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Abstract—The Network Functions Virtualization (NFV)
paradigm is the most promising technique to help network
providers in the reduction of capital and energy costs. The
deployment of virtual network functions (VNFs) running on
generic x86 hardware allows higher flexibility than the classical
middleboxes approach. NFV also reduces the complexity in the
deployment of network services through the concept of service
chaining, which defines how multiple VNFs can be chained
together to provide a specific service. As a drawback, hosting
multiple VNFs in the same hardware can lead to scalability issues,
especially in the processing-resource sharing. In this paper, we
evaluate the impact of two different types of costs that must
be taken into account when multiple chained VNFs share the
same processing resources: the upscaling costs and the context
switching costs. Upscaling costs are incurred by VNFs multi-
core implementations, since they suffer a penalty due to the
needs of load balancing among cores. Context switching costs
arise when multiple VNFs share the same CPU and thus require
the loading/saving of their context. We model through an ILP
problem the evaluation of such costs and we show their impact in
a VNFs consolidation scenario, when the x86 hardware deployed
in the network is minimized.

I. INTRODUCTION

Current fixed and mobile network operators are struggling
to reduce capital and energy costs and increase their revenues
by smartly upgrading their network infrastructure. In the last
years, an innovative network architecture paradigm called
Network Functions Virtualization (NFV) [1] has emerged as
a promising technique to help network operators in achieving
this goal.

NFV is based on the concept of network function. A network
function is an abstract building block whose aim is to process
the network traffic to accomplish a specific task. Examples of
network functions are Firewalls, Network Address Translators,
Traffic Monitors etc. Nowadays, the network functions are
usually implemented on dedicated hardware, usually referred
as middleboxes. Such middleboxes are able to handle heavy
traffic loads, but they are expensive and inflexible, since they
are designed to perform limited operations on the traffic, and
they must be dimensioned at peak loads, leading to waste of
resources when the traffic is low, e.g., in off-peak hours.

The NFV paradigm consists in moving from an hardware
to a software implementation of network functions in a vir-
tualized environment. This way, multiple and heterogeneous
virtual network functions (VNFs) can be hosted by the same
generic x86 hardware. NFV adds flexibility to the network

since it allows network operators to efficiently dimension and
dynamically consolidate the VNFs. Another value added by
NFV is the simplicity in the deployment of heterogeneous
network services. In fact NFV can exploit the concept of
service chaining [2], according to which a service (e.g., web
browsing, VoIP, video streaming, online gaming etc.) can
be provided by one or more service chains (SCs), i.e., a
concatenation of appropriate VNFs that must be crossed by
the traffic associated to that specific service. NFV has also
some drawbacks. Moving from an hardware to a virtualized
software implementation can lead to scalability issues in the
resource sharing, especially concerning processing.

In this paper, we evaluate the impact of processing-resource
sharing among multiple VNFs in a VNF consolidation sce-
nario. We show how the size and the number of VNFs sharing
the same x86 hardware influence the hardware processing
performance, and how the deployment in the network of mul-
tiple SCs using such VNFs is affected. Indeed, consolidating
multiple VNFs in the same hardware leads to inefficiencies
due to the need of saving/loading the context (i.e., the state) of
the VNFs sharing the processing resources (context switching
costs) [3][4], as well as to inefficiencies due to the needs of
VNF multi-core implementations (upscaling costs) [5]. To the
best of our knowledge, this paper is the first study evaluating
such processing-related costs in a VNF consolidation scenario.

The remainder of the paper is organized as follows. Section
IT discusses some related works. In Section III we introduce
our system model, showing how we model the physical
network, the VNFs, the SCs and the processing-related costs.
Section IV introduces our optimization problem for the eval-
uation of the effects of upscaling and context switching costs
in a VNF consolidation scenario. In Section V we show the
numerical results and Section VI draws the conclusion of our
work.

II. RELATED WORKS

In our paper, we develop an optimization problem for SC
and VNF placement that can be seen as an extension of some
well-known Virtual Network Embedding (VNE) problems, as
the ones shown in [6][7][8]. In our problem, the SCs can be
seen as simple-chain virtual graphs, where the chained VNFs
are virtual nodes connected together by virtual links. Such
SCs must be embedded in a physical network, where each
virtual link can be mapped to a physical path [6], multiple
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Fig. 1.  Physical topology where some nodes are equipped with generic
multi-core x86 hardware (i.e., NFV nodes)

virtual nodes can be mapped to the same physical node [7],
and the virtual nodes must be consolidated [8]. With respect
to Refs. [6][7][8], in our SCs embedding problem it must be
also guaranteed that a virtual node (i.e., a VNF) can be shared
among multiple virtual networks (i.e., SCs).

