone Integrated

Test Core for Time and Frequency Domain Measurements,” Proceedings

of IEEE International Test Conference, 2000

[22] Maxim Integrated Products, Inc. HFTA-05.0: Statistical Confidence Levels

for Estimating Error Probability, Application Notes, 2007

[23] P. Noel, F. Zarkeshvari and T. Kwasniewski, “Recent Advances in High-

Speed Serial I/O Trends, Standards and Techniques,” Proceedings of 18
th

Canadian Conference on Electrical and Computer Engineering, 2005

[24] Analyzing Jitter Using a Spectrum Approach, Tektronix Application note

[25] Altera Corporation, The Evolution of High-Speed Transceiver Technology,

White Paper, San Jose, California, 2002

 100

[26] G. W. Roberts, F. Taenzler and M. Burns, An Introduction to Mixed-

Signal IC test and Measurement, 2nd Edition, New York: Oxford

University Press, 2011

[27] Jose Moreira, Hubert Wekmann, An Engineer’s guide to Automated

Testing of High-Speed Interfaces, Artech House, 2010

[28] Analyzing Jitter Using Agilent EZJIT Plus Software, Application Note

1563, 2008

[29] Jianmin Zhang, David J. Pommerenke, Jitter, EMC Symposium, 2006

[30] G. Hansel, K. Stieglbauer, K. Schulze and J. Moreira, “Implementation of

an Economic Jitter Compliance Test for a Multi-Gigabit Device on ATE”,

Proceedings of IEEE International Test Conference, 2004

[31] Y. Cai, A. Bhattacharyya, J. Martone, A. Verma, and W. Burchanowski,

“A Comprehensive Production Test Solution for 1.5GB/S and 3GB/S

Serial-ATA,” Proceedings of IEEE International Test Conference, 2005

[32] Agilent Techonologies, “Jitter Analysis:The Dual-Dirac Model, RJ/DJ,

and Q-Scale”, 2005. White Paper

[33] R. Stephens, “What the Dual-Dirac Model is and What It is not” Tektronix

360 Knowledge Series, 2006

[34] T. Yamaguchi, et al, “Extraction of Peak-to-Peak and RMS Sinusoidal

Jitter Using an Analytic Signal Method,” In Proc. of VLSI Test

Symposium, 2000, pp 395 – 402.8

[35] T. Yamaguchi, et al, “Timing Jitter Measurement of 10 Gbps Bit Clock

Signals using Frequency Division,” In Proc. of VLSI Test Symposium,

2002, pp 207 – 212

 101

[36] M. Li, and J. Wilstrup, “On the Accuracy of Jitter Separation From Bit

Error Rate Function,” In Proc. of International Test Conference, 2002, pp

710 – 6

[37] C.-K. Ong, D. Hong, K.-T. Cheng, and L.-C. Wang, “Jitter spectral

extraction for multi-gigahertz signal,” ASP Design Automation

Conference, 2004

[38] D. Hong and K.-T. Cheng, “An accurate jitter estimation technique for

efficient high speed i/o testing,” IEEE ATS, 2007

[39] Q. Dou and J. A. Abraham, “Jitter decomposition in high-speed

communication systems,” IEEE European Test Symposium, pp. 157–162,

2008

[40] S. Erb and W. Pribyl, “An accurate and efficient method for ber analysis

in high-speed communication systems,” IEEE ECCTD, 2009

[41] Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K.

Loveless, N. Manjikian, S. Srbljic, M. Stumm, Z. Vranesic and Z. Zilic, "

Design and Implementation of the NUMAchine Multiprocessor ",

Proceedings of 35th ACM/IEEE Design Automation Conference DAC `98,

pp.66-69, San Francisco, Jun. 98

[42] S. Brown, N. Manjikian, Z. Vranesic, S. Caranci, A. Grbic, R. Grindley,

M. Gusat, K. Loveless, Z. Zilic and S. Srbljic, "Experience in Designing a

Large-Scale Multiprocessor using Field-Programmable Devices and

Advanced CAD Tools", Proceedings of 33
rd

 ACM/IEEE Design

Automation Conference DAC `96, pp. 24-29, Las Vegas, June 1996

 102

[43] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B.

Gamsa, A. Grbic, M. Gusat, R. Ho, G. Lemieux, K. Loveless, N.

Manjikian, P. McHardy, S. Srbljic, M. Stumm, Z. Vranesic and Z. Zilic,

"The NUMAchine Multiprocessor", Proceedings of IEEE International

Conference on Parallel Processing, ICPP 2000, pp. 487-496, Toronto, ON,

Aug. 2000

[44] M. Boulé, J-S. Chenard and Z. Zilic, “Debug Enhancements in Assertion-

Checker Generation”, IET Computers and Digital Techniques, Vol. 1, No.

6, pp. 669-677, Nov. 2007

[45] MH. Neishaburi and Z. Zilic, "Enhanced Reliability Aware NoC Router",

Proc. Intl. Symposium on Quality Electronic Design, ISQED 2011, Mar.

2011, 6 pages

[46] M. Neishabouri and Z. Zilic, "Reliability Aware NoC Router Architecture

Using Input Buffer Sharing", Proceedings of Great Lakes Symposium on

VLSI, pp. 511-516, May 2009

[47] Z. Zilic, K. Radecka and A. Khazamipour, “Reversible Logic Synthesis

from Non-reversible Specifications”, Proceedings of IEEE/ACM Design

Automation and Test in Europe, DATE’07, pp. 558-563, Apr. 2007

[48] B. Polianskikh and Z. Zilic, "Induced Error-Correcting Code for 2bit-per-

cell Multi-Level DRAM", Proceedings of IEEE Midwest Symposium on

Circuits and Systems, pp. 352-355, Dayton, OH, Aug. 2001

[49] Z. Zilic and Z. Vranesic, "A Multiple-Valued Reed-Muller Transform for

Incompletely Specified Functions", IEEE Transactions on Computers, vol.

44, No. 8, pp. 1012-1020, August 1995

 103

[50] R. Zhang, Z. Zilic and K. Radecka, “Energy-Efficient Software-Based

Self-Test of Wireless Sensor Network Nodes", Proceedings of IEEE VLSI

Test Symposium, VTS06 , pp. 191-196, Apr. 2006

[51] K. Radecka and Z. Zilic, "Arithmetic Transforms for Verification of

Sequential Datapaths", Proceedings of IEEE International Conference on

Computer Design, ICCD, pp. 348-353, Austin, TX, Sep. 2001

