
This is a postprint version of the following published document:

Cobos, A., Guimaraes, C., de la Oliva, A. & Zabala, A. (9
november, 2021). OpenFlowMon: A Fully Distributed
Monitoring Framework for Virtualized Environments
[proceedings]. 2021 IEEE Conference on Network
Function Virtualization and Software Defined Networks
(NFV-SDN), Heraklion, Greece.

DOI: 10.1109/nfv-sdn53031.2021.9665014

 © 2021, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/nfv-sdn53031.2021.9665014

OpenFlowMon: A Fully Distributed Monitoring
Framework for Virtualized Environments

Antonio Cobos∗, Carlos Guimarães†, Antonio de la Oliva†, Aitor Zabala∗,
∗Telcaria Ideas S.L., Spain

†Universidad Carlos III de Madrid, Spain
Email: antonio.cobos@telcaria.com, cmagalha@pa.uc3m.es, aoliva@it.uc3m.es, aitor.zabala@telcaria.com

Abstract—Network monitoring allows a continuous assessment
on the health and performance of the network infrastructure.
With the significant change on how networks are deployed and
operated, mainly due to the advent of virtualization technologies,
alternative monitoring approaches are emerging to provide a
finer-grained flow monitoring to complement already existing
mechanisms and capabilities.

In this paper, we proposed and developed an Open-Source
Flow Monitoring Framework (OpenFlowMon), a fully distributed
monitoring framework implemented solely with open-source
solutions. This framework is used to assess the performance and
the overhead introduced by two different flow monitoring ap-
proaches: (i) switch level and (ii) compute node level monitoring.
Results show that monitoring at compute node level not only
reduces the overhead but also mitigates a potential complex post-
processing in east-to-west traffic.

I. INTRODUCTION

Computer networks are playing a key role in today’s society
by interconnecting people, services and all types of computer
devices. Thus, network monitoring is a critical process to
ensure that it performs optimally and that failures can be
predicted or quickly identified, such as performance issues,
bottlenecks, and security breaches. Different network compo-
nents (e.g., processes, switches, routers, access points, mid-
dleboxes, etc) at distinct network segments are continuously
monitored, empowering network managers with information
such as what is being transmitted in the network, how it
is working, and what it is happening. In doing so, network
managers can correctly apply network reconfigurations to
maintain and optimize the performance and overall availability
of the network, as well as, overcoming failures and security
breaches.

Given the importance of the networking asset to several
businesses, large companies bear large costs in proprietary
and dedicated monitoring hardware, as they own great part
of the network infrastructure that affects their businesses.
However, these are sometimes not in the reach of smaller
companies since they just do not own the infrastructure to
enforce monitoring by themselves. In turn, they have to rely
on infrastructure owner and on the exposed interfaces in order
to increase their profit margins and maintain the cost of their
products, thus not losing leverage against larger companies.

However, the application of virtualization technologies into
an ever-increasing set of services is changing the overall
stakeholders’ roles. Moreover, it is paving the way for new

network monitoring approaches that shift from traditional
availability monitoring. Altogether, accurate but still efficient
monitoring can reduce the management traffic transmitted
across the network, releasing bandwidth for the real data plane
traffic, while making the network more resilient to downtime
or failures. It is not only possible to have traditional monitoring
at switch level, namely at switches, routers and middleboxes
(purple boxes at Fig. 1), but also to have monitoring at the end
node, namely at compute node level (red boxes at Fig. 1).

Fig. 1: Hierarchy Tier 3 Data Center network topology

This is where resides the main contribution of this paper. An
open-source monitoring framework, dubbed OpenFlowMon,
is proposed as a fully distributed monitoring framework that
relies solely on open-source solutions for its implementation.
Such framework supports two monitoring approaches: (i) at the
switch level; and (ii) at the compute node level. These are then
experimentally evaluated in order to assess the advantages and
drawbacks of each approach. Such evaluation can contribute
to small and medium-sized enterprises (SMEs), universities,
laboratories, data centers, etc. to measure several Key Perfor-
mance Indicators (KPIs) effectively, with great accuracy, at
lower costs, and without requiring to own the entire network
infrastructure.

