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Abstract—Operators have been adopting the cloud-native 
paradigm for the rollout of 5G architecture. With it goes the 
introduction of the service-based architecture as a key design 
pattern for realizing future control, and ultimately user planes 
of mobile networks. The main benefits of this new design pattern 
are the increased flexibility to address new business cases while 
maintaining competitive cost levels, while also benefitting the 
realization of use cases usually requiring the full breadth of 
infrastructure level network slicing. In this paper, we present a 
realization of a service delivery platform entirely built upon 
service-based architecture principles, showcasing the 
realization of control as well as user plane services along with 
early deployment insights.  
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I. INTRODUCTION  

The 5G community is abuzz with excitement about the 
introduction of the ‘cloud-native’ paradigm. It is seen as one 
of the most important departures from 4G in terms of 
deploying future (5G) mobile networks, alongside the ability 
to slice networking and compute resources; in fact, many see 
it as a basis for an efficient slicing realization in the first place.  

A ‘cloud-native’ application is a program designed 
specifically for a cloud computing architecture. It leverages 
the benefits of cloud computing frameworks that are 
composed of loosely coupled cloud services. They utilize 
design patterns and deployment techniques in today’s 
(Internet) cloud services. This affects two crucial aspects, 
namely the relationships in the overall system as well as the 
design of services realized in a cloud-native system. For the 
former, the assumptions for what constitutes a ‘cloud’ and the 
abstraction provided to upper service platforms is crucial, 
while the latter aspect drives not only the realization of key 
5G use cases but also the assumption of basic platform 
capabilities. Current work in the NGMN forum and the 
accompanying efforts in the 3GPP standards community 
address both, with the most recent Rel16 specification 
capturing the realization of 5G control planes [1].  

In this paper, we will build on the cloud-native assumption 
of 5G and present our efforts to realizing a service platform, 
not limited to the realization of control plane services but also 
being deployed with user plane services, specifically those for 
media consumption, in mind. This realization is captured as 

one of three possible deployment choices for 5G cloud-native 
service platforms in (Appendix G4) [1]. For this, we will first 
outline the key relationships in a cloud-native 5G deployment 
in Section II, with our approach to realizing the service 
delivery platform in Section III. We present our approach to 
lifecycle management in Section IV before outlining first 
insights into performance in Section V, including those based 
on real-life deployments of our platform. 

II. RELATIONSHIPS & INTERACTIONS IN CLOUD-NATIVE 

ENVIRONMENTS 

Figure 2 outlines the relationships in the cloud-native 
deployment of services, following the well-established model 
found in data centre deployments [2][3][4]. At the very 
bottom, the infrastructure is being provided, e.g., by wholesale 
communication providers such as operators or facility 
providers in vertical 5G scenarios. The assumptions for the 
infrastructure here follow that of data centres, i.e., compute 
resources are provided via a Layer 2 connectivity between 
clusters of such compute resources, ultimately providing a 
data centre abstraction to the upper most services in which 
services can be deployed as service instances, using 
virtualization solutions such as containers or virtual machines. 
These data centre resources now exhibit a higher degree of 
distribution, often denoted in tiers of deployment that reach 
from central clouds over metro-level (central) offices to 
possibly even street-level deployments, e.g., in base stations 
or smart city furniture.  

The glue between the virtualized services and the (cloud-
native) infrastructure is the service messaging platform 
(SMP), shown in Figure 2. It is this SMP that is the focus of 
ongoing 3GPP work, entitled (enhanced) service-based 
architecture [1][5]. Section III will present the realization of 
precisely this platform.  

Before we do so, however, we will discuss in more detail 
how to realize the service design patterns for such cloud-
native environments. For this, Figure 2 expands our 
relationships in Figure 1 towards concepts that allow for 
capturing the interactions within the system, driving the 
realization of our platform in Section III. 

