
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Cloud-Native 5G Service Delivery Platform

Kay Haensge
InterDigital Germany GmbH

Berlin, Germany
kay.hansge@interdigital.com

Dirk Trossen, Sebastian Robitzsch
InterDigital Europe Ltd.

London, UK
{dirk.trossen,sebastian.robitzsch}

@interdigital.com

Michael Boniface, Stephen Phillips
IT Innovation Centre

Southampton, UK
{mjb,scp}

@it-innovation.soton.ac.uk

Abstract—Operators have been adopting the cloud-native
paradigm for the rollout of 5G architecture. With it goes the
introduction of the service-based architecture as a key design
pattern for realizing future control, and ultimately user planes
of mobile networks. The main benefits of this new design pattern
are the increased flexibility to address new business cases while
maintaining competitive cost levels, while also benefitting the
realization of use cases usually requiring the full breadth of
infrastructure level network slicing. In this paper, we present a
realization of a service delivery platform entirely built upon
service-based architecture principles, showcasing the
realization of control as well as user plane services along with
early deployment insights.

Keywords—service-based architecture, service routing

I. INTRODUCTION

The 5G community is abuzz with excitement about the
introduction of the ‘cloud-native’ paradigm. It is seen as one
of the most important departures from 4G in terms of
deploying future (5G) mobile networks, alongside the ability
to slice networking and compute resources; in fact, many see
it as a basis for an efficient slicing realization in the first place.

A ‘cloud-native’ application is a program designed
specifically for a cloud computing architecture. It leverages
the benefits of cloud computing frameworks that are
composed of loosely coupled cloud services. They utilize
design patterns and deployment techniques in today’s
(Internet) cloud services. This affects two crucial aspects,
namely the relationships in the overall system as well as the
design of services realized in a cloud-native system. For the
former, the assumptions for what constitutes a ‘cloud’ and the
abstraction provided to upper service platforms is crucial,
while the latter aspect drives not only the realization of key
5G use cases but also the assumption of basic platform
capabilities. Current work in the NGMN forum and the
accompanying efforts in the 3GPP standards community
address both, with the most recent Rel16 specification
capturing the realization of 5G control planes [1].

In this paper, we will build on the cloud-native assumption
of 5G and present our efforts to realizing a service platform,
not limited to the realization of control plane services but also
being deployed with user plane services, specifically those for
media consumption, in mind. This realization is captured as

one of three possible deployment choices for 5G cloud-native
service platforms in (Appendix G4) [1]. For this, we will first
outline the key relationships in a cloud-native 5G deployment
in Section II, with our approach to realizing the service
delivery platform in Section III. We present our approach to
lifecycle management in Section IV before outlining first
insights into performance in Section V, including those based
on real-life deployments of our platform.

II. RELATIONSHIPS & INTERACTIONS IN CLOUD-NATIVE

ENVIRONMENTS

Figure 2 outlines the relationships in the cloud-native
deployment of services, following the well-established model
found in data centre deployments [2][3][4]. At the very
bottom, the infrastructure is being provided, e.g., by wholesale
communication providers such as operators or facility
providers in vertical 5G scenarios. The assumptions for the
infrastructure here follow that of data centres, i.e., compute
resources are provided via a Layer 2 connectivity between
clusters of such compute resources, ultimately providing a
data centre abstraction to the upper most services in which
services can be deployed as service instances, using
virtualization solutions such as containers or virtual machines.
These data centre resources now exhibit a higher degree of
distribution, often denoted in tiers of deployment that reach
from central clouds over metro-level (central) offices to
possibly even street-level deployments, e.g., in base stations
or smart city furniture.

The glue between the virtualized services and the (cloud-
native) infrastructure is the service messaging platform
(SMP), shown in Figure 2. It is this SMP that is the focus of
ongoing 3GPP work, entitled (enhanced) service-based
architecture [1][5]. Section III will present the realization of
precisely this platform.

Before we do so, however, we will discuss in more detail
how to realize the service design patterns for such cloud-
native environments. For this, Figure 2 expands our
relationships in Figure 1 towards concepts that allow for
capturing the interactions within the system, driving the
realization of our platform in Section III.

