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Abstract—Convolutional Neural Networks (CNNs) are used in
a wide range of applications, with full-precision CNNs achieving
high accuracy at the expense of portability. Recent progress in
quantization techniques has demonstrated that sub-byte Quantized
Neural Networks (QNNs) achieve comparable or superior accuracy
while significantly reducing the computational cost and memory
footprint. However, sub-byte computation on commodity hardware
is sub-optimal due to the lack of support for such precision. In
this paper, we introduce Sparq, a Sub-byte vector Processor
designed for the AcceleRation of QNN inference. This processor
is based on a modified version of Ara, an open-source 64-
bit RISC-V “V” compliant processor. Sparq is implemented in
GLOBAL FOUNDRIES 22FDX FD-SOI technology and extends
the Instruction Set Architecture (ISA) by adding a new multiply-
shift-accumulate instruction to improve sub-byte computation
effciency. The floating-point unit is also removed to minimize
area and power usage. To demonstrate Sparq performance, we
implement an ultra-low-precision (1-bit to 4-bit) vectorized conv2d
operation taking advantage of the dedicated hardware. We show
that Sparq can significantly accelerate sub-byte computations
with respectively 3.2 times, and 1.7 times acceleration over an
optimized 16-bit 2D convolution for 2-bit and 4-bit quantization.

Index Terms—RISC-V, Vector ISA, Sub-byte, Convolution

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are used in a
broad range of applications that include image processing,
speech recognition, and natural language processing. As new
CNN architectures and optimization methods allow for higher
accuracy, the required amount of computations and on/off-chip
memory accesses tends to increase. The high complexity and
energy consumption pose a challenge for their deployment on
resource-constrained devices such as low-power systems.

In the last few years, research has focused on minimizing
computational cost and memory footprint while trying to
preserve accuracy. This was achieved through the emergence of
multiple new optimization techniques. Among them, reducing
the bit-precision of weights and activations allows for a decrease
in both the computational complexity and the memory footprint.
In extreme cases, where weights and activations are quantized
down to 1-bit or 2-bit, the resulting models typically experience
an accuracy drop of less than 10% compared to their full-
precision counterparts [1]–[5].

At the same time, new hardware solutions are proposed
to address the issue of complexity through the emergence of
vectorized Instruction Set Architectures (ISAs). Supporting
these new instructions, vector processors can achieve high
efficiency through parallelization of tensor computations while

maintaining the flexibility of being fully programmable [6]–[8].
However, they are limited by the minimum granularity of their
vector registers. Generally fixed at 8-bit, this limitation makes
these architectures sub-optimal for sub-byte computing.

In this paper, we propose to modify Ara [6], a 64-bit RISC-V
RVV1.0 compliant vector processor to add a new vectorized
multiply-shift-accumulate instruction, vmacsr. In order to
minimize area and power usage, we remove the vector floating-
point unit (FPU). The main idea is to increase the perfor-
mance of ultra-low-precision computations with a cost-effective
instruction. To demonstrate the performance of Sparq, we
implement several low-precision conv2d algorithms over a wide
range of precisions, using the recently proposed ULPPACK [9]
technique. We demonstrate that the new vmacsr instruction
allows us to mitigate the constraints related to the ULPPACK
technique and significantly improve performance. Using up
to 2-bit quantization, we achieve a speedup of 3.2× over
an optimized 16-bit conv2d implementation and 1.7× using
up to 4-bit quantization. Lastly, we implement the processor
in GLOBAL FOUNDRIES 22FDX FD-SOI technology and
compare power and area usage between Sparq and Ara.

II. BACKGROUND AND RELATED WORK

A. Sub-byte Convolutional Neural Networks

Allowing to address both computation complexity and
memory footprint, quantization has aroused a real interest.
In fact, quantizing properly can achieve considerable memory
savings with limited accuracy drop. On Deep Neural Networks
such as ResNeXt [10] and EfficientNet [11], only a low
accuracy degradation was observed when quantizing the full-
precision 32-bit weights and activations down to 8-bit [12].
In recent work, ultra-low-precision quantization (≤ 8-bit),
which we refer to as sub-byte quantization, has demonstrated
that minimal accuracy degradation was achievable with new
network structures and training strategies. In some cases sub-
byte Quantized Neural Networks (QNNs) perform better than
their full-precision counterparts [13], [14] as shown in Table I.

TABLE I
ACCURACY ON QUANTIZED RESNET18 USING LG-LSQ [14]

Dataset Model Precision (W/A) Top-1 Top-5

ImageNet Resnet18

LG-LSQ(3/3) 70.31 89.55

LG-LSQ(4/4) 70.78 89.77

FP32 69.76 89.08

ar
X

iv
:2

30
6.