Ref. [9] is the first work investigating the optimal placement
of SCs in the network following a VNE approach. The authors
first formalize the concept of SC and VNF, then they formulate
a Mixed Integer Quadratically Constrained Problem to evaluate
the optimal placement of VNFs and SCs. In our paper, we
develop a similar optimization problem, but we extend the
analysis to cover also the processing-related costs for the
physical nodes.

Some other studies deal with efficient placing of SCs and
VNFs in the network. Ref. [4] proposes an efficient algorithm
for the communication among different chained VNFs that are
hosted by the same generic hardware, while Ref. [10] intro-
duces an algorithm to efficiently handle traffic load variations
by dynamically instantiating VNFs. Ref. [11] defines an online
algorithm for joint Virtual Machine placement, routing and
consolidation with the aim of minimizing traffic costs. Our
approach is similar, but we investigate the implications of such
strategies from a processing-resource sharing perspective.

III. SYSTEM MODEL
A. Physical topology and NFV nodes modeling

We model the physical network as a connected directed
graph G = (V,E). All the network nodes v € V have
forwarding capabilities. Then, the links (v,v’) € E connecting
the nodes are high-capacity fiber links. The network nodes
v can also be equipped with standard x86 hardware (see
Fig. 1), that can be used to host different VNFs. The x86
hardware can have different capabilities in terms of storage
and processing, and can potentially be hosted in every powered
physical location (e.g., in a cabinet, in a central office, in a
core exchange, etc.). In this paper, we focus on the processing
aspect and we generally call the nodes hosting generic x86
hardware NFV nodes. We assume that the NFV nodes are
multi-core systems, and we measure the processing capability
of each NFV node in terms of the number of CPU cores v,
it is equipped with. Clearly, if v, = 0 the node v has not
processing capability.
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Fig. 2. Example of SCs that must be embedded in the physical network,
where different VNFs can share the processing resources of the same NFV
node and multiple SCs can share the same VNF

B. Virtual network functions modeling

In general, a VNF f € F can be seen as a black-box
performing some operations on the network traffic. Every VNF
f hosted by a NFV node v must be assigned a dedicated
processing capability ¢y, in order to fulfil all the operations
it has to perform on the input traffic. The processing capability
cy,» represents the fraction of the overall processing capability
v, of the node v assigned to the VNF f, expressed in terms
of number of CPU cores. We say that a VNF has a larger
size when it is assigned a larger processing capability cy ,,. We
assume that a VNF f can be shared among different SCs (e.g.,
VNF 2 in Fig. 2) each requiring a fraction 7 of the processing
capability cy,. Note that heterogeneous VNFs require a 7y
that can largely vary from one to each other, depending on
the complexity of the operations performed. In our work we
assume that ¢ has been optimally chosen, i.e., for each SC,
traffic is queued for a negligible time before it is processed.
In other words, every VNF is designed in such a way it does
not introduce additional latency due to a bad or inadequate
implementation.

C. Service chains modeling

When a service is required between two end-points, one
or more SCs ¢ € C must be deployed in the network. In
general, heterogeneous SCs can be deployed, and some SCs
can be shared among different services. Without any loss of
generality, we consider a one-to-one correspondence between
a service and a SC. A SC ¢ can be modelled by a simple-
chain graph C¢ = (X° U U G°), where X¢ is the set of
start/end points u, U€ is the set of VNF requests u and G¢
is the set of virtual links (u,u') chaining consecutive VNF
requests/end points v and u’. From a topological point of view,
both VNF requests and end points are virtual nodes © € XU
U¢. Note that, similarly to [9], in our model we decouple the
concepts of VNF f and of VNF request u: for every SC c,
every VNF request u € U° is mapped to a specific VNF f.
We then introduce the mapping parameter 7,; € F' to specify
the mapping of the request u for the SC ¢ to a specific VNF f.
Similar considerations can be done for the end points u € X°.