For the management as well as control of service
deployment, the business logic is captured in the form of a

Figure 2: Relationships in a Cloud-Native 5G Environment

Figure 1: Service Interaction Pattern

template as a set of instructions. Those instructions are
formulated along a service function chain (SFC), which in turn
defines an ordered set of abstract service functions (SF) and
ordering constraints that must be applied to packets and/or
flows selected as a result of classification [6]. Service
functions communicate through the service messaging
platform, in alignment with Figure 2.

The service functions themselves realize the service
(logic) and can exist as several service function endpoints
(SFEs) in the distributed cloud-native infrastructure. The latter
is realized with the help of the infrastructure providing one or
more physical instances for such service endpoint.

Services running on the platform rely on a lifecycle model,
which is managed by the (platform) orchestrator, translating
the instructions in the provided template to initially deploy
suitable physical instances of the defined service endpoints
within the infrastructure resources. For this, the service
platform and infrastructure player maintain an agreed resource
pool, which underlies a well-defined business relation (usually
expressed through a quota of resource usage). Beyond the
initial deployment, the orchestrator also controls the runtime
behaviour of the physical instances, said behaviour being
defined as part of the initially provided template and changes
triggered through monitoring and analysis of state and
behaviour across the full stack of service function chain,
service endpoint and infrastructure realisation

III. SERVICE PLATFORM

Figure 3 depicts the overall service platform architecture,
embedded into the relationships already shown in Figure 2 [7].
At the topmost level, services such as those needed for 5G
control planes [1] or for media services are realizing the
service functions outlined in Figure 1, along the defined
templates for deployment and utilizing existing Internet
protocols such as HTTP for service communication.

The underlying infrastructure is providing resources to the
service platform within a single network slice (the
mechanisms for establishing said slices are left out of this
paper), using OpenStack for the compute orchestration and
OpenFlow for flexibly configuring the communication
between the networking elements (here SDN switches) [8][9].
The platform itself is working in tenant mode and therefore
respects possible other tenants of the infrastructure.
OpenStack deploys the presented components of the platform
as well as cluster runtimes on different locations including
those that can be geographically distributed, which are then
used by the platform to deploy Service Function Endpoints.

Between the clusters and all deployed platform components,
SDN-based switches perform the establishment and
forwarding of packets/frames.

With this, the platform utilizes standardized interfaces and
protocols both south- and northbound. In the following
sections, we provide more detail on the workings of the
platform components.

A. Platform Orchestrator

Orchestration is the automated process for deploying
compute, storage and networking elements. It models the
requests of the stakeholders into a manageable (cloud)
infrastructure and performs deployment and work plans
according to the requirements of theses business partners and
their applications. The platform orchestrator offers interfaces
to the service components and their providers as well as to the
Cross-Layer Management and Control (CLMC), the latter
providing a big data analysis component offering access to the
multi-site cloud environment.

The orchestrator fully abstracts the infrastructure; hence
service providers do not directly interact with the
infrastructure components. They express their deployable
SFC and requirements through templates based on TOSCA
(Topology and Orchestration Specification for Cloud
Applications). It provides a type system describing the blocks
for constructing service templates and offering possibility to
define virtual instance templates. Characteristics of these
nodes can be defined within the template: properties,
relationships, hardware and software requirements, policies,
machine status, and deployment plans. The general idea is to
define all the topics (e.g., protocols, equipment, environment
variables) related with the network virtualization [10].

B. Service Function Endpoint Management and Control
(SFEMC)

The SFEMC processes the computational instance
requests from the Orchestrator and maintains lifecycle states
of the deployed endpoints. It decides, based on given policies
whether and on which infrastructure location (namely host or
cluster) the described instances may be deployed. When
triggered from external sources (e.g., CLMC or Service
Providers), the SFEMC performs targeted transitions of the
deployed lifecycle state of each SFE and applies given policies
against it. As the maintainer of these lifecycles, the SFEMC
retrieves monitoring status information from the CLMC as
well as from the underlying virtual instance managers (VIM)
of the different clusters within the platform.

