
An Open RAN Framework for the Dynamic Control
of 5G Service Level Agreements
Eugenio Moro∗, Michele Polese‡, Antonio Capone∗, Tommaso Melodia‡

∗Department of Electronics, Information and Bioengineering, Polytechnic University of Milan, Italy
‡Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, U.S.A

∗{eugenio.moro, antonio.capone}@polimi.it, ‡{m.polese, t.melodia}@northeastern.edu

Abstract—The heterogeneity of use cases that next-generation
wireless systems need to support calls for flexible and pro-
grammable networks that can autonomously adapt to the applica-
tion requirements. Specifically, traffic flows that support critical
applications (e.g., vehicular control or safety communications) of-
ten come with a requirement in terms of guaranteed performance.
At the same time, others are more elastic and can adapt to the
resources made available by the network (e.g., video streaming).
To this end, the Open Radio Access Network (RAN) paradigm
is seen as an enabler of dynamic control and adaptation of the
protocol stack of 3rd Generation Partnership Project (3GPP)
networks in the 5th generation (5G) and beyond. Through its
embodiment in the O-RAN Alliance specifications, it introduces
the RAN Intelligent Controllers (RANs), which enable closed-
loop control, leveraging a rich set of RAN Key Performance
Measurements (KPMs) to build a representation of the network
and enforcing dynamic control through the configuration of
3GPP-defined stack parameters. In this paper, we leverage the
Open RAN closed-loop control capabilities to design, implement,
and evaluate multiple data-driven and dynamic Service Level
Agreement (SLA) enforcement policies, capable of adapting
the RAN semi-persistent scheduling patterns to match users’
requirements. To do so, we implement semi-persistent scheduling
capabilities in the OpenAirInterface (OAI) 5G stack, as well as an
easily extensible and customizable version of the Open RAN E2
interface that connects the OAI base stations to the near-real-time
RIC. We deploy and test our framework on Colosseum, a large-
scale hardware-in-the-loop channel emulator. Results confirm
the effectiveness of the proposed Open RAN-based solution in
managing SLA in near-real-time.

I. INTRODUCTION

As wireless networks improve toward ultra-high data rates,
low latency, and high reliability, they also become essential
to countless applications and use cases in our digital society.
In a trend that started with the 5th generation (5G) of mobile
networks and is continuing toward the 6th generation (6G), the
same air interface is used to serve extremely heterogeneous
traffic patterns, with dynamic constraints and traffic loads [1].
As an example, cellular Radio Access Networks (RANs) are
designed to support Enhanced Mobile Broadband (eMBB)
applications with an over-the-air frame structure, waveform,
and protocol stack tailored to long-running data-rate-hungry
streams (e.g., video streaming), but also more bursty traffic
with low latency constraints or Machine-type Communications

This paper was partially supported by the NSF under Grant CNS-2117814.

(MTC) communications, thanks to configurations of the frame
structure that favor short over-the-air bursts [2]. Similarly,
elastic applications can use any amount of resources made
available by the system, while other traffic flows require tight
Service Level Agreement (SLA) and performance guarantees.

However, while the capabilities to support different traffic
requirements are part of the technical specifications for 3GPP
NR, the RAN for 5G systems, the actual commercial imple-
mentations lack the capability to dynamically and optimally
switch between such configurations and to adapt to the actual
user patterns and demand on the fly. This does not allow for
efficient exploitation of the scarce spectrum resources available
to wireless networks, and leads to a mismatch between user
expectations and achievable performance [3]. A typical exam-
ple is represented by the significant body of literature on how
to optimally select waveform parameters [4], [5] and enforce
SLA constraints [6]–[8] in cellular systems, which however is
often not deployable in real scenarios and RAN stacks due to
their inflexibility and limited adaptability.