The remainder of this paper is organized as follows. Sec-
tion II surveys the components of a monitoring tool, identi-
fying available open-source solutions. Section III depicts the
implemented open-source monitoring framework (i.e., Open-
FlowMon), which is being leveraged for the experimental
analysis in Section IV. Finally, Section V concludes this work,
identifying the main applications and exploitation of each
network monitoring approach.

1

II. FLOW MONITORING COMPONENTS

For several years, network monitoring has been a focus
for research, mostly targeting the overall health of a network
infrastructure and the detection of problems. As a result,
Simple Network Management Protocol (SNMP) [1] become
one of the de-facto network monitoring protocols, providing
a common mechanism for network devices (such as, routers,
switches, servers, firewalls, wireless access points, etc) to relay
management information to a centralized entity (i.e., SNMP
manager).

However, the network infrastructures have increased in
size and complexity, far beyond the infrastructure availability
capabilities provided by SNMP. Flow monitoring appears as
a new category of network monitoring that provides a finer-
grained understanding on the traffic structure traversing the
network. Its components are depicted in Figure 2 and are
categorized as follows:

1) Flow exporter: aggregates packets into flows and ex-
ports the corresponding flow data towards one or more
flow collectors.

2) Flow information export protocol: transports the flow
information between a flow exporter and a flow collector.

3) Flow collector: receives, stores, and pre-processes flow
data received from a flow exporter.

4) Analysis applications: analyze received flow data in the
context of a certain application. For example, intrusion
detection or traffic profiling applications.

D
at

a
Pl

an
e

M
an

ag
em

en
t

Pl
an

e

Network Infrastructure

Flow
exporter

Flow
collector

Flow information
export protocol

Analysis
applications

Fig. 2: Flow Monitoring Components

A. Flow Exporter

A flow exporter aggregates packets into flows and exports
the corresponding flow data towards one or more flow col-
lectors. It can be categorized with respect to where it is
running: (i) for switch monitoring; or (ii) for compute nodes
monitoring.

1) Flow Exporter for Switch Monitoring: Typically, com-
mercial hardware switches provide their own proprietary ex-
porters, making use of data interfaces only available for
their manufacturer solution. As such, the usage of generic
flow exporters is limited, since the data plane cannot be
directly monitored, being only possible to get some aggregated
metrics provided by the management interfaces of the switch.
Therefore, a common approach to fine-grain monitoring is
to perform port mirroring. This is the most extended and
standard way to export traffic that passes through a switch.
In doing so, all network packets (possibly filtered by some
criteria) passing through a given switch port are copied and
sent to a network monitoring application running somewhere
in the network. This workaround can be used for most of the
switches, being simple to set up and easy to use. However,
since this mechanism relies on the replication of packets, it
not only introduces additional overhead in the network and in
the switch itself but also might produce increased congestion
on the network and increased jitter of packets. Consequently,
it affects the measurement accuracy [2].

On the other side, hardware switches based on open solu-
tions (such as, OpenWrt or DD-WRT) or software switches
(such as, Open vSwitch (OvS)) enable higher flexibility of
exporters. In particular, OvS is a multi-layer virtual switch,
designed to enable massive network automation through pro-
grammatic extension, while supporting standard management
interfaces and protocols (e.g., NetFlow, sFlow, IPFIX, RSPAN,
CLI, LACP, 802.1ag). Such solutions open space for more
flexible and powerful flow exporters, allowing different metrics
to be defined and exported.

Although flow exporters for switch monitoring is complex
to be achieved, they provide inherent advantages such as a fast
configuration and more fine-grained monitoring.