Figure 3: Platform Architecture

C. Service Function Routing

Service Function Routing (SFR) enables service-oriented
routing of traffic among SFEs based on HTTP as the
application protocol via SDN-enabled Layer 2 forwarding.
Through the registration of the FQDN (Fully Qualified
Domain Name) of the specific service, an SFE is serving as an
endpoint within our relations in Figure 1. Our platform utilizes
so-called name-based routing for the delivery of IP-based
services in a Layer 2 network, as described in [11].

D. Cross Layer Management and Control (CLMC) for
Dynamic Adaption

CLMC provides monitoring, analysis and control for
adaptation of service function chains in response to usage,
performance and service objectives. CLMC data can be used
for control-level decisions (e.g., the Alert Management is
triggering a lifecycle change of service endpoints) but also as
a rich pool of data to develop insights into resource
specifications, adjusting crucial longer-term strategies (e.g.,
placement or dimensioning) and monitoring of expected
Service Level Agreements (SLAs) in B2B and B2C
relationships. CLMC brings together time-series and graph
analytics to understand demand, resourcing and performance
properties of service function. For a given orchestration, the
infrastructure and service function nodes remain largely static
whilst the deployment and state of endpoints varies
throughout the lifecycle of the service function chain
according to demand and policies. The time-series
measurements are acquired from existing monitoring
frameworks provided by individual sub-systems (e.g.,
switching elements) or by service functions themselves. The
aim is not to replace existing systems but provide a cross-layer
knowledge model that can drive QoS-orientated of both
content and service configuration.

IV. LIFECYCLE MANAGEMENT

In this section, we expand on the lifecycle management, as
realized by the platform orchestrator, SFEMC and CLMC
components presented in the previous section. For this, we
differentiate the management from the control tasks, as
outlined in the next sub-section. But before we do so, we
describe the lifecycle state that is being managed and
controlled.

A. Maintaining Lifecycle State

For each Service Function Endpoint, the platform maintains a
runtime lifecycle in the form of a state machine, depicted
Figure 4, with the following states:

 NON-PLACED: the SFE is known to the network but
there is no placement on any cluster. However, the

repository contains the container or VM image for
that SF.

 PLACED: the SFE is occupying disk space on the
targeted cluster but is shut down.

 BOOTED: the SFE is up and running but is not
attached to the communication process. A discovery
of such SFs will never return the “just” booted SFEs.

 CONNECTED: the SF Endpoint is fully in operation
mode, i.e., allows communication and is discoverable.

Hence, through the above states, the resource consumption of
each SFE can be controlled across the dimensions of storage,
compute and communication resources. As we will describe
in the next two sub-sections, the SFE state is set up as a result
of the management actions, while being controlled over time
via policies that are defined in the deployment instructions.

B. Management

1) Service Function Decomposition and Packaging
Initially a Service Function Chain is based on micro services
decomposed into service elements, ensuring fine granularity
in service design needed to allow for service functions to be
intelligently deployed on the most appropriate computing
resource (e.g., geographically). Each service function is
packaged as a container or VM image including installation
and setup of all required software and platform specific
management services. Finally, the service function packages
are published into a repository accessible to the platform and
supporting runtime discovery during service provisioning.

2) Service Function Chain Specification
The SFC is specified with a TOSCA template. The

Platform works with a more specified node and policy type
definition to leverage the platform’s features. The template is
labelled with service function chain identifier. All SFs are
described as nodes within the SFC with named identifiers
(FQDN) to be addressed when the instances of that SF are
deployed. Via the policies, the specification defines how, and
which SFEs will be deployed and on which location (cluster)
and in which lifecycle state.

3) Orchestration
The orchestration instantiates an SFC through the

deployment of SFs according to the TOSCA template
specification. The specification is parsed for syntactic and
semantic validation so the SFC can be processed to
manageable logical objects, which in turn are forwarded to the
SFEMC for the actual endpoint placement and control.
Resources are then allocated via the given policies defined in
the template, i.e., the SFEMC performs a validity check of
possible resource requirement and places the listed Service
Functions accordingly on each of the named clusters. Service
Function packages are distributed to each cluster from the
platform repository where they are cached. Finally, each
Service Function Endpoint is instantiated to the lifecycle state
within the initial policy.

