
PREPRINT - accepted by 21st IEEE Interregional NEWCAS Conference 2023 (NEWCAS 2023)

Integrated Architecture for Neural Networks and
Security Primitives using RRAM Crossbar

Simranjeet Singh∗¶§, Furqan Zahoor †§, Gokulnath Rajendran†, Vikas Rana¶,
Sachin Patkar∗, Anupam Chattopadhyay†, Farhad Merchant‡

∗Indian Institute of Technology, Bombay, †Nanyang Technological University, Singapore,
¶Forschungszentrum Jülich GmbH, ‡Newcastle University, UK

{simranjeet, patkar}@ee.iitb.ac.in, {furqan.zahoor@, gokulnat002@e., anupam@}ntu.edu.sg,
{si.singh, v.rana}@fz-juelich.de, farhad.merchant@newcastle.ac.uk

Abstract—This paper proposes an architecture that integrates
neural networks (NNs) and hardware security modules using
a single resistive random access memory (RRAM) crossbar.
The proposed architecture enables using a single crossbar to
implement NN, true random number generator (TRNG), and
physical unclonable function (PUF) applications while exploiting
the multi-state storage characteristic of the RRAM crossbar
for the vector-matrix multiplication operation required for the
implementation of NN. The TRNG is implemented by utilizing
the crossbar’s variation in device switching thresholds to generate
random bits. The PUF is implemented using the same crossbar
initialized as an entropy source for the TRNG. Additionally, the
weights locking concept is introduced to enhance the security of
NNs by preventing unauthorized access to the NN weights. The
proposed architecture provides flexibility to configure the RRAM
device in multiple modes to suit different applications. It shows
promise in achieving a more efficient and compact design for the
hardware implementation of NNs and security primitives.

Index Terms—TRNG, PUF, NN, RRAM, Memristors, Hard-
ware Security

I. INTRODUCTION

The Internet of things (IoT) era has led to a significant
increase in data exchange between processors and mem-
ory, which results in high power consumption. It ultimately
degrades the system’s performance [1]. The von Neumann
architecture, which separates processing and memory units,
often suffers from data access latency due to the large volume
of data movement [2]. To overcome these limitations, various
novel computing paradigms are being investigated. In-memory
computing, which performs calculations entirely within the
computer memory, has gained significant attraction as a po-
tential solution [3]–[5].

Additionally, it is necessary to authenticate IoT devices
on the network to ensure data security and protection by
maintaining their integrity, confidentiality, and availability,
thus preventing any malicious attacks or unauthorized access.
Physical unclonable function (PUF) circuits are becoming
popular in IoT due to their ability to generate unique and
unpredictable responses to challenges. This makes them highly
useful for hardware security, such as device authentication
and key generation, and for implementing security protocols
ranging from device attestation to data encryption. Several cir-
cuits have been proposed for realizing in-memory computing

§Equal contribution

Fig. 1: The NN locking using the embedded hardware security
primitives by exploiting the variations of RRAM cells.

architectures using resistive random access memory (RRAM)
devices to implement various techniques, including PUF [6]–
[8], neuromorphic neurons [9], [10] and digital gates [11]–
[13]. RRAM is being considered as a potential candidate
to address various drawbacks of conventional complementary
metal oxide semiconductor (CMOS)-based architectures [14].
The relatively small size of RRAM devices also makes it
highly feasible to integrate computing circuits and memory,
thus realizing efficient architectures for learning algorithms,
hardware security modules, and neural network (NN) applica-
tions [15].

RRAM has been extensively studied for main memory and
in-memory computing architectures, but their stochastic nature
and intrinsic variation in switching parameters have hindered
their widespread adoption as next-generation memories [16].
However, this uncertain behavior is desirable for designing
hardware security primitives [17]. Another commonly inves-
tigated hardware encryption module is true random number
generators (TRNGs), which generate a stream of random
numbers by exploiting randomness in physical processes [18].
While CMOS-based TRNG designs have been proposed, they
only provide limited security-specific properties, paving the
way for TRNGs based on emerging technologies. Among
these designs, RRAM-based TRNGs demonstrate desirable
properties, primarily due to their low power operation, high

ar
X

iv
:2

30
4.