For the management as well as control of service 
deployment, the business logic is captured in the form of a 

 
Figure 2: Relationships in a Cloud-Native 5G Environment 

 
Figure 1: Service Interaction Pattern 



template as a set of instructions. Those instructions are 
formulated along a service function chain (SFC), which in turn 
defines an ordered set of abstract service functions (SF) and 
ordering constraints that must be applied to packets and/or 
flows selected as a result of classification [6]. Service 
functions communicate through the service messaging 
platform, in alignment with Figure 2.  

The service functions themselves realize the service 
(logic) and can exist as several service function endpoints 
(SFEs) in the distributed cloud-native infrastructure. The latter 
is realized with the help of the infrastructure providing one or 
more physical instances for such service endpoint.  

Services running on the platform rely on a lifecycle model, 
which is managed by the (platform) orchestrator, translating 
the instructions in the provided template to initially deploy 
suitable physical instances of the defined service endpoints 
within the infrastructure resources. For this, the service 
platform and infrastructure player maintain an agreed resource 
pool, which underlies a well-defined business relation (usually 
expressed through a quota of resource usage). Beyond the 
initial deployment, the orchestrator also controls the runtime 
behaviour of the physical instances, said behaviour being 
defined as part of the initially provided template and changes 
triggered through monitoring and analysis of state and 
behaviour across the full stack of service function chain, 
service endpoint and infrastructure realisation  

III. SERVICE PLATFORM 

Figure 3 depicts the overall service platform architecture, 
embedded into the relationships already shown in Figure 2 [7]. 
At the topmost level, services such as those needed for 5G 
control planes [1] or for media services are realizing the 
service functions outlined in Figure 1, along the defined 
templates for deployment and utilizing existing Internet 
protocols such as HTTP for service communication.  

The underlying infrastructure is providing resources to the 
service platform within a single network slice (the 
mechanisms for establishing said slices are left out of this 
paper), using OpenStack for the compute orchestration and 
OpenFlow for flexibly configuring the communication 
between the networking elements (here SDN switches) [8][9]. 
The platform itself is working in tenant mode and therefore 
respects possible other tenants of the infrastructure. 
OpenStack deploys the presented components of the platform 
as well as cluster runtimes on different locations including 
those that can be geographically distributed, which are then 
used by the platform to deploy Service Function Endpoints. 

Between the clusters and all deployed platform components, 
SDN-based switches perform the establishment and 
forwarding of packets/frames.  

With this, the platform utilizes standardized interfaces and 
protocols both south- and northbound. In the following 
sections, we provide more detail on the workings of the 
platform components. 

A. Platform Orchestrator 

Orchestration is the automated process for deploying 
compute, storage and networking elements. It models the 
requests of the stakeholders into a manageable (cloud) 
infrastructure and performs deployment and work plans 
according to the requirements of theses business partners and 
their applications. The platform orchestrator offers interfaces 
to the service components and their providers as well as to the 
Cross-Layer Management and Control (CLMC), the latter 
providing a big data analysis component offering access to the 
multi-site cloud environment.  

The orchestrator fully abstracts the infrastructure; hence 
service providers do not directly interact with the 
infrastructure components. They express their deployable 
SFC and requirements through templates based on TOSCA 
(Topology and Orchestration Specification for Cloud 
Applications). It provides a type system describing the blocks 
for constructing service templates and offering possibility to 
define virtual instance templates. Characteristics of these 
nodes can be defined within the template: properties, 
relationships, hardware and software requirements, policies, 
machine status, and deployment plans. The general idea is to 
define all the topics (e.g., protocols, equipment, environment 
variables) related with the network virtualization [10]. 

B. Service Function Endpoint Management and Control 
(SFEMC) 

The SFEMC processes the computational instance 
requests from the Orchestrator and maintains lifecycle states 
of the deployed endpoints. It decides, based on given policies 
whether and on which infrastructure location (namely host or 
cluster) the described instances may be deployed. When 
triggered from external sources (e.g., CLMC or Service 
Providers), the SFEMC performs targeted transitions of the 
deployed lifecycle state of each SFE and applies given policies 
against it. As the maintainer of these lifecycles, the SFEMC 
retrieves monitoring status information from the CLMC as 
well as from the underlying virtual instance managers (VIM) 
of the different clusters within the platform. 