2) Flow Exporter for Compute Nodes Monitoring: In the
same way aggregated data can be obtained from the switches
between the flows’ endpoints, monitoring metrics can also be
gathered at the endpoint itself, namely on the computing node
where the endpoint is running. Multiple exporters based on
pcap (an API for capturing network traffic) are baseline of
several solutions. Morever, as OvS can operate as a soft switch
running within the hypervisor, and even operate as the control
stack for switching silicon [3], OvS-compliant exporters can
also be applied into compute nodes. The following exporters
are already deployed in real scenarios:

• nProbe: captures network traffic and efficiently aggre-
gates it into flows. The program shows a limited memory
footprint (less than 2 MB of memory regardless of the
network size) and low CPU impact, enabling it to run on
constraint platforms.

• pmacct: gathers and aggregates IP traffic. Its operation is
based on the storage of local data in an in-memory table
which content can be retrieved by a client program via
a remote connection. It is compatible with the Berkeley
Packet Filters (BPF), thus compatible with a common
language used by several network tools, including pro-
tocol analyzers and packet sniffers, network monitors,

2

network intrusion detection systems, traffic-generators,
and network-testers.

Although exporting monitoring metrics at the compute
nodes requires more extensive configuration, it is easy to
be adapted to different usages and metrics. Moreover, this
solution allows filtering the flows before sending them to the
flow collector.

B. Flow Information Export Protocol

Flow exporters and flow collectors exchange flow data in-
formation through a flow information export protocol. Several
protocols have been implemented in the recent years, being
presented the most commonly deployed below.

1) Netflow [4]: Netflow, developed by Cisco Systems to
collect information about IP traffic, has become an industry
standard for network traffic monitoring and it is currently
supported by various platforms. In addition to Cisco IOS
and NXOS, it is also supported by network devices from
other manufacturers such as Juniper and Enterasys Switches,
and operating systems such as Linux, FreeBSD, NetBSD
and OpenBSD. It works in a push mode, sending flow data
from a cache to a flow collector. Finally, NetFlow protocol
is encapsulated in either SCTP or UDP protocols at the
transport layer. While SCTP protocol is used when congestion
awareness and reliability mechanisms are required, whenever
such mechanisms are not required UDP can be used instead
in a best-effort fashion.

2) IPFIX [5]: Internet Protocol Flow Information Export
(IPFIX) is defined in RFC 5153 [6]. The IPFIX protocol
defines how IP flow information is formatted and transferred
from a flow exporter to a flow collector. It defines a flow
data as any number of packets sharing a number of properties
and observed in a specific time slot. Cisco NetFlow Version 9
was the basis for IPFIX. The difference between them is that
the actual format of flows in IPFIX messages is to a great
extent up to the sender. IPFIX introduces the makeup of these
messages to the receiver with the help of special templates.
The sender is also free to use user-defined data types in its
messages, so the protocol is freely extensible and can adapt
to different scenarios.

It implements a push-based communication model, being
encapsulated in SCTP, TCP or UDP. Nevertheless, it defines
SCTP as the preferable transport protocol.

3) sFlow [7]: sFlow, short for “sampled flow” and cur-
rently in version 5, is an industry-standard for packet export
at Layer 2 (i.e., Data Link Layer). It exports truncated packets
and interface counters, which are defined as a flow samples
and counter samples, respectively. sFlow provides two types
of sampling: (i) random sampling of packets; and (ii) time-
based sampling of counters. In both cases, flow data and
counter samples are sent over UDP by the flow exporter to
the flow collector. Although it does not significantly affect the
accuracy of the measurements, it affects the fidelity of the data,
since no reliability or acknowledgments are enforced within
the protocol.

C. Flow Collectors
The flow collector is responsible for the reception, storage,

and pre-processing of flow data issued by the flow exporters.
A summary of the main characteristics of a flow collector is
presented in Table I.

1) IPFIXcol2 [8]: IPFIXcol2 is a flexible, high-
performance flow collector designed to be extensible by
plugins. It has a parallelized design for high-performance,
supports bidirectional flows, structured data types (i.e., lists),
and company-specific information elements (Cisco, Netscaler,
etc.). Its design is not modular itself, but it supports extensions
by means of plugins (input, intermediate, and output) which
enables IPFIX over TCP or UDP, anonymized IP addresses,
or conversion of flow data to JSON before their storage.
IPFIXcol2 is based on flow data storage library (libfds) [9]
that provides functions for IPFIX parsing and manipulation.
Future releases are expected to allow reconfiguration, filtering,
and aggregating flows at runtime.