13
53

1v
2

 [
cs

.E
T

]
 1

 M
ay

 2
02

3

PREPRINT - accepted by 21st IEEE Interregional NEWCAS Conference 2023 (NEWCAS 2023)

density, and stochastic filament formation [19].
The protection of trained neural network (NN) models has

become crucial to prevent unauthorized access, which can
lead to the cloning of the model by adversaries. This study
proposes a novel architecture to implement NN and hardware
security modules on a single RRAM crossbar, allowing only
authorized users with the correct device to use the locked NN
model [20]. The proposed architecture focuses on protecting
the intellectual property (IP) rights of deep NN models.
Fig. 1 illustrates the framework for locking the NN using the
embedded security module. The major contributions of this
work are as follows:

• Integrating the NN, PUF, and TRNG on the RRAM
crossbar array.

• Discussion on how the proposed crossbar architecture can
be used for realizing NN weights locking.

• Lastly, the methodology for implementing the NN, PUF,
and TRNG on the same crossbar is validated.

The remainder of the paper is organized as follows: Section
II details the architecture for implementing NN, TRNG, and
PUF designs based on RRAM. Section III shows the NN
weights-locking algorithm using the proposed architecture.
Section IV discusses the results of integrating NN and hard-
ware security primitives realized using the crossbar RRAM
array. Section V concludes the paper.

II. PROPOSED ARCHITECTURE

This section explains the architecture to integrate NN and
hardware security modules using the RRAM crossbar. The
proposed architecture is shown in Fig. 2. The RRAM cells
connected in a passive crossbar configuration are at the core
of the proposed architecture. The same crossbar has been used
to implement NN, PUF, and TRNG.

A. RRAM crossbar

The RRAM device employed in this investigation is char-
acterized by its ability to store multiple bits. Specifically, the
device can be programmed into a low resistive state (LRS) and
a high resistive state (HRS). Still, it can also store multiple
resistive states between LRS and HRS, which is referred
to as multi-state storage. Applying varying voltage pulses
across the device can be configured as two- or multi-state
devices. For the purpose of the vector-matrix multiplication
(VMM) implementation in this study, the device is configured
as a multi-state device, but it can also function in the two-
state mode. The proposed architecture offers the flexibility to
configure the device in multiple modes to suit applications
such as VMM, TRNG, and PUF implementations. Next, we
will discuss using RRAM as a core device to implement these
applications on a single crossbar.

B. VMM implementation

The RRAM crossbar performs the VMM operation, a
critical function in implementing NNs. The weight matrix
required for VMM is stored on a crossbar, with weights
corresponding to each device’s resistance or conductance state.

Fig. 2: Proposed architecture for implementing NNs and
hardware security primitives on the crossbar of RRAM.

These devices are set up to store multi-bit weights, and their
rows are linked to a digital-to-analog converter (DAC). The
input vector is then fed into the DACs, which generally
convert the input into analog output voltage levels, as depicted
in Fig. 2. Following Ohm’s current law, the applied input
voltages produce a current through each device depending
on the device’s resistance or conductance value (weight). The
current flowing through each device connected in a column
is combined based on Kirchhoff’s current law. Ultimately,
the current values in the columns are utilized to carry out
a multiplication and accumulation operation of the weights
and input vector, which is nothing but a VMM operation in
memory.

v1 1
v2 2
v2 2
v0 0

T
c0 c1 c2 c3

1 2 3 3 r0
0 3 0 1 r1
2 2 0 1 r2
3 2 2 1 r3

=
c0 c1 c2 c3

()5 12 3 7 (1)

