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Abstract—In this paper, we propose a novel approach to
designing an algebraic signature analyzer that can be employed
for mixed-signal systems testing. Due to its algebraic nature,
the analyzer does not contain carry propagating circuitry. This
helps to improve its error immunity, as well as performance.
The proposed scheme can also be used in arithmetic/algebraic
error-control coding and cryptography.

I. I NTRODUCTION

Signature analysis has been widely used for digital and
mixed-signal systems testing [1]–[4]. In the built-in imple-
mentation of this method, a circuit under test (CUT) is fed
by test stimuli while the output responses are compacted by a
signature analyzer (SA), as illustrated in Figure 1. A signature
of a fault free circuit is referred to as a reference signature. The
actual signature is compared against the reference signature
and a pass / fail decision is made.

It is assumed that the output responses are digital, even
though the CUT may contain analogue circuits. In particular,
output responses aren-bit vectors (orq-ary symbols, where
q = 2n). Depending on the nature of the CUT (whether it is
digital or mixed-signal object), the output responses constitute
point values orinterval values [5]. The (closed) interval[a, b]
is defined as follows [6]:

[a, b] = {x ∈ Z : a ≤ x ≤ b}

HereZ is the set of all integers anda, b are integers with
a ≤ b.

If the CUT is a digital system, the SA implements a circuit
that calculates analgebraic remainder. The comparison proce-
dure uses a point value of the reference signature. If the CUTis
a mixed-signal system, the SA performs anarithmetic residue
calculation. In this case the comparison procedure involves an
interval value of the reference signature (tolerances) anduses
a window comparator.

It is essential that the circuit shown in Figure 1 is syn-
chronous, that is the change of test stimuli / output responses
and the shift of the signature analyzer are synchronized with
the explicit clock. The clock rate is defined by the propagation
delay of the CUT.

Design methods for an algebraic signature analyzer have
been well developed in error-control coding [7]. A remainder

Signature

Test

Under

Circuit

AnalyzerStimuli Responses

Test

Fail

Pass

Circuit

Making

Decision

Signature

ActualOutput

Signature

Reference

αi αj

Fig. 1. Built-in signature analysis of a circuit under test
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Fig. 2. A symbolic presentation of an algebraic signature analyzer

calculating circuit for an arbitrary base (i.e. binary or non-
binary) can be readily designed for a digital CUT of any size.
In contrast, a residue calculating circuit is much harder tode-
sign, specifically for a non-binary base [8]. Furthermore, due to
the presence of carry propagating circuitry, the implementation
complexity and error vulnerability of the residue calculating
circuit is higher compared to the remainder calculating circuit.

We propose a novel approach to designing an algebraic
signature analyzer for mixed-signal systems testing. Due to an
algebraic nature, the analyzer does not contain carry propagat-
ing circuitry. This helps to improve its error immunity, as well
as performance.

II. CONVENTIONAL ALGEBRAIC SIGNATURE ANALYZER

An algebraic signature analyzer in a symbolic form is
presented in Figure 2 [8]. Hereα is a primitive element of a
finite field GF (2n). In particular,α is a root of the generator
polynomialg(x) of degreen [7].

Without a loss of generality, we will consider a 3-bit
signature register (n = 3). Therefore,α will be a primitive
element ofGF (23) (e.g. a root of a primitive polynomial
g(x) = x3 + x + 1). And a symbolic scheme of Figure 2
will transfer to the logic level scheme of Figure 3 [8].

An operational cycle (a shift) of this SA can be described
by the expression:

αjα+ αi = a+j = αk
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Fig. 3. A logic level presentation of the algebraic 3-input signature analyzer

TABLE I. T HREE REPRESENTATIONS FOR THE ELEMENTS OFGF (23)
GENERATED BYg(x) = x3 + x+ 1. HEREg(α) = 0.

Power Polynomial Vector
representation representation representation

0 0 0 0 0
α0 α0 0 0 1
α1 α1 0 1 0
α2 α2 1 0 0
α3 α1 + α0 0 1 1
α4 α2 + α1 1 1 0
α5 α2 + α1 + α0 1 1 1
α6 α2 + α0 1 0 1

Herea+j is the next state of the signature register. Sinceα
is a field element, algebraic operations in the left part of this
formula will result in a new field element. Therefore,a+j = αk.

If the preliminary cleared analyzer receives, for example,
the following sequence of 3-bit output responses from a digital
CUT,α5, α6, α4, α2, α1, α0, then after the 6-th shift its content
will become:

(((((0 · α+ α5)α+ α6)α+ α4)α+ α2)α + α1)α+ α0 = α

The power representation of the field element,α, corre-
sponds to the vector representation, 010, which is the actual
signature of the CUT.

The relationship between different representations for the
elements ofGF (23) is given in Table I.