 
Figure 3: Platform Architecture 



C. Service Function Routing 

Service Function Routing (SFR) enables service-oriented 
routing of traffic among SFEs based on HTTP as the 
application protocol via SDN-enabled Layer 2 forwarding. 
Through the registration of the FQDN (Fully Qualified 
Domain Name) of the specific service, an SFE is serving as an 
endpoint within our relations in Figure 1. Our platform utilizes 
so-called name-based routing for the delivery of IP-based 
services in a Layer 2 network, as described in [11].  

D. Cross Layer Management and Control (CLMC) for 
Dynamic Adaption  

CLMC provides monitoring, analysis and control for 
adaptation of service function chains in response to usage, 
performance and service objectives. CLMC data can be used 
for control-level decisions (e.g., the Alert Management is 
triggering a lifecycle change of service endpoints) but also as 
a rich pool of data to develop insights into resource 
specifications, adjusting crucial longer-term strategies (e.g., 
placement or dimensioning) and monitoring of expected 
Service Level Agreements (SLAs) in B2B and B2C 
relationships. CLMC brings together time-series and graph 
analytics to understand demand, resourcing and performance 
properties of service function. For a given orchestration, the 
infrastructure and service function nodes remain largely static 
whilst the deployment and state of endpoints varies 
throughout the lifecycle of the service function chain 
according to demand and policies. The time-series 
measurements are acquired from existing monitoring 
frameworks provided by individual sub-systems (e.g., 
switching elements) or by service functions themselves. The 
aim is not to replace existing systems but provide a cross-layer 
knowledge model that can drive QoS-orientated of both 
content and service configuration. 

IV. LIFECYCLE MANAGEMENT 

In this section, we expand on the lifecycle management, as 
realized by the platform orchestrator, SFEMC and CLMC 
components presented in the previous section. For this, we 
differentiate the management from the control tasks, as 
outlined in the next sub-section. But before we do so, we 
describe the lifecycle state that is being managed and 
controlled. 

A. Maintaining Lifecycle State  

For each Service Function Endpoint, the platform maintains a 
runtime lifecycle in the form of a state machine, depicted 
Figure 4, with the following states: 

 NON-PLACED: the SFE is known to the network but 
there is no placement on any cluster. However, the 

repository contains the container or VM image for 
that SF. 

 PLACED: the SFE is occupying disk space on the 
targeted cluster but is shut down. 

 BOOTED: the SFE is up and running but is not 
attached to the communication process. A discovery 
of such SFs will never return the “just” booted SFEs. 

 CONNECTED: the SF Endpoint is fully in operation 
mode, i.e., allows communication and is discoverable.  

Hence, through the above states, the resource consumption of 
each SFE can be controlled across the dimensions of storage, 
compute and communication resources. As we will describe 
in the next two sub-sections, the SFE state is set up as a result 
of the management actions, while being controlled over time 
via policies that are defined in the deployment instructions.  

B. Management 

1) Service Function Decomposition and Packaging 
Initially a Service Function Chain is based on micro services 
decomposed into service elements, ensuring fine granularity 
in service design needed to allow for service functions to be 
intelligently deployed on the most appropriate computing 
resource (e.g., geographically). Each service function is 
packaged as a container or VM image including installation 
and setup of all required software and platform specific 
management services. Finally, the service function packages 
are published into a repository accessible to the platform and 
supporting runtime discovery during service provisioning.   

2) Service Function Chain Specification 
The SFC is specified with a TOSCA template. The 

Platform works with a more specified node and policy type 
definition to leverage the platform’s features. The template is 
labelled with service function chain identifier. All SFs are 
described as nodes within the SFC with named identifiers 
(FQDN) to be addressed when the instances of that SF are 
deployed. Via the policies, the specification defines how, and 
which SFEs will be deployed and on which location (cluster) 
and in which lifecycle state. 