To illustrate, consider the VMM operation involving two-
bit weights and two-bit input vectors. The input and weights
matrix has been shown in Equation 1. DAC maps the input
vector to the voltage levels from v0 to v3. The weights matrix
is stored as a resistance state on the crossbar (marked in
Equation 1 using rn to cm). The resistance state of the device
in the crossbar represents the two-bit weights, while the input
vector is applied to the DAC through a digital interface, as
shown in Fig. 2. The multiplication and accumulation results
are obtained for each column, and the current sense amplifier
for digital conversion amplifies the resulting current. In the
example execution, the output matrix contains results greater

PREPRINT - accepted by 21st IEEE Interregional NEWCAS Conference 2023 (NEWCAS 2023)

than two bits, which need to be converted back to the digital
domain. The analog-to-digital (ADC) resolution is determined
by dlog2(w ×m)e, where w represents the weight bits (2 in
this example) and m means the number of devices in a single
column (4 in this example).

C. TRNG

To implement the TRNG on the RRAM crossbar, we have
used the technique presented in [21], where the device-to-
device (D2D) and cycle-to-cycle (C2C) variations on the
crossbar have been used to generate the random switching
in the crossbar. The switching threshold of each device on the
RRAM crossbar is used to generate random bits. By applying
a 50% switching probability pulse to the crossbar, random
devices switch their state to LRS, and the others remain in the
HRS. Due to the crossbar variation, each device’s switching
threshold is different, resulting in random switching of the
devices. In order to implement the TRNG in the proposed
architecture, another terminal of the device must connect to
GND, which the 1x4 DeMUX controls.

D. PUF

A single RRAM crossbar is utilized in this proposed archi-
tecture to implement a TRNG and a PUF. The crossbar is first
initialized to an entropy source based on the TRNGs algorithm,
which provides a source of randomness to generate random
bits. Challenges are then applied to the crossbar’s rows, and the
responses of the PUF are collected. The challenges are mapped
to a read voltage pulse, which varies based on the input
challenge. However, during PUF implementation, the crossbar
is configured to two-state rather than multi-state switching.

To collect the responses of the PUF, Kirchoff’s current law
is applied to the crossbar, which collects the current flowing
through each device at the column lines. The input challenge
and device variations influence this current. The sneak path
affects the current in the crossbar, which contributes to the
current at each column in a completely random manner. The
analog current values are converted to boolean response bits
at the output using a current sense amplifier (CSA). As the
response bit can be either 0 or 1, ADC in the path has been
bi-passed using 1x4 DeMUX. The digital interface can further
use the collected responses to lock the weights matrix on
the crossbar. The randomness and unpredictability of the PUF
response make it suitable for use in secure authentication and
key generation applications, and the incorporation of TRNG
adds a layer of security.

III. WEIGHTS LOCKING

Weights locking is a required method used to safeguard the
intellectual property of NN models, particularly in scenarios
where the model has been trained on sensitive data or where
the model’s performance is essential to business success. The
proposed architecture integrates a PUF as a hardware security
module in the RRAM crossbar. During training, the weights
are encrypted using a unique key generated by the PUF. The
architecture is configured to implement the PUF and generate

the key to encrypt the weights. The encrypted weights and the
challenge are then provided to the user.

During the inference process, the architecture is reconfig-
ured to implement the PUF, and the challenge provided with
the encrypted weights is applied to generate the key. Next,
the encrypted weights are loaded into the NN, and the key
generated by the PUF is utilized to decrypt the weights. The
decrypted weights are then used to make predictions.

A. Locking

The suggested design enables the NN to be secured within
an RRAM crossbar. With the hardware security module sit-
uated on the same crossbar, a key can be generated via
configuration in both the TRNG and PUF setups. The PUF-
generated key can then be used to encrypt the weights to be
stored in the crossbar. Algorithm 1 outlines the use of the
proposed architecture for NN weights locking.