Figure 4: Lifecycle State Machine of an SFE

C. Control

1) Bootstrapping of SFE with platform information
When an SF Endpoint enters the CONNECTED state, the

endpoint’s WhoAmI-service receives relevant platform and
endpoint information. The information is available in the
instance’s runtime environment. Each SF has a WhoAmI-
service installed to discover runtime context from the
platform; including the Service Function Chain, Service
Function Chain Instance, Cluster, Service Function IDs, and
Endpoint IDs. Much of this data is automatically used by the
monitoring agent to contextualise the monitoring data to feed
the CLMC. For the service developer, the WhoAmI-API is of
importance if there are multiple service functions in the
service function chain; as the information is used by one SF to
know the FQDN of another SF to communicate.

2) Monitoring the SFE
Alert trigger events are defined to indicate certain states of

the deployed service and/or chain. Each alert specification
includes an eventType that refers to the process used to create
the alert. This includes how data is processed and the
conditions under which the alert is triggered, for example,
threshold, relative or deadman conditions. A set of
configuration defines the conditions for triggering an alert that
includes the metric and threshold for the critical value
compared to the measured. If the comparable value hits the
threshold, an alert is triggered. A relative event type is an alert
that computes the difference between the current aggregated
value of a metric and the aggregated value reported a given
period ago. Finally, the deadman event type can be configured
to alert if there are less points been reported in the given period
as expected.

The time series analytics are extended towards the concept
of temporal graphs allowing system properties to be analysed
through network-aware topological structures of
infrastructure, endpoints, service functions and service
function chains. Graphs are created dynamically to support
specific analytics and queries over the system properties.
However, the model of the infrastructure properties is
consistent. The properties of specific SF Endpoints vary
depending on the type of service, although the common KPI
taxonomy allows for general abstractions, aggregation and
normalisations can be defined (e.g., Response Time).

Figure 5 shows the process of graph building and
analytics. The process is initialised to build the initial graph
from the infrastructure and media service topologies, along
with configuring the continuous queries to acquire, aggregate
and normalise the desired SF Endpoint properties over a
specified time-period. The continuous queries execute
periodically to add new nodes to the graph representing state

of a SF Endpoint over the period. The graphs are created
automatically from the measurement context data reported by
the monitoring agents. A subsequent graph query is executed
continuously to determine system measurements and stores
these as monitoring data in time-series database for
visualisation or further higher-level analytics and event
triggers to control SFEs via the SFEMC.

V. DEPLOYMENT INSIGHTS

In the following, we want to present use-cases which rely
with diverse requirements on the platform.

A. Dev-Ops Pipeline for Experimenters

To allow a fast adoption of the key concepts of the
platform, a multi-stage pipeline has been developed which
allows application developers to develop and test their SFC at
each stage of the development. The Dev-Ops tool chain
depicted in Figure 6 fosters a smooth transitioning of the
technology readiness early technology development to
technology demonstration in a suitable environment.

The development and packaging of service functions is
conducted outside of any platform deployment. Once the SFs
have been finished (and tested on localhost) they can be
packaged up to be given to the orchestrater of any deployed
platform. The next step is the sandbucket. It is a Virtual
Appliance containing the platform (without CLMC) to be
deployed in the experimenter’s infrastructure using VIMs
such as VirtualBox or VMware. The objective of the
sandbucket is to allow experimenters to test TOSCA templates
and their SFC with the focus on the interaction among SFs.

1) Sandpit
The Sandpit is a fully virtualised environment, offering a

one-tier-edge-computing-platform with four locations to test
entire SFCs at a larger scale. Each location allows
experimenters to deploy SFs and test the entire chain against
the platform using one emulated UE per location. In contrast
to the sandbucket, the sandpit also includes the CLMC and
sufficient capacity to test resource and alert descriptors.

2) Replication Sites
Once the SFC has been successfully tested in the sandpit

experimenters move to the city deployment of the platform
which offers the abilities to conduct KPI-driven experiments
and trials with members of the public. The replication sites to
date are:

 Bristol: A hardware-based SDN switching fabric
utilising the cities fibre-network to interconnect two
edge locations in the city and the main data centre in

Figure 5: Graph Building and Analytics

Figure 6: Pipeline to Deploy A Service Function Chain

the University. Experimenters have eight locations in
total across the city where SFs can be deployed right
at the far edge of the network covering attractive
public areas ideal for conducting trials.