The recent paradigm shift introduced by the Open RAN
vision is implementing practical primitives for the dynamic
adaptation and optimization of the RAN configurations, en-
abling the adoption of more flexible solutions for the support
of different traffic requirements [9]. Specifically, Open RAN
introduces new components, the RAN Intelligent Controllers
(RANs), which interact with 3GPP-compliant base stations
through open interfaces, and have the capability to (i) receive
telemetry and Key Performance Measurements (KPMs) from
the RAN; (ii) infer the status of the system using data-driven
approaches; and (iii) apply new configurations to the radio
resource management process and adapt the RAN behav-
ior to the actual conditions on the ground [10]. The Open
RAN vision, and its embodiment in the O-RAN Alliance
specifications, include two RICs for near-real-time (10 ms—
1 s) and non-real-time (more than 1 s) closed-loop control,
implemented through xApps and rApps, respectively.

In this paper, we build on the Open RAN vision and identify
and compare two control strategies that an operator can use
to enforce SLA for non-elastic traffic, to be deployed as
custom control logic in the near-real-time RIC. The strategies
build on 3GPP- and O-RAN-compliant parameters that allow
specifying semi-persistent scheduling patterns in 5G base

ar
X

iv
:2

30
9.

07
50

8v
1

 [
cs

.N
I]

 1
4

Se
p

20
23

stations, and thus they do not require modifications in protocol
stacks that comply with technical specifications. Specifically,
the two SLA management solutions embody either a strict or a
soft SLA enforcement policy, which can be selected according
to the network operator objectives.

The second contribution of this paper is an implementa-
tion of the experimental infrastructure required to prototype,
test, and evaluate such control logic in an end-to-end, pro-
grammable framework for the design of custom Open RAN
closed-loop control. Specifically, we extend the OpenRAN
Gym platform, first introduced in [11], to connect the open-
source OpenAirInterface (OAI) 5G RAN implementation [12]
to a near-real-time RIC based on the O-RAN Software Com-
munity distribution [13]. This combines a state-of-the-art Open
RAN platform with the feature-rich and standard-compliant
5G OAI implementation. Our implementation of the E2 inter-
face connecting the RIC to the RAN is designed to be easily
extensible, thanks to an abstraction of its functionalities based
on human-readable data structures that can be automatically
compiled into serializable buffers. We also extend the OAI
stack to support the semi-persistent scheduling control and
integrate it with our E2 implementation.

Finally, we profile the performance of the combined infras-
tructure and control logic in Colosseum, the world’s largest
wireless network emulator with hardware in the loop. We show
how the entire framework, comprising the RAN nodes, the
near-RT RIC and the xApps, is highly effective at controlling
the SLA enforcement at the timescale of 100 ms.

The rest of the paper is organized as follows. Section II
presents an overview of the Open RAN (RAN) paradigm and
its associated architecture. Section III details the modifications
to OpenAirInterface (OAI), the xApp Software Development
Kit (SDK) and their integration in OpenRAN Gym as a com-
plete experimental framework. Section IV details the two SLA
policies and their implementation as O-RAN control micro-
services. Finally, Section V presents the numerical evaluation
of the entire framework on a large-scale channel emulator with
hardware in the loop.

II. OPEN RAN - A PRIMER

The Open RAN paradigm is implemented by the O-RAN
Alliance, an industry and academic consortium with more than
300 members, in the architecture shown in Fig. 1. In this, the
RAN Next Generation Node Bases (gNBs) are disaggregated
and split into multiple nodes with different functionalities
based on the layers of the protocol stack they host. The Service
Data Adaptation Protocol (SDAP), Packet Data Convergence
Protocol (PDCP), and Radio Resource Control (RRC), i.e.,
the higher layers for the User Plane (UP) and the Control
Plane (CP), are in the Central Unit (CU)-UP and CU-CP,
respectively. The Distributed Unit (DU) hosts three layers
that operate in a tightly synchronous fashion, the Radio Link
Control (RLC), the Medium Access Control (MAC), and the
higher part of the physical layer. Finally, the Radio Unit (RU)
features the lower part of the physical layer and the Radio
Frequency (RF) frontend. These nodes are connected to each