Algorithm 1 An algorithm for weights locking

1: Choose TRNG implementation
2: Apply 50% probability switching pulse
3: Choose PUF implementation
4: Apply challenge and collect the responses (key)
5: Store the CRPs on the server side and use a key to encrypt

the weights.
6: Send the encrypted weights to sharing platform with the

challenge

B. Unlocking

Once the weights have been encrypted, they can be trans-
mitted to the user via any sharing platform. An identical
challenge will be employed on the device’s end to generate the
required key. Algorithm 2 specifies the decryption procedure.
The device’s inherent randomness is expressed via CRPs,
which are unique to each device, which helps prevent attackers
from using the same weights on a different hardware device.

Algorithm 2 An algorithm for unlocking the weights

1: Receive the encrypted weights
2: Choose TRNG implementation
3: Apply 50% probability switching pulse
4: Choose PUF implementation
5: Apply challenge and generate the key
6: Choose the key to decrypt the weights
7: Store the decrypted weights on the same crossbar (over-

write the TRNG entropy)

In summary, this paper describes an architecture that in-
tegrates NNs and hardware security modules using passive
RRAM cells connected in a crossbar structure. The RRAM
device can store multiple resistive states between low and
high resistive states, allowing it to function as a two-state or
multi-state device. The proposed architecture offers flexibility
to configure the device in multiple modes to suit different
applications, such as VMM, TRNG, and PUF.

PREPRINT - accepted by 21st IEEE Interregional NEWCAS Conference 2023 (NEWCAS 2023)

IV. EXPERIMENTAL RESULTS

For this study, an RRAM cell comprises a
Pt/Ti/TiOx/HfO2/Pt material stack, demonstrating improved
stability in terms of both electroforming voltage and
thermal [22]. This device can be configured into different
configurations, such as binary and multi-state switching.
The device is programmed into resistance by applying a
voltage pulse with a specific duration and amplitude. The
device exhibits resistance between 60 − 100KΩ in HRS and
1.5−1.6KΩ in LRS. However, in a multi-state configuration,
there can be multiple states between HRS and LRS. The
devices in the crossbar are utilized without any selector
(passive) in series. Passive crossbars typically face the issue
of sneak-path current, which can be utilized to design TRNGs
and PUFs.

A. Switching and Variations

In order to switch the device between binary states, a 150ns
pulse of 2.0V with 10ns rise and the fall time is applied
to switch the device to LRS (programming to 1), while a
negative pulse of 2.0V is applied to switch the device to HRS
(programming to 0). However, a gradual RESET method has
been employed to achieve multi-state behavior. In this method,
the device is initialized to LRS, and then an incremental pulse
is applied to switch it to multiple states. The I-V curves of
multi-state switching have been shown in Fig. 3.

The switching of the devices can be affected by variations
in D2D and C2C parameters. These variations are influenced
by manufacturing variations in device radius, device length,
and oxygen ion concentration in the dielectric. As a result
of these variations, the HRS resistance varies from 31KΩ
to 155KΩ with an average of 65.56KΩ, while the LRS
resistance varies from 1.55KΩ to 1.67KΩ with an average of
1.64KΩ. However, the HRS has a wide distribution; all HRS
values are distinguishable from LRS. By carefully selecting the
pulse to RESET the devices, they can be switched randomly
from LRS to HRS or vice versa, which can be exploited to
design the TRNGs.

B. PUF properties

We conducted extensive experiments to evaluate the relia-
bility and performance of PUF on the proposed architecture.
Our results demonstrate a reliability of 100%, indicating that
the CRPs generated by the proposed PUF are consistent and
repeatable across multiple trials. Additionally, the uniqueness
of the CRPs was found to be 47.78%, meaning that the
probability of generating the same CRP for two different
devices is low. The uniformity of the CRPs was measured
to be 49.79%, indicating that the distribution of the CRPs is
approximately uniform. Finally, the bit-aliasing was found to
be 48.57%, indicating that the probability of generating the
same CRP for two different challenges is also low.