 Barcelona: A deployment at the heart of the city with
four locations along a street allowing experimenters
to design services including vehicular terminals. The
street deployment is complemented by a data centre
at the University interconnected by a fibre link.

Only with trials and KPI-driven experiments in cities
experimenters can provide an educated answer to key benefits
of the service-based platform, the deployment and of SFs at
the edge. This requires a thorough but agile enough pipeline
for designing, implementing, testing and verifying SFCs over
an innovative service-based delivery platform where the
pipeline controls testing costs at each stage of development.

B. Observed Platform Benefits

1) Deploying Edge-Services
From a network perspective, services are deployed as

close as possible to the client (excluding the terminal
perspective) where proximity is defined as the number of hops
from the client to the endpoint. Through the forwarding of user
packets via shortest path, the deployed edge service is used as
soon as the instance is available, instead of a more centralised
instance. The benefits include network cost reduction due to
lower network usage as service/content is front loaded to the
edge (whilst maintaining reachability from anywhere in the
network), reduction in start-up time for playout on user
terminals for, e.g., media services, and better reaction time due
to low-latency were latency stays comparable even when
client moves. These benefits, however, need to be balanced
against the compute and storage usage costs for placing SFE
in edge data centres.

2) Multicast Delivery of HTTP Responses
In [11], the authors outline the opportunistic multicast

delivery of content, e.g., for media services. Here responses to
quasi-concurrent (HTTP) requests are delivered using in a
single lightweight multicast transmission over the L2
customer network. The time period (which we call the
catchment interval) over which this process takes place can be
flexibly adapted on a per-service request basis, further
improving the opportunity for multicast delivery. The benefits
include network cost reduction due to reduced network usage
as video is (partially) multicast in segments of the network.
Furthermore, service costs are reduced due to reduced server
load as http request suppression when multicast occurs. The
work in [11] outlines the possible reductions for typical
customer access networks of national scale.

3) Service Indirection
The approach to service routing, utilized in our platform

and based on the methods described in [11], also lowers
latencies experiences in service indirection, i.e., the directing
of service request to the most suitable service instance. In
virtualized environments, such as the ones envisioned in edge
computing deployments and 5G control planes, such service
instances can be flexibly deployed through a lifecycle
management system, like the one employed in our platform
(see Section IV). Unlike approaches used in content delivery
networks (CDNs) that realize indirection through appropriate
DNS record configurations, the solutions in our platform
utilize publish-subscribe name registration (and therefore also
update) mechanisms. Through this, changes in service routing,

i.e., the indirection to a different service instance, can be kept
as low as 1ms in medium sized networks such as those found
at the edge of the network (including mobile networks), while
initial service lookups are comparable to initial DNS requests
for very fast private DNS resolver solution (in the order of
10ms for a lookup) [11].

4) Adaptive Resource Management
The business logic for placement and scaling is described

through alerts and provide an event-based approach change
the lifecycle state of a service function endpoints in response
to changes in performance or usage. These features allow
scaling, e.g. “scale up and down” service instances for the
needs of traditional cloud applications, but also the
geographical scaling across a possible distribution of service
instance in different data centres. The benefits here include
rapid response to changes of demand and load balancing
especially the spatial and temporal distribution of requests
needed to support optimal resourcing of localised services

C. Example Deployments

1) Control Plane Services for 5G Core Networks
As an example, deployment for the realization of 5G

control plane services, Control Plane Services (CPS) were
developed to show how an upcoming 5G core network can
utilize the service-based design and the capabilities of a
delivery platform, most notably service registration &
discovery, routing of services messages and failover
mechanisms.

For testing the core network aspects only, the access
network is left out and the initial requests are initiated from a
virtual terminal. Upon start of such terminal, it performs an
attachment to a network, followed by three user plane
Sessions (for enhanced mobile broadband, video, VoLTE),
finally detaching from the network again. For the realization
of this simple control plane scenario, each CPS SFE can
communicate with any other CPS SFE utilising the service
routing capabilities of the platform for HTTP services.