2) Goflow [10]: Goflow gathers network information from
different flow information export protocols, serializing them
in a protobuf format to be sent to e.g. Kafka using Sarama’s
library [11] or Prometheus. It implements a modular design,
allowing different transport (e.g., RabbitMQ instead of Kafka),
conversion to different formats (e.g., Cap’n Proto or Avro
instead of protobuf), decoding of different samples (e.g.,
MPLS in addition to IP), and different metrics system (e.g.,
use expvar instead of Prometheus). Furthermore, it provides
Docker support, but without integration with Kafka at its
default level. Although it is perfectly suitable to get the data
in IPFIX format over TCP, it is not compatible with flows
exported by OvS due to a IPFIX template format mismatch.

3) vFlow [12]: vFlow is a high-performance, scalable, and
reliable flow collector which uses Sarama’s library for the
communication with Kafka, and can be easily integrated with
Prometheus, InfluxDB, and Grafana. It implements modular
message queues, allowing NATS or NSQ to be used instead of
Kafka. In terms of deployment, Docker and Kubernetes can
be used in its default version.

4) Pmacct [13]: Pmacct implements a subset of multi-
purpose passive network monitoring tools. It can account, clas-
sify, aggregate, replicate, and export forwarding-plane data;
collect and correlate control-plane data via BGP and BMP;
collect and correlate RPKI data; and collect infrastructure
data via Streaming Telemetry. This set of tools are divided
into nfacct, pmacct, pmbgp, pmbmp, pmtelemetry, sfacct and
uacct, being tools dedicated to Netflow/IPFIX accounting,
libpcacp-based accounting, BGP collector, BMP collector,
streaming telemetry collector, sFlow accounting and Linux
Netlink NFLOG accounting, respectively. Each tool works
either as a standalone dockerized daemon, or as a thread
of execution for correlation purposes. Its modularity is also
compatible with a variety of plugins to integrate with MySQL,
PostgreSQL, SQLite, MongoDB, BerkeleyDB, RabbitMQ, and
Kafka. It implements its own flow exporter, therefore data
types defined in templates are well understood and interpreted
between flow exporter and flow collector. Furthermore, it

3

IPFIXcol2 Goflow vFlow Pmacct Manito KFlow
Language C/C++ Golang Golang C Python Kotling

License GNU GNU GNU GNU GNU GNU
Dockerizable No Yes Yes Yes No No

Flow information
port protocol NetFlow and IPFIX

Netflow,
IPFIX and

sFlow

Netflow,
IPFIX and

sFlow

Netflow,
IPFIX and

sFlow

Netflow, IPFIX,
sFlow, Traffic Flow

and Netstream
IPFIX

Flow aggregation Yes Yes Yes Yes Yes Yes
Serialization
frameworks protobuf Cap’n Proto,

Avro, protobuf protobuf Avro, protobuf Avro, protobuf Not specified

Modularity No Yes No Yes No No

Output format
FDS,

JSON,
IPFIX

JSON, XML JSON JSON, CSV
JSON,
CSV,

PLAIN
JSON

IPFIX template
work with

OvS exporter
No No No Yes No No

Implement their
own flow exporter No No No Yes No No

Modular design No Yes Yes Yes No No

OS supported Debian/Ubuntu
and RHEL/CentOS Linux Windows

and Linux

Linux, FreeBSD,
OpenBSD, NetBSD

and Solaris
Ubuntu Server Linux and MacOS

TABLE I: Flow collectors’ main characteristics.

has a wide compatible plugins which make it perfect for
heterogeneous environments.