Importantly, our results show that the proposed PUF
achieves these performance metrics without needing post-
processing techniques, making it a practical and efficient
hardware security primitive. Overall, our findings demonstrate

(a) (b)

Fig. 3: The mapping of 2-bit weights to the crossbar is
demonstrated in (a), while the multi-state behavior of devices
for analog weight storage is illustrated in (b).

the potential for using RRAM-based PUF designs in hardware
security applications with high reliability and security charac-
teristics.

C. NN

The crossbar can be utilized to map NN weights, similar to
VMM applications. Fig.3a shows the mapping of 2-bit weights
to the crossbar. To enable the multi-state behavior of a device,
a gradual RESET method is employed, as illustrated in Fig.3b.
We conducted a proof-of-concept by implementing VMM mul-
tiplication on a 16x16 crossbar, which is a critical operation
for any NN implementation. The device’s variations result in
error accumulation at the input of the ADC. Nonetheless, this
issue can be resolved through onboard fault-aware training of
the required application.

V. CONCLUSIONS

In conclusion, this paper described a proposed architecture
integrating NNs and hardware security modules using the
RRAM crossbar as the core device. The proposed architecture
enables a single crossbar to implement NN, TRNG, and PUF
applications. The RRAM crossbar’s multi-state storage charac-
teristic is exploited to perform the vector-matrix multiplication
operations required for NN implementation. The TRNG uses
the crossbar’s variation in device switching thresholds to
generate random bits. The PUF is implemented using the
same crossbar initialized as an entropy source for the TRNG.
The proposed architecture provides flexibility to configure the
RRAM device in multiple modes to suit different applications.
This paper also presents the algorithms for NN weight locking.
Overall, the proposed architecture shows promise in achieving
a more efficient and compact design for the hardware imple-
mentation of NNs and security primitives.

ACKNOWLEDGMENTS

This work was supported in part by the Federal Min-
istry of Education and Research (BMBF, Germany) in the
project NEUROTEC II under Project 16ME0398K, Project
16ME0399 and through Dr. Suhas Pai Donation Fund at
IIT Bombay.

PREPRINT - accepted by 21st IEEE Interregional NEWCAS Conference 2023 (NEWCAS 2023)

REFERENCES

[1] W. Chen, Z. Qi, Z. Akhtar, and K. Siddique, “Resistive-ram-based in-
memory computing for neural network: A review,” Electronics, vol. 11,
no. 22, p. 3667, 2022.

[2] Y. Long, T. Na, and S. Mukhopadhyay, “Reram-based processing-in-
memory architecture for recurrent neural network acceleration,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26,
no. 12, pp. 2781–2794, 2018.

[3] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature electronics, vol. 1, no. 6, pp. 333–343, 2018.

[4] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics
based on memristive systems,” Nature electronics, vol. 1, no. 1, pp.
22–29, 2018.

[5] F. Staudigl, F. Merchant, and R. Leupers, “A survey of neuromorphic
computing-in-memory: Architectures, simulators, and security,” IEEE
Design & Test, vol. 39, no. 2, pp. 90–99, 2022.

[6] H. Nili, G. C. Adam, B. Hoskins, M. Prezioso, J. Kim, M. R. Mahmoodi,
F. M. Bayat, O. Kavehei, and D. B. Strukov, “Hardware-intrinsic
security primitives enabled by analogue state and nonlinear conductance
variations in integrated memristors,” Nature Electronics, vol. 1, no. 3,
pp. 197–202, 2018.

[7] R. A. John, N. Shah, S. K. Vishwanath, S. E. Ng, B. Febriansyah,
M. Jagadeeswararao, C.-H. Chang, A. Basu, and N. Mathews, “Halide
perovskite memristors as flexible and reconfigurable physical unclonable
functions,” Nature Communications, vol. 12, no. 1, p. 3681, 2021.