We assume that such end points are fixed in the network, and
we introduce the mapping parameter 7, € V to specify the
mapping between the end point u for the SC ¢ to a specific
physical node v.

In our model, every single SC c¢ can serve an aggregate
set of users. Such aggregate SCs are deployed when multiple
users require the same service between the same two end
points. Every SC is also associated to some performance/QoS
parameters such as:

o The requested bandwidth 55’1‘,, i.e., the bandwidth that
must be guaranteed between two VNF requests/end points
u and ' to provide the service offered by the SC c.
Note that every virtual link (u,u’) can be associated to
a different bandwidth requirement because the chained
VNFs can lead to a change in the traffic throughput.

o The maximum tolerated latency ¢°, i.e., the maximum
delay that can be introduced by the network without
affecting the service between the two end points of the
SC ec.

D. Processing-related costs for the NFV nodes

The processing-related costs (upscaling and context switch-
ing) for a NFV node v are mainly influenced by:

o The size of the VNFs f hosted by the node v;
o The number of VNF requests v mapped to the VNFs f,
which share the processing resources of the NFV node v.

Upscaling costs: When a VNF f must process a high
quantity of traffic, it might need more processing resources
than the ones provided by a single CPU core. In this case,
a multi-core implementation of the VNF is needed and some
upscaling costs must be taken into account. These costs arise
because of the software architectural challenges that must be
addressed when a multi-core VNF is implemented. In fact,
the traffic that must be handled by multi-core VNFs needs to
be balanced among different CPU cores by a load balancer.
The needs of load balancing add a new layer in the system
architecture that can become a bottleneck, must be carefully
designed and leads to some performance penalties [12]. For
this reason, the higher is the number of CPU cores used by the
multi-core VNF, the higher are the upscaling costs. We then
assume that such costs can be modelled as a step function of
the number of CPU cores used by the VNF.

Context switching costs: When multiple VNFs are hosted by
the same NFV node, the CPU cores are shared among such
different VNFs. This leads to another kind of costs, i.e., the
context switching costs. These costs are related to the effort
that must be taken into account in order to execute multiple
VNFs in the same CPU, and we assume that they linearly
increase with the number of VNF requests mapped into the
VNFs that share the CPU cores v, of the NFV node v. These
costs are strictly related to the needs of cache sharing among
different VNFs and of saving/loading the context (i.e., the
state) of a VNF for CPU resource sharing [13][14].

These considerations show how a size/number trade-off
on the VNFs sharing the same node exists, since a node

TABLE I
SUMMARY OF GRAPHS AND SETS CONSIDERED IN THE MODEL

Graph/Set

Description

Physical network graph, where V' is the set of
physical nodes v and E is the set of physical
links (v,v’) connecting the nodes v and v’
C Set of the service chains c that must be
embedded in the physical network G
Simple-chain graph for the SC ¢, where X ¢
is the set of fixed start/end point u, U€ is the
set of VNF requests u, G€ is the set of virtual
links (u,u) connecting the VNF request (or
start point) v and the VNF request (or end
point) u’

F Set of VNFs f that can be requested and
deployed in the network

C=(X°UU%,GY)

TABLE II
SUMMARY OF PARAMETERS CONSIDERED IN THE MODEL
Parameter | Domain Description
TS ceC VNF requested by the VNF request u
u €U in the SC ¢ (¢ € F)
ne ceC Physical node where the start/end point
u € X° v for the SC c is mapped to (ng, € V)
Ty ferF Fraction of the CPU processing re-
quired by each VNF request w for the
VNF f
Yo veV Number of the CPU cores hosted by the
node v
Bow’ (v,v)€EE Bandwidth capacity of the physical link
(v,0")
Ay’ (v,v") EE Latency of the physical link (v,v")
Lo veV Upscaling latency of the node v
Wy veV Context switching latency of the node v
Ko veV Upscaling processing of the node v
I veV Context switching processing of the
node v
o ceC Requested bandwidth on the virtual link
' (u,u’) € G° (u,u’) for the SC ¢
©° ceC Maximum tolerated latency by the SC ¢
M Big-M parameter

hosting a big number of small VNFs must deal with big
context switching costs and small upscaling costs, while a node
hosting a small number of big VNFs leads to small context
switching costs but big upscaling costs. We assume that the
upscaling and context switching costs lead to two different
performance degradation effects:

« Increase of the latency introduced by the NFV node. In
fact, both deciding how to balance traffic among different
CPU cores and saving/loading the VNFs context require
some computational time. We call p, the upscaling
latency and w,, the context switching latency for the NFV
node v.

o Decrease of the actual processing capability of the NFV
node. In fact, both taking a decision about how to balance
traffic among different cores and saving/loading the VNFs
context require some dedicated processing capability, that
in turn cannot be used by the VNFs hosted in that node.
We call k, the upscaling processing and &, the context
switching processing for the NFV node v.



TABLE III
DECISION VARIABLES FOR THE ILP MODEL

Variable Domain Description

mg, , € {0,1} ceC Binary variable such that
u e U¢° my, , = 1 iff the VNF
veV request u for the SC c is
mapped to the node v, oth-

erwise my , = 0
cfo € [0,7) ferF Real variable indicating the
veV fraction of the CPU cores
in the node v used by the

VNF f

if, €{0,1} fer Binary variable such that
veV i, = 1 iff the VNF f
is hosted by the node v,

otherwise i7, =0
ool g’ € {0,1} | ceC Binary variable such that

(v,0') € E e = 1 iff

v,v’ 2y, u,u’

zeV the physical link (v,v’)
yev belongs to the path be-
(“u U/) € G* tween the nodes x and y,
where the VNF requests
u and u/ for the SC c
are mapped to, otherwise
etcz v x,y,u,u’ =
ay € {0,1} veV Binary variable such that

a, = 1 iff the node v is
active, otherwise a, = 0

IV. OPTIMIZATION PROBLEM FOR VNFS CONSOLIDATION

In this Section we formulate an Integer Linear Programming
(ILP) model for VNF consolidation. A summary of the sets,
parameter and variables used in the model is reported in Tables
I, II, III. Given a physical network topology and some SCs,
we want to optimally decide the position and the size of
the chained VNFs while minimizing the number of active
NFV nodes (i.e., the nodes hosting at least one VNF) in
the network. The constraints are grouped in three categories:
requests placement constraints, routing constraints and perfor-
mance constraints. The requests placement constraints ensure a
correct mapping of the VNFs f on the NFV nodes v as well as
a correct mapping between the VNF requests v and the VNFs
f. The routing constraints guarantee a correct mapping of the
virtual links (u,u) on physical paths constituted by different
links (v,v’). Finally, the performance constraints are related
to all the performance requirements that must be addressed in
the network.

1) Objective function:

min Z o (D

The objective function minimizes the number of active NFV
nodes. This way, we try to consolidate as much as possible the
VNFs. This optimization problem can be useful for network
operators to plan the best strategical placement of the x86
hardware. The number of active nodes in the network is a
measure of the cost for NFV implementation.
2) Requests placement constraints:
mfwzzl ceCiue X 2)
my, =0 ceCueXveV:iv#£n, 3)
The fixed start/end point u of a SC ¢ is mapped to the node
v specified by the parameters 7, (constraint 2) and it is not

mapped to any other node (constraint 3).

> omi,=1 ceCucU* (4)
veV
Every VNF request u for each SC ¢ must be mapped to exactly
one node v.
> omi,<HEr feFvev 5)
ceC s
ueU:ri=f

The overall number of VNF requests v mapped to the VNF
f hosted by the node v cannot overcome cys, /7y, i.e., the
maximum number of VNF requests u for the VNF f that
can be mapped to that node, according to the processing
requirement 7y per request v and the fraction of CPU cores
¢y, of the node v assigned to the VNF f.

nyvg./\/l-ifyv fEF,UEV (6)
7:f,vfcf,v<1 fGF,’UGV (7)
Constraints 6 and 7 ensure that 37, = 0 if ¢;,, = 0 and that
iy, = lifcy, > 0.4y, is a flag variable used to understand if

the VNF f is mapped to the node v. M is a big-M parameter,
greater than the maximum value taken by cy ., i.e., M >

maxyecv {7y}
> M,

ceC
ueU:ri=f

ifp < feFveV (8)

The VNF f is placed on a node v only if there is at least one
request u mapped to it.