5) Manito Networks Flow Analyzer [14]: The Manito
Networks Flow Analyzer is a collector and parser that stores
flows in Elasticsearch and visualizes them in Kibana. It can be
hosted in the cloud or in a on-premise data center, providing
immediate insight into network performance and behavior.
This flow collector presents a closed environment since it is
oriented to be integrated with ELK (Elasticsearch + Logstash +
Kibana) services. However, the lack of modularity makes this
flow collector a very inflexible solution to heterogeneous net-
work environments. Its most suitable applications comprises
concrete standard and non-customizable usages which require
precise data visualization and scalable solutions.

6) KFlow [15]: KFlow is a flow collector intended for
performance with low resources written in Kotlin. It takes care
of exporting the data to Kafka. It is inflexible in terms of
extensions and integration with other technologies. However,
it is a portable application that can run over any system
supporting JVM. It does not collect all the IPFIX fields defined
in RFC 7012 [16], permitting only the most general ones in a
compromise towards better performance.

D. Analysis Applications

Residing on top of the flow collectors, several analy-
sis applications are responsible for extracting meaningful
information from the raw monitoring data. Thus, analysis
applications can embody different purposes, ranging from
network security, anomaly detection, to performance assess-
ment, or just enhanced visualization. All these applications
require a continuously monitoring and analysis of network
metrics, which are implemented through a processing pipeline:
filtering, correlation, and visualization. These processes are
described as follows:

• Filtering: process responsible for remove duplicated
and/or irrelevant flows.

• Correlation: process responsible for extrapolate informa-
tion from a large number of events, pinpointing those with
especially importance for the application. This can be
accomplished by looking for and analyzing relationships
between events, or by applying big data and machine
learning techniques.

• Visualization: process responsible for presenting the
flows and other relevant information in a visual format,
including statistics on the traffic traversing the network.

III. OPEN-SOURCE FLOW MONITORING FRAMEWORK
(OPENFLOWMON)

Open-Source Flow Monitoring (OpenFlowMon) consists in
a fully distributed monitoring framework, characterized by
running only on open-source software. Thus, it does not re-
quire any licenses or proprietary hardware, being still capable
of scaling up to large business networks. An overview of the
platform is presented in Figure 3.

A. Implementation Choices

The components of the OpenFlowMon are described as
follows:

• Flow exporter: To export flow data from compute nodes,
OpenFlowMon uses pmacct as the open-source flow
exporter. In doing so, it can exploit the main features
of this software, including (i) each component works
as a standalone daemon (including a BGP daemon for
BGP multipath visibility) and as a thread for correlation
purposes (i.e., enriching NetFlow with BGP data); (ii) in-
tegration with third-party flow collectors; and (iii) storage
of data in different backends (e.g., relational DB, non-
SQL DB, flat files, etc.). In the case of flow exporters
deployed at the switches, OpenFlowMon have opted for

4

Fig. 3: Open-source monitoring testbed

OvS exporter due to its widely adoption in both hardware-
and software-based switches.

• Flow Information Export protocol: OpenFlowMon
leverages on IPFIX as the flow information export proto-
col, since it provides the best support within the remain-
ing components of the OpenFlowMon framework.

• Flow Collector: In order to deploy an homogeneous
scenario, pmacct flow collector has been chosen due to
its compatibility with OvS IPFIX exporter. This flow
collector is used regardless of the point where the flow ex-
porter is placed, and therefore it helps providing a single
platform compatible with both flow exporter placement
options.

• Data distribution: For that role, Apache Kafka has been
selected due to its scalability, reliability and performance.
Also, Kafka is highly extensible (there are as many ways
by which applications can connect and make use of
Kafka), including Docker support.

• Fast access memory: To provide access to data for
processing it in real time, a cache memory has been
deployed as part of the OpenFlowMon. Memcached is the
choice for this purpose because is simple, intuitive and
support multi-thread architecture (other solutions such as
Redis does not support this feature).

• Permanent storage of the data: A non-relational, dock-
erizable, and broadly-used database such as MongoDB
has been selected in order to permanently store the
monitoring data, accessible by a Flask server.