3) Orchestration  
The orchestration instantiates an SFC through the 

deployment of SFs according to the TOSCA template 
specification. The specification is parsed for syntactic and 
semantic validation so the SFC can be processed to 
manageable logical objects, which in turn are forwarded to the 
SFEMC for the actual endpoint placement and control. 
Resources are then allocated via the given policies defined in 
the template, i.e., the SFEMC performs a validity check of 
possible resource requirement and places the listed Service 
Functions accordingly on each of the named clusters. Service 
Function packages are distributed to each cluster from the 
platform repository where they are cached. Finally, each 
Service Function Endpoint is instantiated to the lifecycle state 
within the initial policy. 

  

 
Figure 4: Lifecycle State Machine of an SFE 



C. Control 

1) Bootstrapping of SFE with platform information 
When an SF Endpoint enters the CONNECTED state, the 

endpoint’s WhoAmI-service receives relevant platform and 
endpoint information. The information is available in the 
instance’s runtime environment. Each SF has a WhoAmI-
service installed to discover runtime context from the 
platform; including the Service Function Chain, Service 
Function Chain Instance, Cluster, Service Function IDs, and 
Endpoint IDs. Much of this data is automatically used by the 
monitoring agent to contextualise the monitoring data to feed 
the CLMC. For the service developer, the WhoAmI-API is of 
importance if there are multiple service functions in the 
service function chain; as the information is used by one SF to 
know the FQDN of another SF to communicate.  

2) Monitoring the SFE 
Alert trigger events are defined to indicate certain states of 

the deployed service and/or chain. Each alert specification 
includes an eventType that refers to the process used to create 
the alert. This includes how data is processed and the 
conditions under which the alert is triggered, for example, 
threshold, relative or deadman conditions. A set of 
configuration defines the conditions for triggering an alert that 
includes the metric and threshold for the critical value 
compared to the measured. If the comparable value hits the 
threshold, an alert is triggered.  A relative event type is an alert 
that computes the difference between the current aggregated 
value of a metric and the aggregated value reported a given 
period ago. Finally, the deadman event type can be configured 
to alert if there are less points been reported in the given period 
as expected.  

The time series analytics are extended towards the concept 
of temporal graphs allowing system properties to be analysed 
through network-aware topological structures of 
infrastructure, endpoints, service functions and service 
function chains. Graphs are created dynamically to support 
specific analytics and queries over the system properties. 
However, the model of the infrastructure properties is 
consistent. The properties of specific SF Endpoints vary 
depending on the type of service, although the common KPI 
taxonomy allows for general abstractions, aggregation and 
normalisations can be defined (e.g., Response Time).   

Figure 5 shows the process of graph building and 
analytics. The process is initialised to build the initial graph 
from the infrastructure and media service topologies, along 
with configuring the continuous queries to acquire, aggregate 
and normalise the desired SF Endpoint properties over a 
specified time-period. The continuous queries execute 
periodically to add new nodes to the graph representing state 

of a SF Endpoint over the period. The graphs are created 
automatically from the measurement context data reported by 
the monitoring agents. A subsequent graph query is executed 
continuously to determine system measurements and stores 
these as monitoring data in time-series database for 
visualisation or further higher-level analytics and event 
triggers to control SFEs via the SFEMC. 

V. DEPLOYMENT INSIGHTS 

In the following, we want to present use-cases which rely 
with diverse requirements on the platform.  

A. Dev-Ops Pipeline for Experimenters 

To allow a fast adoption of the key concepts of the 
platform, a multi-stage pipeline has been developed which 
allows application developers to develop and test their SFC at 
each stage of the development. The Dev-Ops tool chain 
depicted in Figure 6 fosters a smooth transitioning of the 
technology readiness early technology development to 
technology demonstration in a suitable environment.  

The development and packaging of service functions is 
conducted outside of any platform deployment. Once the SFs 
have been finished (and tested on localhost) they can be 
packaged up to be given to the orchestrater of any deployed 
platform. The next step is the sandbucket. It is a Virtual 
Appliance containing the platform (without CLMC) to be 
deployed in the experimenter’s infrastructure using VIMs 
such as VirtualBox or VMware. The objective of the 
sandbucket is to allow experimenters to test TOSCA templates 
and their SFC with the focus on the interaction among SFs.  