09
90

5v
1 

 [
cs

.A
R

] 
 1

6 
Ju

n 
20

23



This was made possible by the introduction of architectures
and methods focused on ultra-low-precision. LSQ [13], SSG
[14] and DSQ [15] propose to learn the quantization parameters
for both weights and activations by minimizing the quantization
loss of the network during training. SAWB [3] focuses on the
weight quantization parameter using the weight distribution
to estimate the optimal quantization scale. To address the
issue of unbounded activation range after ReLU, PACT [3]
proposes to train a clipping parameter to find the balance
point between clipping and quantization error. Focusing on
binary or ternary quantization, CNN architectures tailored for
1-bit or 2-bit such as XNORNet [2] or BinaryNet [4] have
been introduced. While achieving very high efficiency and
low memory footprint, their accuracy suffers a significant drop
when compared to full-precision models. All these methods try
to minimize the accuracy drop of sub-byte QNN by minimizing
the error due to quantization on weights and activations.

B. Sub-byte Computation on Commodity Hardware

CNNs rely heavily on the use of the conv2d operation,
which can make up to 90% of the computation [16], [17]. By
using ultra-low-precision quantization, or specific binary/ternary
architectures, the computational cost can be drastically reduced.
Typically, general-purpose processors cannot take advantage
of sub-byte operands since their ISA is suited for byte
instructions at best. The same applies to their corresponding
vector extension ISA whose granularity is typically limited to
vectorized 8-bit instructions. Thus, naive implementations of
sub-byte algorithms are bounded by the performance of the
8-bit implementation.

Several acceleration algorithms have been introduced to
counterbalance this issue. For example, bit-serial computation
allows each operand bit to be processed in a serial manner. As
a result, the operation between any arbitrary N -bit and M -bit
precision operand can be computed. However, the computation
complexity is defined by O(N×M), meaning that this method
is only suitable for ultra-low-precision, typically less than 3-bit.
For this precision range, the performance over fp32 can be
multiplied by a factor of 2 to 6 depending on the precision
[18]. This paved the way for the development of specialized
bit-serial hardware [19], [20].

Other techniques, such as ULPPACK, offer a less invasive
alternative while achieving higher performance than standard
precision implementation. Even though the expected speedup
is lower than with bit-serial, typically 2× to 4× acceleration
over fp32 [9], this method covers a wider precision range,
typically 1-bit to 4-bit, by utilizing densely packed operands
with commodity Single Instruction, Multiple Data (SIMD)
architectures. Although no specialized hardware is required,
this algorithm can benefit from specialized instruction such as
a multiply-shift-accumulate.

III. SOFTWARE IMPLEMENTATIONS

In this section, we provide an overview of different precision
conv2d algorithms benchmarked on Sparq. Every implemen-
tation, except for the provided benchmarks, is handwritten

w0 w1

a0a1

Bit 7 04

vs1/rs1

vs2 Bit 7 04

vda0w0 + a1w1 a0w1

Fig. 1. Multiplication between 2 packed 8-bit vectors with 1-bit precision
on weights and activation. The dot product of the two packed elements is
computed using a single multiplication on the MSB. The result then needs to
be shifted to retrieve the dot product.

using inline assembly, unrolled, and stored using a channel-
first memory layout for the input, kernel, and output tensors.

A. Optimized Vector Conv2d

A wide range of benchmarks is provided with Ara1, in-
cluding a double-precision (DP) conv2d function. The DP
implementation achieves high utilization of Ara’s lanes by using
the available optimized vector slides to maximize efficiency
through high data reuse. We implemented int16 and fp32
conv2d based on the structure of the convolution example
to serve as the baseline for our comparisons. The choice of
a dedicated convolution algorithm over an image to column
(im2col) operation followed by a GEneral Matrix Multiplication
(GEMM) technique is motivated by the reduction of the
memory footprint induced by the im2col operation. Thus,
fewer on/off-chip memory accesses are required to compute
the output. We benchmarked the int16 conv2d on Sparq and the
fp32 version on Ara. Our implementations of int16 and fp32
achieve a lane utilization of respectively 93.8% and 93.6% at
1× 32× 512× 512 input size.

B. ULPPACK

ULPPACK [9] is a software-only technique aiming towards
acceleration of ultra-low-precision computation via an effective
packing operand scheme. As illustrated in Figure 1 with an 8-bit
register example, by packing multiple low-precision operands
in wider registers, a single multiplication instruction completes
the dot product between multiple operands and returns the
result on the 4 most significant bits. Formally, the result can
be expressed as follows:

(a0 + 24a1)× (w1 + 24w0)