• Dashboard: OpenFlowMon implements a combined so-
lution by joining Prometheus to scrape the data and
Grafana to plot it.

Figure 3 depicts the flow exporters, namely OvS exporters
and pmacct flow exporters (represented as a black lens icon),
sending monitoring data via IPFIX (red and blue dotted lines)
to pmacct collector. When the monitoring flows arrive to the
collector, it is sent to the data distribution tool, namely Kafka
broker, to en-queue the events. Those events are consumed
and processed by a script and they are set into the fast
access memory and database, respectively Memcached and
MongoDB. Memcached is used for data that must to be quickly
consumed, while MongoDB is used for historical and persistent
data in order to create datasets for machine learning or to
analyse traffic in the long term. Data from Memcached is
posted in a Flask server and scrapped from it by a Prometheus
service and presented into a Grafana dashboard to obtain a
graphical representation.

B. Flow Monitoring Approaches

Two different flow monitoring approaches can be imple-
mented on top of OpenFlowMon, namely:

1) Monitoring at the switch level: This approach places
the flow exporter in the aggregation switches, as a
central point where the north-to-south and east-to-west
traffic converges. This setup is regarded as a hybrid
approach between the current market standard solution
(sampling the traffic at the core of the network) but
with the benefit of having visibility to the east-to-west
traffic. This solution is exemplified in Figure 4 in the
Aggregation row of switches.

2) Monitoring at the compute node level: This approach
places the flow exporter at the end nodes (source and/or
destination of the traffic). The placement of flow ex-
porters at the sources/sinks of traffic, exposes dissagre-
gated information, presenting a higher level of detail and
precision. This solution is exemplified in Figure 4 in the
compute node row.

IV. EXPERIMENTAL EVALUATION

This section experimentally compares the two monitoring
approaches supported by the proposed OpenFlowMon frame-
work, namely (i) at the switch level; and (ii) at the compute
node level.

A. Scenario and Experiment Description

The evaluation scenario, as depicted in Figure 4, represents
a typical Tier 3 hierarchical data center network where each
access switch provides network connectivity to compute nodes.

The network topology is emulated and virtualized via
Mininet, with each switch in the topology implemented
through Open vSwitch. The access switches provide connec-
tivity towards nine Kubernetes cluster nodes. In turn, each
Kubernetes cluster node is composed by four pods, of which
one is simulating the Internet and the rest are acting as
compute nodes in the scenario. Finally, all nodes have two
network interfaces - one for the management plane and another
for the data plane, therefore monitoring is carried out-of-band.

5

Fig. 4: Tier 3 Hierarchical Data Center Network

Each compute node is acting as a network traffic generator
or consumer. Namely, there are four nodes that generate traffic
(i.e., Node 1, Node 2, Node 5 and Node 6 in Figure 4), and
five nodes that consume that traffic (i.e., Node 0, Node 3,
Node 4, Node 7 and Node Internet in Figure 4) in a pairwise
fashion, making a total of 16 different flows. To do so, every
node generating traffic establishes a TCP session with all the
consumers using the iperf 1 tool, emulating not only north-
to-south traffic (i.e., between compute nodes to the Internet)
but also east-to-west traffic (i.e., between compute nodes).
Flow data are collected and sent to the flow collector by
flow exporters in both network switches and compute nodes.
The collected flow data are then filtered and processed by the
Analytics Application.

The performed experiments aim assessing the advantages
and disadvantages of both monitoring at the switch level and
monitoring at the compute node level.

B. Testbed Setup

The evaluation scenario is deployed over a single server
with the following specifications: 40 Intel(R) Xeon(R) CPUs
E5-2630 v4 @ 2.20GHz (2 Sockets), 128 GB of RAM and
8TB of disk. It hosts all the needed VMs as follows:

• Mininet VM: Ubuntu 16.04 with a 4.4.0-201-generic
kernel; It has 12 CPU(s), 12GB of RAM and 40GB of
disk.

