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Abstract—Physical Unclonable Functions (PUFs) are modern
solutions for cheap and secure key storage. The security level
strongly depends on a PUF’s unpredictability, which is impaired
if certain bits of the PUF response tend towards the same
value on all devices. The expectation for the probability of 1 at
some position in the response, the Bit-Alias, is a state-of-the-art
metric in this regard. However, the confidence interval of the Bit-
Alias is never considered, which can lead to an overestimation
of a PUF’s unpredictability. Moreover, no tool is available to
verify if the Bit-Alias is within given limits. This work adapts a
method for the calculation of confidence intervals to Bit-Alias. It
further proposes a statistical hypothesis test to verify if a PUF
design meets given specifications on Bit-Alias or bit-wise entropy.
Application to several published PUF designs demonstrates the
methods’ capabilities. The results prove the need for a high
number of samples when the unpredictability of PUFs is tested.
The proposed methods are publicly available and should improve
the design and evaluation of PUFs in the future.

I. INTRODUCTION

The need for a high level of security in low-cost devices

has driven the research for cheap but secure key storage.

Physical Unclonable Functions (PUFs) are promising solutions

for such applications: They permit the derivation of a secret

from chip-unique manufacturing variations, such as variations

in the threshold voltage, using standard logic gates. For this

purpose, a large class of PUFs – so called Weak PUFs or single-

challenge PUFs – consists of many measurement circuits where

each evaluates its own local variations on the chip to derive

one bit of the secret. SRAM PUFs [1] and ring-oscillator (RO)

PUFs [2] are just two prominent examples of such PUFs.

The security of this concept is ensured if an attacker cannot

read out the PUF or predict its secret response. The first is given

if the PUF is not powered, but raises the need for dedicated

runtime countermeasures while the secret is generated from

the PUF. The latter implies that an attacker who knows the

output of a large number of PUFs from equally built devices,

still cannot significantly reduce the entropy in the response of

the PUF. Therefore tests must be designed which ensure that

there is no notable statistical weakness in the random (secret)

responses of the PUF. Multiple tests have been suggested,

which measure bias [3], [4], correlations, or spatial correlations

[5], [6]. But, except for [4], [6], the accuracy of the metrics

is not assessed, which can lead to undetected flaws.

Contribution. This work builds upon the Bit-Alias [3] as

one well suited method to evaluate the unpredictability of

a certain position in the PUF response. It firstly shows how

to derive confidence intervals for the Bit-Alias to get the

accuracy of the evaluation. Secondly, a hypothesis test to verify

if the Bit-Alias is within a selectable permissible range is

introduced. The required number of test devices to provide

this guarantee with a reasonably low false acceptance rate

(FAR) is discussed. Thirdly, application to previous work and

comparison to other metrics highlights the usefulness and

limitations of our approach.

Structure. The rest of this work starts with the introduction

of confidence intervals for Bit-Alias in Sec. II. Our hypothesis

test is introduced in Sec. III. Sec. IV and Sec. V demonstrate

the application of the metric and discuss the results. A con-

clusion is drawn in Sec. VI.

II. STATISTICAL VIEW ON BIT-ALIAS

AND ITS CONFIDENCE INTERVAL

PUFs are double random: First, manufacturing variations

vary the expected behavior for each device, such as the

preferred start-up value of an SRAM cell or the frequency of

an RO; Second, noise and environmental effects impact the

behaviour at run-time. The former determines unpredictability,

the latter reliability. To properly investigate the unpredictabil-

ity of a PUF, independent samples of solely the first random

process are required. This is commonly approximated by

testing multiple devices and removing run-time randomness

by averaging multiple measurements of each device.

Under the assumption that this approach produces inde-

pendent samples, the Bit-Alias [3] tests whether individual

positions of the PUF’s noise-free response r are predictable

due to an imbalance of 1s and 0s and is defined as

p̂t =
1

N

N
∑

n=1

rt,n, (1)

where N is the number of devices and t indexes the bit position

in a device’s T bit response vector. If p̂t = 0.5, an attacker

cannot intelligently guess the response at position t.

From a statistical point of view, Eq. (1) considers each of the

T bit positions as an independent Bernoulli (Bern (pt)) dis-

tributed random variable (RV) and estimates pt, the probability

for observing a 1 at position t, by p̂t, under the assumption

that each device provides one independent realization of all T

RVs. Since the following applies equally to any position t, we

omit the index from now on.