We also realized stateless CPS instances by maintaining a
network data service (NDS) for each service request. For
instance, the session management CPS checks for permission
from the NDS before requesting the respective policies from
the policy management CPS. The NDS is also used for
visualizing the transactions via a web interface, showing the
dynamic forwarding of requests to the always nearest service
function which were available. All CPS instances were set to
the CONNECTED state upon deploying, not utilizing the
dynamic lifecycle management outlined in Section IV.C.

We demonstrated this approach to implementing a fully
SBA-compliant 5G core network at the recent NGMN (Next
Generation Mobile Networks) exhibition in 2019 with Figure
7 showing the aforementioned web interface visualizing the
transactions.

2) Enhanced Slicing
As mentioned in Section III, our platform is deployed

within a single network slice within which services, e.g.,
control plane or media services, are being deployed. This
choice is mainly driven by our specific deployments and their
support for network slicing.

While we have considered deployments that span several
network slices, we have more specifically worked on
extensions to network slicing through a concept called ‘super
slice’. Here, resources are being pooled (and managed) within

a single slice. We foresee such slice being associated, by the
underlying infrastructure provider, to a specific use case rather
than a customer.

For instance, we consider a quota of resources being
assigned, let’s say to an enhanced mobile broadband (eMBB)
use case. Such quotas are being assigned across several use
case areas that the infrastructure provider intends to offer to
customer (others could be massive machine-type
communication). Within said use case quota, customers are
now assigned resources that they can use from the overall
resource pool. This assignment is the result of a business
relationship between the infrastructure provider and the
specific customer. For instance, a quota of 60% infra resource
(we focus here on the compute resources but can easily extend
this to the communication resources as well) for eMBB is now
assigned to customer X within the defined network slice for
eMBB, while 40% are being assigned to another customer.

The name-based routing being realized in the service
routing solutions of [11] and being used in our platform, now
allows for ‘pinning’ service requests of specific customers,
defined as service contexts and expressed through, e.g.,
subscriber IDs or mobile operator IDs. This pinning is
achieved through flexible context-specific sub-naming of
resources according to the assigned quota and chaining the
customer-specific service requests along those defined
contexts. The reactive (pub/sub-based) name registration and
update mechanism outlined in [11] is key to realizing such
pinning capability in a short timespan rather than relying on
DNS-based solutions. Ultimately, the shortest path forwarding
to the nearest (now context-dependent) service instance
ensure the adherence to the assigned quota, establishing a
‘sub-slice’ within the overall ‘super slice’ established for the
overall use case. Such lightweight mechanism for recursive
slicing is contrasted against customer-specific slices, reducing
scalability in terms of slicing overhead with expected setup
times being in the range of less than several hundreds of
milliseconds. We expect a more thorough analysis of this
approach in the context of recently started work in the NGMN
SBA working group, which has liaised with the 3GPP to put
forward solutions in this space.

3) Trials
The validation and evaluation of the architecture and

platform is conducted through over 20 trials that bring
together 5G infrastructure operators, service providers and
end-users to understand the full-stack assessment of
performance, feasibility and acceptance. The trial process

includes establishing 5G infrastructure including mobile edge
and hierarchical data centres within in real-life urban settings
and then provisioning a 5G infrastructure slice for platform
deployment to create a testbed for trials and experimentation.
Service providers then design micro services using service
design patterns constructed to deliver enhanced user
experience through platform features, and finally conduct
technical trials and user evaluation on the testbeds.

Replication sites have been established in Bristol and
Barcelona supporting real-life deployment in urban settings.
Each site offers a radio access network along with
hierarchically scaled computing clusters across a significant
area of the cities. The virtual infrastructure manager is based
on OpenStack and switches compliant with the OpenFlow 1.5
specification. Tenant slice specifications have been defined
describing the infrastructure topology and capacity, that have
then been used by an automated toolchain to provision
platform services and establish the testbeds themselves.

A series of trials driven have been conducted by service
providers in content rich industries seeking to improve user
experience and reduce cost of service delivery through
flexible placement and connection of services anywhere
within the network from the far edge to the distant cloud.
Trials have covered a broad range of scenarios such as content
mobility for highly mobile users, optimized asset distribution
for localized content in augmented reality applications and
games, localized broadcast including participatory models for
citizens and public broadcasters, and a variety of edge
processing scenarios to understand and control content locally
within highly distributed content production workflows that
include many publishers.