• Kubernetes (K8) VMs: Ubuntu 16.04 with a 4.4.0-201-
generic kernel; It has 2 CPU(s), 4GB of RAM and 30GB
of disk.

• Monitoring VM: Ubuntu 16.04 with a 4.4.0-201-generic
kernel; It has 4 CPU(s), 4GB of RAM and 32GB of disk.

C. Experimental Results

Two experiments are carried out. In the first, bandwidth is
measured in the flow collector and later in the analysis appli-

1https://iperf.fr/

cation in order to compare the monitoring information when
visualized at them (Figure 5). In the second, the monitoring
traffic is analyzed in terms of overhead introduced (Table II).

Results are presented for both supported flow monitoring
approaches, namely when relying on monitoring at the switch
level or at the compute node level.

of packets
per second

Average packet
size (bits)

Bandwidth
(bps)

Compute nodes
level approach 0.120 3064 366.06

Switch
level approach 5.46 1120 6128.33

TABLE II: Overhead of each Monitoring Approach

Figure 5 presents the results used for comparison between
both approaches. As expected, the metrics obtained by both ap-
proaches are similar, except for the darker areas of Figure 5b.
These areas represent east-to-west traffic that goes through
more than one switch on its path and, therefore, the metrics
are obtained twice. This issue has to be solved by the analysis
application in the monitoring framework, which results are
presented in Figure 5c and Figure 5d.

Table II shows selected metrics related to the overhead in-
troduced by each monitoring solution. It is possible to observe
a higher amount of transmitted bytes, and consequently higher
bandwidth, of monitoring packets generated at the switch
compared with monitoring at the compute node. At compute
node level, a pre-filter can be configured to ignore determined
type of traffic, avoiding generating monitoring packets that are
not of interest. However, at switch level such configuration is
not possible, requiring post-processing to eliminate traffic not
relevant to the measured flow. Also, as shown in Table II, the
monitoring network suffers a higher saturation when deploying
the flow exporter at the switch.

From the deployment experience, the flow exporter at the
switch is constrained by the lack of powerful methods to

6

Nod
e 0

Nod
e 3

Nod
e 4

Nod
e 7

Nod
e 8

 (In
ter

ne
t)

Node 1

Node 2

Node 5

Node 6

12.71 12.55 12.72 12.57 12.5

12.34 12.69 12.34 12.4 12.61

12.78 12.79 12.78 12.37 12.55

12.52 12.63 12.77 12.66 12.76

Throughput (Mbps)

(a) via Compute @ pccmat

Nod
e 0

Nod
e 3

Nod
e 4

Nod
e 7

Nod
e 8

 (In
ter

ne
t)

Node 1

Node 2

Node 5

Node 6

12.67 12.64 25.81 25.52 12.74

12.34 12.62 25.66 25.68 12.66

24.84 25.83 12.93 12.87 12.83

25.49 25.18 12.97 12.84 12.67

Throughput (Mbps)

(b) via Switch @ pccmat

Nod
e 0

Nod
e 3

Nod
e 4

Nod
e 7

Nod
e 8

 (In
ter

ne
t)

Node 1

Node 2

Node 5

Node 6

12.71 12.55 12.72 12.57 12.5

12.57 12.69 12.34 12.4 12.69

12.66 12.79 12.78 12.37 12.55

12.52 12.63 12.77 12.66 12.76

Throughput (Mbps)

(c) via Compute @ Analysis App

Nod
e 0

Nod
e 3

Nod
e 4

Nod
e 7

Nod
e 8

 (In
ter

ne
t)

Node 1

Node 2

Node 5

Node 6

12.67 12.64 12.9 12.76 12.74

12.34 12.62 12.54 12.84 12.66

12.42 12.92 12.93 12.87 12.83

12.6 12.65 12.97 12.84 12.67

Throughput (Mbps)

(d) via Switch @ Analysis App

Fig. 5: Throughput Monitoring at Different Levels

export flows beyond port mirroring and the used OvS exporter.
The configuration of the latter is very simple albeit not very
powerful or flexible for its configuration. OvS exporter is
poorly optimized and not all collectors can interpret its flow
data because the IPFIX and NetFlow templates do not match
those that most collectors can process.