1) Sandpit 
The Sandpit is a fully virtualised environment, offering a 

one-tier-edge-computing-platform with four locations to test 
entire SFCs at a larger scale. Each location allows 
experimenters to deploy SFs and test the entire chain against 
the platform using one emulated UE per location. In contrast 
to the sandbucket, the sandpit also includes the CLMC and 
sufficient capacity to test resource and alert descriptors. 

2) Replication Sites  
Once the SFC has been successfully tested in the sandpit 

experimenters move to the city deployment of the platform 
which offers the abilities to conduct KPI-driven experiments 
and trials with members of the public. The replication sites to 
date are: 

 Bristol: A hardware-based SDN switching fabric 
utilising the cities fibre-network to interconnect two 
edge locations in the city and the main data centre in 
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the University. Experimenters have eight locations in 
total across the city where SFs can be deployed right 
at the far edge of the network covering attractive 
public areas ideal for conducting trials.    

 Barcelona: A deployment at the heart of the city with 
four locations along a street allowing experimenters 
to design services including vehicular terminals. The 
street deployment is complemented by a data centre 
at the University interconnected by a fibre link. 

Only with trials and KPI-driven experiments in cities 
experimenters can provide an educated answer to key benefits 
of the service-based platform, the deployment and of SFs at 
the edge. This requires a thorough but agile enough pipeline 
for designing, implementing, testing and verifying SFCs over 
an innovative service-based delivery platform where the 
pipeline controls testing costs at each stage of development. 

B. Observed Platform Benefits 

1) Deploying Edge-Services 
From a network perspective, services are deployed as 

close as possible to the client (excluding the terminal 
perspective) where proximity is defined as the number of hops 
from the client to the endpoint. Through the forwarding of user 
packets via shortest path, the deployed edge service is used as 
soon as the instance is available, instead of a more centralised 
instance. The benefits include network cost reduction due to 
lower network usage as service/content is front loaded to the 
edge (whilst maintaining reachability from anywhere in the 
network), reduction in start-up time for playout on user 
terminals for, e.g., media services, and better reaction time due 
to low-latency were latency stays comparable even when 
client moves. These benefits, however, need to be balanced 
against the compute and storage usage costs for placing SFE 
in edge data centres. 

2) Multicast Delivery of HTTP Responses 
In [11], the authors outline the opportunistic multicast 

delivery of content, e.g., for media services. Here responses to 
quasi-concurrent (HTTP) requests are delivered using in a 
single lightweight multicast transmission over the L2 
customer network. The time period (which we call the 
catchment interval) over which this process takes place can be 
flexibly adapted on a per-service request basis, further 
improving the opportunity for multicast delivery. The benefits 
include network cost reduction due to reduced network usage 
as video is (partially) multicast in segments of the network. 
Furthermore, service costs are reduced due to reduced server 
load as http request suppression when multicast occurs. The 
work in [11] outlines the possible reductions for typical 
customer access networks of national scale.  

3) Service Indirection 
The approach to service routing, utilized in our platform 

and based on the methods described in [11], also lowers 
latencies experiences in service indirection, i.e., the directing 
of service request to the most suitable service instance. In 
virtualized environments, such as the ones envisioned in edge 
computing deployments and 5G control planes, such service 
instances can be flexibly deployed through a lifecycle 
management system, like the one employed in our platform 
(see Section IV). Unlike approaches used in content delivery 
networks (CDNs) that realize indirection through appropriate 
DNS record configurations, the solutions in our platform 
utilize publish-subscribe name registration (and therefore also 
update) mechanisms. Through this, changes in service routing, 

i.e., the indirection to a different service instance, can be kept 
as low as 1ms in medium sized networks such as those found 
at the edge of the network (including mobile networks), while 
initial service lookups are comparable to initial DNS requests 
for very fast private DNS resolver solution (in the order of 
10ms for a lookup) [11].  