Y <=ty vEV ©)

fer

For each node v, the overall CPU processing assigned to the
VNFs f cannot overcome the actual processing capability of
the node, expressed in terms of CPU cores. The actual CPU
processing capability of the node v is the difference between
the CPU processing capacity <y, of the node and the overall
upscaling/context switching processing costs ,. Such costs
are taken into account every time a VNF request u is mapped
to a VNF f. We define v, in the following way:

y = Z mi,v : ([cf7v-| “Ky + Z i, fv) veV (10)
ceC, feF geF
ueU:ro=f
The right-hand side of v, requires the product between the
binary variable ms, , and the real variable [cf.] - Ky +
> gEF igv * &. Such product can be linearized, as well as
the ceiling function [cy,,|.
3) Routing constraints:

c c c
v,z Y, S mu,w mu’,y

ceC,(v,v)eE,xeV,yeV, (u,u) e G°

e
(11)

A physical link (v, v") can belong to a path between two nodes
x and y for a virtual link (u,u’) of the SC ¢ only if the two
consecutive VNF requests or start/end points v and v’ are
mapped to these nodes. The product my, , - my, , of binary

’

us,y



variables can be linearized.

c c c o / c

E : Crv,azyun’  Mux My y = 1 ce 07 (uau ) eG
(z,v)€EE, z,yeV

(12)

Z € ey Mg My, =1 ce€C,(u, u') € G°
(v,y)€EE, z,yeV
(13)
The virtual link (u,u’) between two consecutive VNF requests
or start/end points « and «’ starts in one of the links connected
to the node z, where the VNF request or start point u is
mapped to (constraint 12), and it ends in one of the links of
the node y, where the VNF request or end point «’ is mapped
to (constraint 13). These constraints are called source and des-

. . c c ¢
tination constraints, and the products eg , .. .\, v - Mg My

and €7, oo 0 My, - My, Of binary variables can be
linearized.
Z efz,z,m,y,u,u’ =0
(v,z)EE, vEV
ceCurzeVyeVa#y (uu)eGe (14)
> Cwaguw =0
(yv)EE, vEV
ceCxeVyeVo#y, (uu)eGe (15)

While mapping the virtual link (u,u’) for the SC ¢ on a
physical path between the nodes x and y where the VNF
requests or start/end points uw and u’ are mapped to, no
incoming link for the node x (constraint 14) and no outgoing
link for the node y (constraint 15) is considered.

§ c § c
ev,w ew,v/,ryyvu,U’

(v,w)EE, vEV (w')EE, v'eV
ceCweVixeVye Vo #w,y#w,(uu) e G (16)

c
> Chwayuw 1

(v,w)EE, vEV
ceCweVixeVyeV,o#w,y#w,(uu)eG (17)

While considering a generic node w (other than the source
node z and the destination node y of a virtual link (u,u’)),
if one of its incoming links belongs to the path between the
nodes z and y, then also one of its outgoing links must belong
to the path (constraint 16). Without constraint 17 multiple
incoming/outgoing links could be considered, but we deal with
unsplittable flows. Constraints 16 and 17 are called transit
constraints.

ef},v,x,y,u,u’ =0

ceCveVixeViyeV,x £y, (u,u) e G

ef),v’,x,l‘,u,u/ =0

ceC,x eV, (uu) € G (v,v) € Ev# (19)
In the physical network G = (V, F), every node v is connected
to a self-loop (v,v) with infinite bandwidth (3,, = oco) and
zero latency (A, = 0). This self-loop is used when two
consecutive VNF requests or start/end points w and u' are
mapped to the same node xz, and cannot be used otherwise
(constraint 18). Moreover, no physical link (v,v’) different

, =
T, Y, U, U

(18)

TABLE IV
REQUIREMENTS FOR THE DEPLOYED SERVICE CHAINS

Service Chain Chained VNFs 0 )
Web Service NAT-FW-TM-WOC-IDPS 100 kbit/s | 500 ms
VoIP NAT-FW-TM-FW-NAT 64 kbit/s 100 ms
Video Streaming NAT-FW-TM-VOC-IDPS 4 Mbit/s 100 ms
Online Gaming | NAT-FW-VOC-WOC-IDPS | 50 kbit/s 60 ms

NAT: Network Address Translator, FW: Firewall, TM: Traffic Monitor,
WOC: WAN Optimization Controller, IDPS: Intrusion Detection
Prevention System, VOC: Video Optimization Controller

from the self-loop is used when the VNF requests or start/end
points u and ' are mapped to the same node x (constraint 19).
4) Performance constraints:

>

ceC, z,yeV
(u,u")EG®

The overall bandwidth 4y ,, requested by the virtual links
(u,u’) of every SC ¢ and mapped to the physical link (v, v")
cannot exceed the capacity of the link 3, ..