On the other hand, flow exporter at compute-nodes level,
presents a higher choice of flow exporter’s varieties usually
based on the well known pcap library. Their configuration is
very flexible and extensive and allows higher granularity by
pre-processing. The possibility of using the same software for
exporter-collector pair allows a better coupling between them
without format compatibility problems. However, it suffers
scalability problems since it requires configuring as many flow
exporters as end nodes.

V. CONCLUSIONS

The way networks are deployed and are operated have
significantly changed in the last decade, demanding new and
more fine-grained mechanisms to monitor and assess the status
of the network. In doing so, Open-Source Flow Monitoring
Framework (OpenFlowMon) is proposed as a fully distributed
monitoring framework, characterized by running only on
open-source software. Through the usage of the proposed
framework, a performance and overhead assessment is made
regarding both switch level and compute node level monitoring
(i.e., the placement of the flow exporters).

Results show that deploying flow exporters in the the
compute nodes allows a higher simplicity and flexibility as it
not only provides pre-processing but also reduces the overhead
introduced by the monitoring process. However, the solution
needs to scale to a higher number of compute nodes, which
typically are much higher than the switches in a datacenter.
Moreover, results also showed that in the case of deploy-
ing flow exporters at the switch a potential complex post-
processing, for east-to-west traffic may be required.

ACKNOWLEDGMENTS

This work has been (partially) funded by H2020 EU/TW
5G-DIVE (Grant 859881) and H2020 5Growth (Grant
856709).

REFERENCES

[1] W. Stallings. “SNMP and SNMPv2: the infrastructure
for network management”. In: IEEE Communications
Magazine 36.3 (1998), pp. 37–43. DOI: 10 .1109 /35 .
663326.

[2] Jakub Svoboda, Ibrahim Ghafir, Vaclav Prenosil, et al.
“Network monitoring approaches: An overview”. In: Int
J Adv Comput Netw Secur 5.2 (2015), pp. 88–93.

[3] Ben Pfaff et al. “The design and implementation of open
vswitch”. In: 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). 2015,
pp. 117–130.

[4] S Kamei and T Kimura. Cisco IOS netflow overview.
Whitepaper. 2006.

[5] Nevil Brownlee. “Flow-based measurement: IPFIX de-
velopment and deployment”. In: IEICE transactions on
communications 94.8 (2011), pp. 2190–2198.

[6] Lutz Mark et al. IP Flow Information Export (IPFIX)
Implementation Guidelines. RFC 5153. Apr. 2008.

[7] Elisa Jasinska. “sFlow–I can feel your traffic”. In: 23C3:
23rd Chaos Communication Congress. 2006.

[8] Lukas Hutak. “A New Generation of an IPFIX Col-
lector”. In: 7 th Prague Embedded Systems Workshop.
2019, p. 33.

[9] CESNET/libfds. URL: https : / / github . com / CESNET /
libfds (visited on 07/14/2021).

[10] cloudflare/goflow. URL: https://github.com/cloudflare/
goflow (visited on 07/14/2021).

[11] Shopify/sarama. URL: https : / / github . com / Shopify /
sarama (visited on 07/14/2021).

[12] EdgeCast/vflow. URL: https : / / github . com / EdgeCast /
vflow (visited on 07/14/2021).

[13] Paolo Lucente. “pmacct: steps forward interface coun-
ters”. In: Tech. Rep. (2008).

[14] Tyler Hart. tyjhart/flowanalyzer. URL: https : / / github.
com/tyjhart/flowanalyzer (visited on 07/14/2021).

[15] Boris Sukhinin. sukhinin/kflow. URL: https : / / github .
com/sukhinin/kflow (visited on 07/14/2021).

[16] Benoit Claise and Brian Trammell. Information model
for IP flow information export (IPFIX). Tech. rep. RFC
7012, September, 2013.

7