4) Adaptive Resource Management 
The business logic for placement and scaling is described 

through alerts and provide an event-based approach change 
the lifecycle state of a service function endpoints in response 
to changes in performance or usage. These features allow 
scaling, e.g. “scale up and down” service instances for the 
needs of traditional cloud applications, but also the 
geographical scaling across a possible distribution of service 
instance in different data centres. The benefits here include 
rapid response to changes of demand and load balancing 
especially the spatial and temporal distribution of requests 
needed to support optimal resourcing of localised services 

C. Example Deployments  

1) Control Plane Services for 5G Core Networks 
As an example, deployment for the realization of 5G 

control plane services, Control Plane Services (CPS) were 
developed to show how an upcoming 5G core network can 
utilize the service-based design and the capabilities of a 
delivery platform, most notably service registration & 
discovery, routing of services messages and failover 
mechanisms.  

For testing the core network aspects only, the access 
network is left out and the initial requests are initiated from a 
virtual terminal.  Upon start of such terminal, it performs an 
attachment to a network, followed by three user plane 
Sessions (for enhanced mobile broadband, video, VoLTE), 
finally detaching from the network again. For the realization 
of this simple control plane scenario, each CPS SFE can 
communicate with any other CPS SFE utilising the service 
routing capabilities of the platform for HTTP services.  

We also realized stateless CPS instances by maintaining a 
network data service (NDS) for each service request. For 
instance, the session management CPS checks for permission 
from the NDS before requesting the respective policies from 
the policy management CPS. The NDS is also used for 
visualizing the transactions via a web interface, showing the 
dynamic forwarding of requests to the always nearest service 
function which were available. All CPS instances were set to 
the CONNECTED state upon deploying, not utilizing the 
dynamic lifecycle management outlined in Section IV.C.  

We demonstrated this approach to implementing a fully 
SBA-compliant 5G core network at the recent NGMN (Next 
Generation Mobile Networks) exhibition in 2019 with Figure 
7 showing the aforementioned web interface visualizing the 
transactions. 

2) Enhanced Slicing 
As mentioned in Section III, our platform is deployed 

within a single network slice within which services, e.g., 
control plane or media services, are being deployed. This 
choice is mainly driven by our specific deployments and their 
support for network slicing.  

While we have considered deployments that span several 
network slices, we have more specifically worked on 
extensions to network slicing through a concept called ‘super 
slice’. Here, resources are being pooled (and managed) within 



a single slice. We foresee such slice being associated, by the 
underlying infrastructure provider, to a specific use case rather 
than a customer.  

For instance, we consider a quota of resources being 
assigned, let’s say to an enhanced mobile broadband (eMBB) 
use case. Such quotas are being assigned across several use 
case areas that the infrastructure provider intends to offer to 
customer (others could be massive machine-type 
communication). Within said use case quota, customers are 
now assigned resources that they can use from the overall 
resource pool. This assignment is the result of a business 
relationship between the infrastructure provider and the 
specific customer. For instance, a quota of 60% infra resource 
(we focus here on the compute resources but can easily extend 
this to the communication resources as well) for eMBB is now 
assigned to customer X within the defined network slice for 
eMBB, while 40% are being assigned to another customer.  

The name-based routing being realized in the service 
routing solutions of [11] and being used in our platform, now 
allows for ‘pinning’ service requests of specific customers, 
defined as service contexts and expressed through, e.g., 
subscriber IDs or mobile operator IDs. This pinning is 
achieved through flexible context-specific sub-naming of 
resources according to the assigned quota and chaining the 
customer-specific service requests along those defined 
contexts. The reactive (pub/sub-based) name registration and 
update mechanism outlined in [11] is key to realizing such 
pinning capability in a short timespan rather than relying on 
DNS-based solutions. Ultimately, the shortest path forwarding 
to the nearest (now context-dependent) service instance 
ensure the adherence to the assigned quota, establishing a 
‘sub-slice’ within the overall ‘super slice’ established for the 
overall use case. Such lightweight mechanism for recursive 
slicing is contrasted against customer-specific slices, reducing 
scalability in terms of slicing overhead with expected setup 
times being in the range of less than several hundreds of 
milliseconds. We expect a more thorough analysis of this 
approach in the context of recently started work in the NGMN 
SBA working group, which has liaised with the 3GPP to put 
forward solutions in this space. 