= 28a1w0 + 24(a0w0 + a1w1) + a0w1

The dot product of packed vectors has to be extracted
through a right logical shift (LSR) before accumulation. Local
accumulations of the non-shifted result can be done to alleviate
the number of shift operations, but are limited by the width of
the low-precision result. Moreover, increasing the precision of
weights and activations results in a reduction in the number
of possible local accumulations due to overflow, implying a
lower speedup. In the Figure 1 example, using 8-bit elements
to compute the product of 2 packed operands limits the result
on a 4-bit width. By using 1-bit precision on weights and
activation, 8 local accumulations are possible without risking
overflow. This method is an efficient way to compute vector-
based algorithms since it computes the dot product between
multiple low-precision operands with a unique higher precision

1See https://github.com/pulp-platform/ara



multiplication, which significantly reduces the computational
cost and resource usage.

w0 w1

a0w0 + a1w1+ acca0a1

Bit 7 04 Bit 7 04LSR 4

accvd

vs1/rs1

vs2

vd

Fig. 2. Diagram of the multiply-shift-accumulate operation on 8-bit packed
registers with 1-bit precision for activations and weights. A shifter is inserted
between the multiplication and the accumulation.

IV. PROPOSED ARCHITECTURE

A. vmacsr Custom Instruction

To address the issue of local accumulation overflow described
in Section III-B, we propose to implement a multiply-shift-
accumulate operation as a custom vector instruction. As
depicted in Figure 2, using the multiply-shift-accumulate
operation, the low-precision multiplication is shifted and
accumulated. This avoids the need for an intermediate register,
a logical right shift, and an addition.

31 25 1526 24 20 19 14 12 11 7 6 0

OPMVXvdfunct3rs1vs2vmfunct6

OPMVVvdfunct3vs1vs2vmfunct6

1 0 1 1 1 0 - 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1

1 0 1 1 1 0 - 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 1 1vmacsr v0, x1, v2

vmacsr v0, v1, v2

Fig. 3. vmacsr encoding example.

In this work, we mainly focus on a specific precision range
following the condition N +M ≤ 7-bit, where N and M are
the operand’s precision in bits. In this range, quantized models
offer sufficient precision to achieve comparable or superior
accuracy compared to full-precision models. We implement
a conv2d with 16-bit packed register granularity to achieve
high performance on this range. However, the use of multiply-
shift-accumulate is applicable on higher precision operands
and elements width, addressing the same overflow issue. To
implement the new instruction, we modified Ara’s dispatcher
to specify the vmacsr funct6 encoding. As our instruction
behaves very closely to vmacc, we use the free funct6
encoding following vmacc’s funct6 [21]. We implement
vmacsr in both OPMVV and OPMVX format allowing vector-
vector and vector-scalar instructions to be used. The encoding
of vmacsr is described in Figure 3. It should be noted that
for this work, only the vector-scalar vmacsr instructions is
used. We then modified Ara’s SIMD multiplier to describe the
expected behavior of the instruction, denoted as follows:

Vd ← Vd + ((Vs1 × Vs2) >> M)

where M is the shifted value on the resulting product before
accumulation. In this work, we only pack two operands per
register to reduce the overhead related to the packing operation
carried out at runtime. Thus, M is hard-wired at half the
granularity of the vector registers.

B. 2D Convolution Algorithm

To our knowledge, the ULPPACK method has only been
implemented on an ARM CPU using the ARM Neon intrinsic

Algorithm 1 Proposed vector conv2d using vmacsr

H,C : Input height, channels
Fh, Fw : Kernel height and width
M : Packed operand per element
R, V : Scalar and vector registers (initialized to zero)

1: for h← 1 to H do
2: VFh ← 0
3: for c← 1 to C

M
do

4: V0 ← load one packed input row
5: for i← 1 to Fw do
6: R[1:Fh] ← load the ith packed kernel column
7: for j ← 1 to Fh do
8: Vj ← vmacsr(Rj , V0, Vj)

9: V0 ← vslidedown(V0, 1)

10: if h ≥ Fh then
11: O[h]← V1 ▷ store one output row
12: for j ← 1 to Fh − 1 do
13: Vj ← Vj+1

ISA extension [8], [9]. In addition, by rearranging the input and
filters with an im2col operation, the convolution is performed
with a GEMM. However, Ara’s dedicated conv2d algorithm
takes advantage of the vslidedown instruction provided by
the RISC-V “V” ISA extension, which does not have any
ARM equivalent. Thereby, the output stationary ULPPACK
conv2d algorithm presented in Algorithm 1 is based on the
conv2d described in Section III-A. Although the operand
packing operation is not detailed in the algorithm, it is carried
out at runtime. We use the ULPPACK P1 packing [9] scheme
to compute the contribution of M channels at each iteration,
where M is the number of operands packed per register.
Following the example in Figure 1, ai and wj respectively
represent activation and weight values from the channel i and j.