The output responses of a mixed-signal CUT are distorted
even in a fault-free circuit. Small permissable variationsin the
responses cause a significant deviation of the final signature.
For example, if in the above sequence of output responses the
least significant bit in the first response changes from 1 to 0
(i.e. the vector 111 changes to 110, or powerα5 changes to
α4), then the actual signature will change from 010 to 101 (or
from α to α6 in power form).

Apparently, the conventional SA represented in Figures 2
and 3 can not be employed for mixed-signal circuits testing.

III. N OVEL APPROACH

Small (permissible) deviations in the data feeding a con-
ventional n-bit signature analyzer cause the corresponding
signatures to scatter through the complete set of2n possible
signatures. Under these conditions, the decision making circuit
in Figure 1 must be able to compare the actual signature
with the large set of reference signatures. This increases the
complexity of the analyzer. In contrast, an arithmetic residue
calculating analyzer (also referred to as an accumulator) does
not search through the entire set of reference signatures. Since
this set iscontiguous, the analyzer employs an “interval” (or
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Fig. 4. A symbolic form of an algebraic SA for a mixed-signal CUT
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Fig. 5. A more detailed symbolic form of the SA

window) comparator to make a decision. This simplifies the
circuitry.

In the rest of this paper, we will show how to design an
algebraic SA, which generates a contiguous set of algebraic
reference signatures. In order to solve this task, we will need
to order the set of signatures.

A signature can be represented in the vector or power
forms. We will use the power exponent as the criterion for
ordering the signature set. The distance between two vectors
(signatures) will be evaluated as the arithmetic difference
between the corresponding exponents. For example, the dis-
tance between the signatures 010 and 101 will be 5, because
the exponents of powersα6 and α differ by 5. We can
interpret these exponents as output responses of a mixed-signal
CUT, since they possess arithmetic properties. At the same
time, the corresponding vectors (signatures) possess algebraic
properties. Therefore, an arithmetic data is mapped into an
algebraic data. Figure 4 represents the circuit which performs
this mapping and computes an algebraic signature.

The logic level implementation of the circuit in Figure 4
is more complicated compared to the circuit in Figure 2. Prior
to designing the circuit, we have to make a few observations.

The first observation is that

αjαi = ((· · · (αj α)α) · · ·α
︸ ︷︷ ︸

i

Let us denote an output response from a mixed-signal CUT
as i. The second observation is that the responsei can be
considered as an exponent of the power, i.e.αi. Essentially, this
means that the arithmetic valuesi are mapped into algebraic
valuesαi.

Based on these observations, we can design a signature
analyzer in the way shown in Figure 5. Hereα is a primitive
element of a finite fieldGF (2n); n coincides with the bit-
length of the output responses. The lower and upper inputs
of the multiplexer in Figure 5 are connected together, since
α2n−1 = α0 in GF (2n).
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Fig. 6. A register transfer level implementation of the SA

Considering the case when the analyzer is fed by 3-bit
data, its more detailed implementation will have the form of
Figure 6.

Here the buses consist of 3 lines, as indicated by the
appropriate number. The initial content of the SA before the
shift is αj , or a2x2 + a1x + a0 in the polynomial form. The
notationsav anda+v , where indexv can be one of the 0, 1, 2,
indicate the present and next states, respectively.

A multiplier by α in GF (23) is realized bearing in mind
that g(x) = x3 + x+ 1, α corresponds tox, and

(a2x
2 + a1x+ a0)x mod g(x) =

(a2x
3 + a1x

2 + a0x) mod g(x) =

a2(x+ 1) + a1x
2 + a0x =

a1x
2 + (a2 + a0)x+ a2

This operation is shown by cross-lines in Figure 6. The
multiplexer inputs “0” and “7” are tied together, becauseα7 =
α0 in the fieldGF (23).

In order to demonstrate how to use this analyzer, we
will assume that it receives only two values from a CUT, in
particularj and i. Since the CUT is of a mixed-signal nature,
there is an unavoidable (and thereby permitted) deviation
of these values by±1 (the greater tolerances can also be
considered). The analyzer will map the received data intoαj±1

andαi±1, respectively. If we assume that the initial content
of the SA is 001 (versus 000 for a conventional SA), then
after the first shift the content becomesα0αj±1 = αj±1.
After the second shift, it changes toαj±1αi±1 = αj+i±2. This
expression is derived using the rules of interval arithmetic [6].
It states that for the fault-free CUT the actual result must match
one of the values from the interval [αj+i−2, αj+i+2], that is
one of the following:

αj+i−2, αj+i−1, αj+i, αj+i+1, αj+i+2

To further simplify the SA operation, we will assume that
instead ofα0 (i.e. 001) the initial SA content isα−(j+i). We
will refer to this value as theseed value. Then, by the same
reasoning, the SA content after two shifts will match one of
the following powers:

α−2, α−1, α0, α1, α2

Due to the closure property of the fieldGF (23), this power
set is equivalent to:

α5, α6, α0, α1, α2 (1)

Consequently, the decision making circuit in Figure 2 will
work as follows. If the actual signature does not match any
values from the set (1), the CUT is considered to be faulty.
Since these values are ordered (and surround the powerα0),
the decision making circuit can employ a window comparator,
thereby reducing the hardware complexity of the SA.