In the given scenario, the arithmetic mean (p̂) is the best

estimator for p, as it is unbiased and provides uniform min-

imum variance [7]. Still, the estimation can be far off p if it
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is based on few or flawed samples. Therefore, the confidence

interval (CI), i.e. a range p̂l to p̂u that includes the true value

p in on average 1−α cases, has to be taken into account. The

significance level α is chosen by experience, e.g. 0.05, 0.01.

To calculate this CI, first note that estimating p of a

Bernoulli process is equivalent to estimating the proportion

of the binomial distribution that results from counting the 1s

in N repeated trials of the process. The binomial proportion

CI is a well explored problem and manifold methods can be

found in textbooks. We consider the following three useful for

the given scenario: First, the normal approximation interval

p̂l,u = p̂± z

√

p̂(1− p̂)

N
, (2)

second, the Wilson’s score interval

p̂l,u =
p̂+ z2

2N

1 + z2

N

±
z

1 + z2

N

√

p̂(1 − p̂)

N
+

z2

4N2
(3)

both using p̂ and N from above and with

z = N−1

(

1−
α

2
, 0, 1

)

, (4)

i.e. the 1 − α
2

quantile of a standard normal distribution, and

third, the so-called exact interval by Clopper and Pearson

p̂l =

{

Beta−1
(

α
2
, x,N − x+ 1

)

x > 0

0 otherwise

p̂u =

{

Beta−1
(

1− α
2
, x+ 1, N − x

)

x < N

1 otherwise
(5)

where x is the number of 1s observed on N devices at a given

position. The last is also used in our hypothesis test in Sec. III.

Agresti and Coull [8] compared these and several other

methods. They found the normal approximation interval to

perform poorly for small N , providing either too wide CIs

for p̂ ≈ 0.5 or far too narrow CIs for p̂ close to {0, 1}.

This matches many rules of thumb which restrict the normal

approximation of a binomial distribution to large N with a

sufficient number of both 1s and 0s. The Clopper and Pearson

method provides slightly too wide CIs, because it ensures at

least 1− α coverage probability even at worst case values of

N , p̂. In conclusion, [8] recommends Wilson’s score interval,

because its mean coverage probability is closest to – though

not necessarily above – the desired level 1−α for virtually all

values of N , p̂. We consider this recommendation well suited

for determining the CIs after a PUF experiment.

The normal approximation can provide – despite its poor

performance in certain cases – a first estimate of the number

of devices required for testing. Reasonable CI widths in real-

world applications require sufficiently large N , cf. Fig. 1, and

p is not close to {0, 1}, cf. Fig. 2. Given, e.g., a desired CI

width p̂∆ = 0.1 (p̂l,u = 0.5 ± 0.05), and a confidence level

α = 0.01 (z = 2.5759), the number of required test devices

can be roughly estimated via

Np̂=0.5(p̂∆, z) =

(

z

p̂∆

)2

, (6)
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Figure 1. Width of CI according to Wilson’s score, Clopper-Pearson, and
normal approximation estimator over N for α = 0.01, p̂ = 0.5. A CI of
0.5± 0.1 has a width of 0.2.
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Figure 2. Width of CI according to Wilson’s score, Clopper-Pearson, and
normal approximation estimator over p̂ for α = 0.01, N = 20. A CI of
0.5± 0.1 has a width of 0.2.

resulting in 664 devices to be tested. The Clopper-Pearson

method requires 680, the Wilson’s score method 658 devices

in this setting. Note that the provided numbers are minimum

values and do not consider additional uncertainty introduced

e.g. if the samples are not perfectly independent.

Independent of the chosen estimator, p̂∆ for fixed N also

depends on p̂, with a maximum – i.e. the worst case – at

p̂ = 0.5, cf. Fig. 2. The Wilson’s score interval, for example,

has width 0.499 for p̂ = 0.5, but width 0.249 for p̂ = 0,

when N = 20, α = 0.01. Thus, when comparing the number

of devices for unpredictability analysis, where p̂ = 0.5 is the

optimum, and the number of repeated measurements required

for reliability analysis, where p̂ is close to 1 or 0, the former

requires twice the number of samples.

III. HYPOTHESIS TEST ON BIT-ALIAS

OR MINIMUM BIT-WISE ENTROPY

A. Test for Acceptable Bit-Alias

For the design of appropriate post-processing algorithms, a

Bit-Alias within a certain range around 0.5 must be ensured.