Algorithm 1 presents a simplified ultra-low-precision conv2d
implementation using the vmacsr instruction available on
Sparq. For each loaded packed input row (line 4), the algorithm
performs a vector multiply-shift-accumulate operation (line 8)
to compute the partial result with the first packed kernel column.
The input is then slided by one element to the left (line 9)
to accommodate the next kernel column, and this operation
is repeated until all the kernel columns and input channels
have been processed. In order to complete and store the first
output row (line 11), Fh packed input rows must be processed
(line 10). The partial results contained in the following vector
registers (line 13) are moved down to be completed one by
one with each new packed input row.

V. RESULTS AND PERFORMANCE ANALYSIS

A. Performance Analysis

We compare the performance of the different conv2d
implementations over several precisions for activations and
weights using RTL simulations with a 4-lane configuration for
both Ara and Sparq. Our measured execution time includes
both activations and weights packing done at runtime. However,
the overhead induced by weights packing could be avoided
by offline preprocessing. Figure 4 presents the performance in
operations per cycle over the different conv2d implementations.
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Fig. 4. Performance comparison between several conv2d implementation
using a 7× 7 kernel size. Ultra-Low-Precision (ULP) and Low-Precision (LP)
conv2d take advantage of the vmacsr instruction on Sparq while W1A1,
W2A2, W3A3 conv2d run on native RISC-V “V” ISA.

As expected, the performance of ULPPACK running on Ara
shows an improvement over its 16-bit counterpart. Using 7× 7
favors high data reuse, hence the small gap with the theoretical
throughput. Moreover, using Sparq’s vmacsr instruction
removes the constraint of local accumulation, offering two
major benefits:
• Performance increase resulting from the expected overall

reduction in the number of instructions to compute the output
matrix as presented in Figure 4.

• Higher precision range, as shown in Figure 5, is obtained
without modifying the algorithm. The range is only limited
by the 8-bit wide dot product result when using 16-bit packed
registers for Low-Precision (LP) and the 4-bit result for the
Ultra-Low-Precision (ULP).
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Fig. 5. Relative speedup over the 16-bit conv2d implementation on the
overflow-free precision region. The kernel size is 7×7 over a 32×256×256
input. (a) for the native implementation benchmarked on Ara (b) for the
accelerated version taking advantage of the vmacsr instruction benchmarked
on Sparq.

B. Physical Implementation

Since the vmacsr circuit is located in the vector en-
gine, we only implemented one lane of Ara and Sparq
using GLOBALFOUNDRIES 22FDX FD-SOI technology. For
synthesis and back-end, we used the SYNOPSYS DESIGN
COMPILER S-2021.06-SP5 and CADENCE INNOVUS V21.15,
respectively. The physical implementation results of these lanes
are summarized in Table II. As anticipated, the Sparq lane
exhibits significant improvements in terms of area (-43.3%)
and power consumption (-58.8%) when compared to a standard
Ara lane, primarily due to the FPU removal. Furthermore, the
inclusion of the vmacsr instruction did not impact the typical
corner frequency, indicating that it did not affect the critical
path of the design. In fact, the removal of the FPU actually

yielded an increase (+8.7%) in the maximum lane clock speed.
It is important to note that in Ara, the critical path is primarily
located in the VLSU and SLDU, both of which are part of
the interconnection between lanes [6]. These interconnections
were not implemented as part of this work since the addition of
vmacsr would have had a negligible impact on those modules.
Figure 6 shows the physical layout of both designs.

(a) Ara lane (b) Sparq lane
Fig. 6. Ara and Sparq lanes placed and routed designs. is the vector register
file, is the operands queue, is the vector fixed point multiplication and
division units with or without the FPU, is the vector ALU.

TABLE II
PHYSICAL IMPLEMENTATION OF ARA AND SPARQ LANES

Ara Lane Sparq Lane

Number of Lanes 4 4
VRF Size [KiB] 16 16

Lane Cell Area [mm2] 0.120 0.068
Lane Core Frequency [GHz] 1.346 1.464

Lane Power [mW] 159.2 65.6

At typical corner (TT/0.8V/25◦C)

VI. CONCLUSION

This paper introduced the extension of the RISC-V “V” ISA
with a multiply-shift-accumulate custom instruction, allowing
better performance of sub-byte computations. We presented
Sparq, a FPU-free RISC-V vector processor supporting the
multiply-shift-accumulate instruction. To demonstrate its im-
proved performance, we implemented a conv2d algorithm for
1 to 4-bit precision operands. In this range, quantized models
offer sufficient precision to achieve comparable or superior
levels of accuracy compared to full-precision models. We
showed that, with vmacsr, we achieved up to 1.7× and
3.2× speedup over an optimized 16-bit conv2d depending
on the precision. Lastly, the implementation reports of the
modified version in GF22 nm showed that removing the FPU
significantly reduced the area and power usage, while the newly
added instruction had no impact on the critical path.

In future work, we plan to improve the flexibility of vmacsr
using a runtime configurable shifter, as well as testing the
proposed algorithm on an FPGA emulation of Sparq.
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