In all trials, service providers have needed to shift
paradigm from mobile cloud to mobile edge computing
through new deployment and scaling options, including
entirely localized services that do not rely on distant public
clouds. Micro-service design patterns have emerged for
mobile edge computing supporting enhanced user interaction
such as opportunistic multicast, synchronized playout, nearest
playout, proxy cache playout, content placement, application
function offloading and geographic scaling. Using the design
patterns the trials have demonstrated significant cost
reductions and enhancements to user experience. Firstly,
devops costs are reduced as services are now flexible, robust
and agile through the platform dynamically placing, booting
and connecting services in the network in response to demand
and endpoint/routing policies. Secondly, network costs are
reduced due to reduced network usage when multicast

Figure 7: Control Plane Service Signaling WebGUI

delivery or content frontloading in segments of the network,
whilst server costs are reduced through dynamic replication of
content within the network and reduced server usage as http
request suppression when multicast occurs. Finally, user
experience is improved through reduction in start-up time for
playout, battery life can be increased by offloading functions
to the network, reaction time to latency changes is improved,
latency stays comparable even when client moves between
access points, whilst content is still reachable from anywhere
in the network.

VI. CONCLUSION

In this paper, we presented our platform solution as well
as first insights of deploying 5G services, both at the control
as well as user plane, in cloud-native environments. For this,
we outlined main concepts, components and lifecycle
management cycles necessary to realize our ideas. The
availability of the platform is essential for trial-based
engagement pursued in a number of public funded projects but
also driving the technological solutions into key
standardization efforts. Through this, we complement our
technology and platform development with evidence-based
experimentation which in turn amplifies our efforts in
standards and commercial exploitation with our platform
already been recognized as one of three possible deployment
options for upcoming 5G systems based on the most recent
Release 16 specification.

In our future work, we plan on extending this standard
basis through incorporating new ideas for resource
management, realizing our ‘enhanced slicing’, presented in
Section V.C.2) in control and user plane scenarios. Key to
such flexible resource management will be the study of more
complex policy decisions that will utilize the CLMC-based
analytics built into our platform, which in turn will enable
more complex edge computing scenarios with, e.g., migration
of service function endpoints due to changing conditions at
user and network level.

VII. ACKNOWLEDGEMENTS

This research is supported by the FLAME project,
European Commission grant H2020-ICT-2014-1/731677. We
acknowledge support of other FLAME consortium members.

REFERENCES

[1] 3GPP TR 23.501, “System architecture for the 5G
System (5GS), v16.0.0”; Rel. 16; Mar 2019.

[2] Fehling C, Leymann F, Retter R, Schupeck W,
Arbitter P.; “Cloud computing patterns:
fundamentals to design, build, and manage cloud
applications”; Springer Science & Business Media;
2014 Feb 18.

[3] Leymann CF, Retter R, Schupeck W, Arbitter P.;
“Cloud computing patterns”; Springer, Wien; doi.
2014;10(2014):978-3.

[4] Wilder B; “Cloud architecture patterns: using
microsoft azure”; O'Reilly Media, Inc.; Sep 2012.

[5] 3GPP TR 23.742, “Study on Enhancements to the
Service-Based Architecture, v16.0.0”; Rel. 16; Dec
2018.

[6] J. Halpern (Ed.), C. Pignataro (Ed.); "Service
Function Chaining (SFC) Architecture"; RFC
7665; https://tools.ietf.org/html/rfc7665; IETF;
Apr. 2015.

[7] ICT-FLAME Consortium; “D3.10: FLAME
Platform Architecture and Infrastructure
Specification V2”, https://www.ict-
flame.eu/deliverables/; Dec. 2018.

[8] OpenStack Foundation, OpenStack (Online,
available: https://www.openstack.org).

[9] Open Networking Foundation, OpenFlow (Online,
available: https://www.opennetworking.org).

[10] Organization for the Advancement of Structured
Information Standards, “OASIS Topology and
Orchestration Specification for Cloud Applications
(TOSCA) Version 1.1”; Jan 2018.

[11] “Service-based Routing at the Edge”, Dirk
Trossen, Sebastian Robitzsch, Scott Hergenhan;
Available on arxiv at
https://arxiv.org/abs/1907.01293, 2019.