3) Trials 
The validation and evaluation of the architecture and 

platform is conducted through over 20 trials that bring 
together 5G infrastructure operators, service providers and 
end-users to understand the full-stack assessment of 
performance, feasibility and acceptance. The trial process 

includes establishing 5G infrastructure including mobile edge 
and hierarchical data centres within in real-life urban settings 
and then provisioning a 5G infrastructure slice for platform 
deployment to create a testbed for trials and experimentation. 
Service providers then design micro services using service 
design patterns constructed to deliver enhanced user 
experience through platform features, and finally conduct 
technical trials and user evaluation on the testbeds.   

Replication sites have been established in Bristol and 
Barcelona supporting real-life deployment in urban settings. 
Each site offers a radio access network along with 
hierarchically scaled computing clusters across a significant 
area of the cities. The virtual infrastructure manager is based 
on OpenStack and switches compliant with the OpenFlow 1.5 
specification.  Tenant slice specifications have been defined 
describing the infrastructure topology and capacity, that have 
then been used by an automated toolchain to provision 
platform services and establish the testbeds themselves.  

A series of trials driven have been conducted by service 
providers in content rich industries seeking to improve user 
experience and reduce cost of service delivery through 
flexible placement and connection of services anywhere 
within the network from the far edge to the distant cloud. 
Trials have covered a broad range of scenarios such as content 
mobility for highly mobile users, optimized asset distribution 
for localized content in augmented reality applications and 
games, localized broadcast including participatory models for 
citizens and public broadcasters, and a variety of edge 
processing scenarios to understand and control content locally 
within highly distributed content production workflows that 
include many publishers.  

In all trials, service providers have needed to shift 
paradigm from mobile cloud to mobile edge computing 
through new deployment and scaling options, including 
entirely localized services that do not rely on distant public 
clouds. Micro-service design patterns have emerged for 
mobile edge computing supporting enhanced user interaction 
such as opportunistic multicast, synchronized playout, nearest 
playout, proxy cache playout, content placement, application 
function offloading and geographic scaling. Using the design 
patterns the trials have demonstrated significant cost 
reductions and enhancements to user experience. Firstly, 
devops costs are reduced as services are now flexible, robust 
and agile through the platform dynamically placing, booting 
and connecting services in the network in response to demand 
and endpoint/routing policies.  Secondly, network costs are 
reduced due to reduced network usage when multicast 
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delivery or content frontloading in segments of the network, 
whilst server costs are reduced through dynamic replication of 
content within the network and reduced server usage as http 
request suppression when multicast occurs. Finally, user 
experience is improved through reduction in start-up time for 
playout, battery life can be increased by offloading functions 
to the network, reaction time to latency changes is improved, 
latency stays comparable even when client moves between 
access points, whilst content is still reachable from anywhere 
in the network.  

VI. CONCLUSION 

In this paper, we presented our platform solution as well 
as first insights of deploying 5G services, both at the control 
as well as user plane, in cloud-native environments. For this, 
we outlined main concepts, components and lifecycle 
management cycles necessary to realize our ideas. The 
availability of the platform is essential for trial-based 
engagement pursued in a number of public funded projects but 
also driving the technological solutions into key 
standardization efforts. Through this, we complement our 
technology and platform development with evidence-based 
experimentation which in turn amplifies our efforts in 
standards and commercial exploitation with our platform 
already been recognized as one of three possible deployment 
options for upcoming 5G systems based on the most recent 
Release 16 specification.  

In our future work, we plan on extending this standard 
basis through incorporating new ideas for resource 
management, realizing our ‘enhanced slicing’, presented in 
Section V.C.2) in control and user plane scenarios. Key to 
such flexible resource management will be the study of more 
complex policy decisions that will utilize the CLMC-based 
analytics built into our platform, which in turn will enable 
more complex edge computing scenarios with, e.g., migration 
of service function endpoints due to changing conditions at 
user and network level. 
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