> €5 v g o +0°< " c€C (21

(v')€EE, z,yeV
(u,u’)eG®

The latency introduced by the network between the start and
end point of a SC ¢ cannot overcome the maximum tolerated
latency ¢°. The first term of the left-hand side of constraint
21 is related to the latency introduced by all the physical
links (v, v’) of the paths to which the virtual links (u,u’) are
mapped, while the term o¢ is related to the latency introduced
by the nodes because of upscaling and context switching. We
define o€ in the following way:

o= > mi,([efo] pot D igw-wy) c€C (22)

fEF, veV geF
ueU:r=f

The right-hand side of ¢¢ requires the product between the
binary variable mg , and the real variable [cf.]| - p, +
> gEF ig,v * Wy. Such product can be linearized, as well as
the ceiling function [cy , |.

(v,0") € B (20)

c c < /8
. ’
ev,v’,z,y,u,u’ §u,u’ — Mu,v

Y ifp<M-a, veV (23)

fer

ay <Y gy VEV (24)
fer

Constraints 23 and 24 assure that a node is marked as active
(i.e., a, = 1) only if at least one VNF f is hosted by that node.
The big-M parameter M must be chosen such that M > |F|.

V. SIMULATION RESULTS
A. Description of the simulation settings

We solved the optimization problem shown is Section IV
using CPLEX. We consider the physical network topology
shown in Fig. 1 with ten physical nodes (|V| = 10). This
network topology is taken form the Internet2 network [15],
considering only the nodes with advanced layer 3 services.
We defined four different types of SCs that can be deployed in
the network (see Table IV). Such SCs represent four different
services, i.e., Web Service, VoIP, Video Streaming and Online
Gaming. For every SC the traffic flows through a given
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Fig. 3. Number of active NFV nodes as a function of the number of users
in the network, while considering the impact of different upscaling costs and
different numbers of deployed SCs in the heterogeneous scenario
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Fig. 4. Number of active NFV nodes as a function of the number of users
in the network, while considering the impact of different context switching
costs and different numbers of deployed SCs in the heterogeneous scenario

sequence of VNFs and two end points; some VNFs are shared
among the different SCs. Table IV shows also the requirements
in terms of bandwidth § and maximum tolerated latency ¢ for
each SC: we assume that every virtual link (u,u’) of a SC
requires the same bandwidth and that all the nodes can be
both NFV nodes and start/end points for the SCs. Every SC
can serve an aggregate traffic from multiple users. We assume
that all the nodes can potentially host the same number - of
CPU cores and that they incur in the same upscaling costs x
and the same context switching costs £&. We show our results
considering two different scenarios: an heterogeneous scenario
and an homogeneous scenario. In the heterogeneous scenario,
we uniformly randomize the choice of start/end points (among
the 10 nodes of the network) and of the deployed SCs (among
the four different types of SCs). In the homogeneous scenario,
we only uniformly randomize the choice of start/end points,
while we assume that only one type of SC is deployed in the
network.

B. Heterogeneous scenario

Figure 3 shows the impact of the upscaling costs  (nor-
malized to the overall processing capability v of the node)
as a function of the number of users and SCs deployed in the
network when the context switching costs & are negligible. The
total number of users in the network is equally split among
the number of deployed SCs. We consider, for each point in
the graph, 50 randomized instances and the deployment of 2
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Fig. 5. Number of active NFV nodes as a function of the number of users in
the network, while considering the impact of different upscaling costs in the
homogeneous scenario, i.e., when only Web Service (WS) chains or Online
Gaming (OG) chains are deployed (6 SCs in the network)
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Fig. 6. Number of active NFV nodes as a function of the number of users
in the network, while considering the impact of different context switching
costs in the homogeneous scenario, i.e., when only Web Service (WS) chains
or Online Gaming (OG) chains are deployed (6 SCs in the network)