The following qualification test for whether the Bit-Alias of a

certain position in the response vector is sufficiently close to



0.5 is equivalent to checking whether a coin is fair. It uses the

hypothesis test that is the basis for the Clopper-Pearson CI:

Assume as null hypothesis H0 : p ≥ pu, which we aim to

reject so that the alternative hypothesis HA : p < pu remains.

We have to reject H0 if the probability of observing at most

xu 1s, i.e. the p-value, is too low under this hypothesis. Due to

the monotonicity of cumulative distribution functions (CDFs),

it is sufficient to consider the case p = pu, because for p > pu,

the probability of observing at most xu 1s is even less. We

can therefore rule out a too high Bit-Alias value if the p-value

p0,u = P [Xu ≤ xu] =

xu
∑

i=0

(

N

i

)

pu
i (1− pu)

N−i
(7)

with Xu ∼ Bin (N, pu) is less than α
2

. The limit is α
2

instead

of α, because another hypothesis test to rule out too low Bit-

Alias is to be rejected simultaneously. This second test can be

constructed identically for symmetry reasons. It has H0 : p ≤
pl, HA : p > pl, and with Xl ∼ Bin (N, pl) p-value

p0,l = P [Xl ≥ xl] =

N
∑

i=xl

(

N

i

)

pl
i (1− pl)

N−i
. (8)

Reversing the calculation of p̂∆ using Clopper-Pearson from

Sec. II provides a validation of the suggested test. For α =
0.01, N = 680, pl = 0.45, pu = 0.55 only xl = xu = 340
should allow for the rejection of both hypotheses. This ensures

that the FAR, i.e. incorrectly approving a position to be within

(pl, pu), is at most α.

The probability to observe exactly 340 1s in 680 trials,

however, is even for p = 0.5 only 0.03. It is therefore

necessary to take the false rejection rate (FRR) into account.

Once the limits xu, xl are determined from (7), (8), the

probability to accept a position with true Bit-Alias p, i.e.

X ∼ Bin (N, p), is

p1 = P [xl ≤ X ≤ xu] =

xu
∑

i=xl

(

N

i

)

pi (1− p)
N−i

. (9)

Although p1 approaches 1 for N → ∞ if p ∈ (pl, pu), for a

real-world test, one would define (pk, pv) and choose N so

that ∀p ∈ (pk, pv) : 1 − p1 ≤ β . Due to monotonicity, again

a test for ∀p ∈ {pk, pv} : 1 − p1 ≤ β suffices. In the above

example with pl,u = 0.5 ± 0.05, α = 0.01, N = 6674 is

required to achieve β = 0.01 for pk,v = 0.5± 0.02.

B. Test for Early Termination of Experiment

From a practical point of view, testing 680 or more devices

for whether too many response bits show non-satisfying Bit-

Alias estimates is a waste of resources. Therefore, a forecast

whether it is reasonable to continue testing or abort the test

and demand a layout change or redesign is desirable. The

previous hypothesis test can easily be adapted for this purpose.

Given, e.g., N = 50 tested devices and some positions in the

response with x ≤ 10 1s, the hypothesis for the new test is

that this low value of x is by random chance and p is actually
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Figure 3. CI width achievable for α = 0.01, p̂ = 0.5 in a collection of
popular PUF publications.

at least at the lower predefined limit pl, i.e. H0 : p ≥ pl.

With Xl′ ∼ Bin (N, pl), the p-value is

p0,l′ = P [Xl′ ≤ x] =

x
∑

i=0

(

N

i

)

pl
i (1− pl)

N−i
. (10)

A corresponding test for too many instead of too few 1s is

easy to construct for symmetry reasons and provides another

p-value p0,u′ . If p0,l′ or p0,u′ is below some α for too many

positions, permissible Bit-Alias values are sufficiently unlikely

to abort the test. In the above example, N = 50, pl = 0.45,

the probability for x ≤ 10 by random chance despite of a

Bit-Alias value above pl is just p0,l′ = 2 · 10−4.

C. Relation to Bit-Wise Entropy

The limits pl and pu can be represented by a minimum

Shannon- or min-entropy, because each position is assumed to

be a Bernoulli distributed RV, in which case entropy and prob-

ability can be directly calculated from each other. A minimum

min-entropy of h∞ = 0.9, relates to pu = 2−h∞ ≈ 0.5359
and pl = 1−2−h∞ ≈ 0.4641. The example from the previous

section, p = 0.5 ± 0.05, is equivalent to a minimum min-

entropy of 0.8625 and a Shannon-entropy of 0.9928. Note that

the entropy values are given per position and their sum may

not constitute the entropy of the entire PUF due to correlation.