As in any signature analyzer, some errors in the CUT
output responses may escape detection. The aliasing rate can
be estimated as described in [9] and will coincide with the
aliasing rate of the conventional analyzer. If the bit-length of
the signature analyzer isn, the number of output responses
fed into it is m, andmn ≫ m + n (which normally holds
in practice), then the the aliasing rate can be estimated as
≈ 2−n [9]. If for a given bit-length,n, of the output responses,
the aliasing rate,2−n, is not sufficiently small, then the bit-
length of the analyzer can be made greater thann.

For example, ifn = 10 andm = 300, thenmn = 3, 000
andm + n = 310. Since3, 000 ≫ 310, the aliasing rate can
be estimated as2−n = 2−10 = 0.0009766. If it is desirable
to improve this rate and make it even lower, the bit-length
of the analyzer can be extended. For example, for a length
12 analyzer (and the samem), the rate will become2−12 =
0.0002441. Note that we have not changed the bit-length of
the output responses; it equals to 10. We have only extended
the length of the analyzer (from 10 to 12).

Example Let us consider a 3-bit CUT, which is fed by two
input stimuli. Under the fault-free operation, the CUT produces
the output responsesj = 101± 1 andi = 110± 1. Therefore,
the seed value will beα−(j+i) = α−(5+6) = α−11 = α3, or
011 in the vector form. If the CUT is fault-free, then after 2
shifts the SA content must match one of the elements in the
set (1). For example, if the actual responses are 101+1=110
(or α6) and 110+1=111 (orα7) (i.e. the variations are within
the tolerance bounds), the signature will beα3α6α7 = α2

which belongs to the set (1). And the decision making circuit
will generate apass signal. The validity of such a decision is
determined by the aliasing rate.

Let us assume that a fault in the CUT has made the follow-
ing changes in the output responses:110 → 011 (α6 → α3)
and 111 → 100 (α7 → α4). Then the actual signature will
becomeα3α3α4 = α3. This element does not belong to the
set (1), so the fault is detected.

There are two distinct ways of designing the decision
making circuit depending on the optimization criteria (time
or hardware overhead).
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Fig. 7. An n-bit comparator

Hardware overhead If performance is paramount and
time overhead is not permitted, the following approach can
be employed. Letm be the number of output responses. All
of the 2m+1 α-multiplier outputs (see Figure 5) that belong
to the set (1), are connected to the first inputs of the 2m+1
comparators of a similar type. The second inputs of these
comparators are shared and fed by the vector0 . . . 01. If the
CUT is fault-free, one of the comparators will produce a
logic “1” signal. The logic OR of the comparator outputs will
constitute apass / fail signal.

The above procedure is based on the fact that the fault-free
CUT produces one of the signatures from the set (1). If the
actual signature isα0, the comparator connected directly to the
signature register produces a logic “1”, thus indicating that the
CUT is fault free. If the actual signature isα6, then the product
α6α, generated at the output of the firstα-multiplier equals
to 1, which is detected by the next comparator. The same
reasoning applies to the rest of signatures from the set (1).The
logic diagram of then-bit comparator is shown in Figure 7. It
simply represents ann-bit AND gate.

Time overhead If time overhead is allowed, the hardware
complexity can be further reduced. In terms of implementa-
tion, it is more convenient to use the following seed value:
α−(j+i+m+1), where m is the number of output responses.
For the above example,α−(11+3) = α0, and the set (1) will
change to:

α2, α3, α4, α5, α6 (2)

After the last shift, the SA continues to shift its content
2m+1 more times, while the inputi is forced to 1. This ensures
that the SA content is multiplied byα with each shift. For the
above example, 2m+1=5. If within this time, the match with
an element of the set (2) has been determined, the CUT is
considered to be fault-free. Otherwise, it is faulty.

If the CUT is fault free and its output responses have not
exceeded their tolerances, then while cycling through the states
during the extra 2m+1 shifts, the output of the multiplexer in
Figure 5 will go through the powerα0 or vector0 . . . 01. The

match with the vector0 . . . 01 is detected by the comparator of
Figure 7 connected to the multiplexor’s output. The comparator
output is actually producing apass / fail signal.

IV. CONCLUSION

We examined an algebraic signature analysis method that
can be employed for mixed-signal circuits testing. We demon-
strated how to design the appropriate device. This device does
not produce arithmetic carries and is therefore less prone
to errors. The absence of carry propagating circuits also
contributes to the higher performance of the device.

The proposed scheme can also be used in arithmetic and
algebraic error-control coding, as well as cryptography.

We did not analyze a noise that can corrupt the output
responses of mixed-signal signal circuits. It was assumed that
the noise has a zero mean and its effect is neutralized in a long
run of test experiments.
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