SCs and 6 SCs. Each instance can be solved in few minutes.
All the curves show a monotonically increasing trend. In fact,
increasing the number of users in the network requires an
additional processing capability and thus a higher number of
active NFV nodes. If also the upscaling costs are negligible
(/7 = 0%), the number of NFV nodes in the network
is almost the same as the number of SCs in the network.
This means that if no processing costs (upscaling and context
switching) are considered, increasing the number of deployed
SCs does not affect the number of active NFV nodes in the
network, as long as the overall number of users remains the
same. When the upscaling costs are not negligible, increasing
the number of SCs in the network has always an impact on the
number of active NFV nodes (x/v = 3%, /v = 9%), but the
relative difference, considering the deployment of 2 SCs and
6 SCs, is almost the same for both x/v = 3% and x/v = 9%
(around one active node). This happens because splitting the
number of users among a higher number of SCs does not
strongly impact on the size of the hosted VNFs. Note that
with upscaling costs x/v = 9% some loads result in infeasible
problems and, thus, no points are reported in the graph.
Figure 4 shows instead the impact of the context switching
costs & when the upscaling costs are negligible. Also in this



case, the curves have a monotonically increasing trend. We
can see then how an increase in the number of SCs deployed
in the network has an impact not only in terms of the absolute
number of active nodes in the network, but also in terms of the
relative difference between the number of active nodes in the
case of deployment of 2 SCs or 6 SCs. In fact, Fig. 4 shows
how the difference in the number of active nodes is much
higher for £/v = 3% than for /v = 9%: for £/v = 3% such
difference is around one active node, while for £/y = 9% this
difference is around three active nodes. This happens because
the number of the overall VNFs requests is higher when 6
SCs are deployed than when only 2 SCs are deployed, and
this leads to higher context switching costs.

C. Homogeneous scenario

For the homogeneous case, we consider two different cases:
in the first case, only Web Service (WS) chains are deployed,
in the second only Online Gaming (OG) chains. Figure 5
shows the impact of the upscaling costs in such cases, in
comparison with the heterogeneous (Het) scenario. The num-
ber of deployed SCs is fixed at 6 SCs. The deployment of
an homogeneous type of SC does not impact so much on the
number of active nodes, in fact the curves of the homogeneous
(WS and OG) and heterogeneous (Het) cases are more or
less overlapped while considering the same value of x/v. In
average, the deployment of OG chains impacts a bit less than
the deployment of WS chains, for all the considered values of
/7, mainly due to the looser bandwidth requirements. While
comparing such homogeneous cases with the heterogeneous
case, we notice that the heterogeneous case behaves similarly
to an average of the different homogeneous cases. Similar
considerations can also be made while considering the context
switching costs (Fig. 6).

Note that for both the heterogeneous and the homogeneous
scenarios we simulated also the deployment of 3, 4 and 5
SCs. We do not plot such curves, since the results we got
are analogous and do not provide additional insights to the
discussion.

VI. CONCLUSION

In this paper, we investigated the impact of processing-
resource sharing among VNFs and scalability costs in a
NFV scenario, when multiple SCs must be deployed in the
network. The VNFs placement and distribution on NFV nodes
lead to two different types of costs: upscaling costs and
context switching costs. Such costs lead to a VNF size/number
trade-off that must be investigated. We first focused on the
mathematical modeling of the NFV nodes, of the VNFs and
of the SCs. Then, we defined an ILP model aimed at the
VNF/SC embedding on a physical network while consolidat-
ing the VNFs in the minimum number of NFV nodes and
taking into account VNF placement, routing and performance
constraints. Then, we evaluated the impact of upscaling and
context switching costs on the cost for NFV implementation.
Results show that, as the number of SCs grows, the impact of

context switching costs on the cost for NFV implementation

is amplified. On the other hand, the number of SCs does not
change how the upscaling costs translate into the cost for NFV
implementation. We also showed how different latency and
bandwidth requirements of the SCs impact on the network
cost. Our model shows that NFV can handle multiple SCs
with different requirements deployed on the same network
without incurring in significant additional costs with respect to
a scenario with homogeneous requirements. Several issues still
remain open for future research. For example, more detailed
models for upscaling and context switching costs can be
investigated, including energetic aspects.
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