[8] S. Singh, S. Bodapati, S. Patkar, R. Leupers, A. Chattopadhyay, and
F. Merchant, “Pa-puf: A novel priority arbiter puf,” in 2022 IFIP/IEEE
30th International Conference on Very Large Scale Integration (VLSI-
SoC), 2022, pp. 1–6.

[9] W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan, W. Mao, J. Yang,
L. Chu, and X. Li, “Memristive artificial synapses for neuromorphic
computing,” Nano-Micro Letters, vol. 13, pp. 1–28, 2021.

[10] I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Parnell,
T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou,
“Neuromorphic computing with multi-memristive synapses,” Nature
communications, vol. 9, no. 1, p. 2514, 2018.

[11] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon,
and S. Kvatinsky, “Memristive logic: A framework for evaluation and
comparison,” in 2017 27th International Symposium on Power and
Timing Modeling, Optimization and Simulation (PATMOS). IEEE, 2017,
pp. 1–8.

[12] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang,
“Memristors for energy-efficient new computing paradigms,” Advanced
Electronic Materials, vol. 2, no. 9, p. 1600090, 2016.

[13] S. Balatti, S. Ambrogio, and D. Ielmini, “Normally-off logic based on
resistive switches—part i: Logic gates,” IEEE transactions on Electron
Devices, vol. 62, no. 6, pp. 1831–1838, 2015.

[14] S. Mittal, “A survey of architectural techniques for improving cache
power efficiency,” Sustainable Computing: Informatics and Systems,
vol. 4, no. 1, pp. 33–43, 2014.

[15] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
“Memristor-based multilayer neural networks with online gradient de-
scent training,” IEEE transactions on neural networks and learning
systems, vol. 26, no. 10, pp. 2408–2421, 2015.

[16] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, “Resistive random
access memory (rram): an overview of materials, switching mechanism,
performance, multilevel cell (mlc) storage, modeling, and applications,”
Nanoscale research letters, vol. 15, no. 1, pp. 1–26, 2020.

[17] Y. Pang, H. Wu, B. Gao, N. Deng, D. Wu, R. Liu, S. Yu, A. Chen,
and H. Qian, “Optimization of rram-based physical unclonable function
with a novel differential read-out method,” IEEE Electron Device Letters,
vol. 38, no. 2, pp. 168–171, 2017.

[18] R. Govindaraj, S. Ghosh, and S. Katkoori, “Csro-based reconfigurable
true random number generator using rram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2661–2670,
2018.

[19] B. Yang, D. Arumı́, S. Manich, Á. Gómez-Pau, R. Rodrı́guez-Montañés,
M. B. González, F. Campabadal, and L. Fang, “Rram random number
generator based on train of pulses,” Electronics, vol. 10, no. 15, p. 1831,
2021.

[20] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted
intellectual property protection of deep learning models,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2020, pp.
1–6.

[21] S. Singh, F. Zahoor, G. Rajendran, S. Patkar, A. Chattopadhyay, and
F. Merchant, “Hardware security primitives using passive rram crossbar
array: Novel trng and puf designs,” in Proceedings of the 28th Asia
and South Pacific Design Automation Conference, ser. ASPDAC ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
449–454. [Online]. Available: https://doi.org/10.1145/3566097.3568348

[22] C. Bengel, A. Siemon, F. Cüppers, S. Hoffmann-Eifert, A. Hardtdegen,
M. von Witzleben, L. Hellmich, R. Waser, and S. Menzel, “Variability-
aware modeling of filamentary oxide-based bipolar resistive switching
cells using SPICE level compact models,” IEEE TSCAS I, vol. 67, no. 12,
pp. 4618–4630, 2020.

https://doi.org/10.1145/3566097.3568348

	I Introduction
	II Proposed Architecture
	II-A RRAM crossbar
	II-B VMM implementation
	II-C TRNG
	II-D PUF

	III Weights locking
	III-A Locking
	III-B Unlocking

	IV Experimental Results
	IV-A Switching and Variations
	IV-B PUF properties
	IV-C NN

	V Conclusions
	References