IV. APPLICATION TO PUBLIC PUF DATA

To emphasize the importance of CIs, Fig. 3 shows the

achievable p̂∆ for selected publications. We examined almost

200 publications between 2002 and 2018 and reported those

which analyzed the most devices when they were published.

Additionally some high impact papers are included for com-

parison. PUF research commenced in 2002 with as few as four

devices in [2], [9] and remained with just a few devices until

Maiti et al. [3] set an early record by analyzing 125 devices

in 2010, increased to 193 devices in 2011. It took until 2018

to exceed this number, by Hesselbarth et al. [15], who are the

first that may claim to measure Bit-Alias with an accuracy

of at least better than ±0.1. This reveals a common issue in

PUF research, where claims on superior inter-class Hamming-

distance (inter-HD), Bit-Alias, or entropy are based on too



few data, especially in those papers not listed in Fig. 3, which

generally analyze less than 20 devices.

V. RELATION TO OTHER METRICS

AND OVERALL PUF TESTS

Hori et al. [4] already provided CIs for their metrics. They

utilized the fact that their metrics all calculate intermediate

values per device, which are assumed to be normal distributed

due to the central limit theorem (CLT). Under this assumption,

the CI for the mean can then be calculated using the t-

distribution [4], which leads to much tighter bounds than this

work achieved for the Bit-Alias. However, the approach in [4]

has issues. First, the applicability of the CLT is questionable:

The CLT postulates that the arithmetic mean of a sum of

independent and identically distributed (IID) RVs approaches a

normal distribution. But empirical results of strongly varying

Bit-Alias [5] contradict the assumption of identical distribu-

tion, and the observation of spatial correlations [6] contradicts

independence of RVs. Second, the metrics which Hori et al.

provide a CI for, test a mixture of several PUF properties. This

allows issues to cover each other up, e.g. too high and too low

Bit-Alias at different positions of the response, and makes the

interpretation of CIs for these metrics difficult.

Beyond the approach in this paper, adapting the CI for Bit-

Alias to other metrics such as Uniformity [3] may seem tempt-

ing. But Uniformity measures the probability for a 1 within the

response bit vector of a single device. At the same time, the

methods for CI calculation in this work assume independent

samples of the same RV. Consequently, the methods can only

be applied to Uniformity, if all positions in the response vector

of a device can be considered to be independent samples of

the same RV. This, however, does not match the observations

in previous work [6]. For other candidate metrics, similar

considerations are necessary.

Nevertheless, for a complete unpredictability evaluation of

a PUF design, additional tests are required on top of our

enhanced Bit-Alias. Currently, the distribution of inter-HD and

especially its arithmetic mean, named Uniqueness [3], are usu-

ally tested. Uniqueness, however, is entirely determined by the

Bit-Alias values [16]. Testing the Bit-Alias thus automatically

ensures that the Uniqueness is within limits, and has additional

benefits: First, higher sensitivity, i.e. the numeric value of the

respective Bit-Aliases changes more strongly than that of the

Uniqueness, if a certain part of the response vector deviates

by a certain amount from equiprobability. Second, location

information, meaning that contrary to Uniqueness, the Bit-

Aliases show exactly which positions of the response bit string

are biased. This helps the designer to locate potential layout

errors faster, but may also serve in a security assessment.

However, all current standard tests such as Bit-Alias,

Uniqueness, or Uniformity, fail to identify correlations within

the response vectors. Therefore, a test of the inter-HD dis-

tribution, especially its tails, or a correlation test between

positions in the response vector as in [6] is mandatory. While

we consider the problem of evaluating the Bit-Alias per

position solved with the additional methods presented in this

work, especially the consideration of correlations between PUF

response bits and the computation of confidence intervals for

Uniformity or a similar metric leaves room for improvement.

VI. CONCLUSION

In this work, one important metric for the unpredictability of

a PUF, the Bit-Alias, is enhanced by introducing a correspond-

ing confidence interval. A hypothesis test is defined to verify

whether each position in the response string complies with

given limits on Bit-Alias or entropy. The suggested confidence

interval is applied to previous work, demonstrating that even

the most elaborate large-scale tests only reach an accuracy

of approximately ±0.1 for their estimations of Bit-Alias at

α = 0.01. These results, together with the proposed hypothesis

test, emphasize the demand for a high number of test devices

in PUF research.
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