O1

Service Management and Orchestration Framework
Non-real-time RIC

A1

E2

O-DU

O-RU

E2

E1

F1-c F1-u

Open FH CUS- and M-Planes

O-Cloud

O2

O-eNB

Open FH M-Plane

X2, Xn,
NG

O-RAN Interfaces
3GPP Interfaces

O
ther C

U
s

E2

O-CU-CP
O-CU-UP

Near-real-time RIC

xApp xApp xApp
Near-RT
Control
Loop

Fig. 1: Logical view of the O-RAN architecture, adapted from [10]. The focus
is on the E2 interface, connecting the near-RT RIC and the RAN nodes for
the near-RT control applications discussed in this paper.

other using 3GPP-defined interfaces and the Open Fronthaul
interface from the O-RAN Alliance.

In addition, they are connected through the E2 and the O1
interfaces to the near-RT and non-RT RICs, respectively. These
intelligent controllers can onboard plug-and-play control logic
(i.e., xApps and rApps) to extend the functionalities of RAN
nodes with custom control loops. Specifically, the non-RT
RIC, embedded in the Service Management and Orchestration
(SMO), relies on rApps to perform policy and control updates
in non-real time, i.e., with a time granularity higher than 1
s. This is to dynamically update configurations in the RAN
nodes and control high-level policies and parameters, e.g.,
cell sleeping patterns in the CU/DU and beam codebooks at
the RU. The near-RT RIC, instead, uses xApps to implement
control loops that execute in less than 1 s, but more than 10
ms. The near-RT RIC closes the control loop to perform radio
resource management in the DU and CU. Consequently, it
operates on parameters that need to be updated with more
stringent deadlines compared to the non-RT control loop.

The near-RT RIC relies on the E2 interface: a logical point-
to-point interface running on top of SCTP. The E2 interface
features two components. The first is an application protocol,
or E2AP, which manages the connection between each DU/CU
(also known as E2 nodes) and the near-RT RIC, including
setup, monitoring, and teardown. The E2AP offers a set
of primitives (e.g., indication, report, and control messages)
assembled to build custom E2 service models, or E2SMs. The
E2SM is a component implemented on top of E2AP which
provides the semantics to the E2 interface, e.g., reporting of
KPMs from the RAN with E2SM KPM, or control of RAN
parameters with E2SM RAN Control (RC). Specifically, RC
has been designed to interact with protocol stack parameters
defined in 3GPP specifications, introducing an elegant solution
to decouple control from the actual RAN implementation.

III. A FRAMEWORK FOR 5G OPEN RAN CLOSED-LOOP
CONTROL

This section discusses how we implemented an easily
extensible E2 interface for the OAI 5G protocol stack and

O
penAirInterface

process

OAI ITTI Tasks (threads)

SDAP

PDCP

RLC

MAC

PHY

RF

RRC

5G NR gNB LayersE2 Agent – E2SM

Protobuf engine

KPM RC

Custom SM

Telemetry
Control
(APIs)

e2sim – E2AP

E2SM Buffers (socket)

Near-RT RIC

OpenRAN Gym

OpenRAN Gym

RIC E2
Term – E2AP

SCTP
ASN.1

xApps

RIC
Infrastructure

Fig. 2: Integration of the E2 interface in OAI.

a companion xApp SDK which leverages O-RAN-compliant
E2AP and custom E2SMs. Both are open-source and publicly
available,1 and enable design and testing the dynamic SLA
policies we propose and evaluate in this paper.

A. Integrating OpenRAN Gym and OpenAirInterface

OAI is an open-source project that provides the implemen-
tation of a 3rd Generation Partnership Project (3GPP) Release
15 NR RAN and 5G Core [12]. The RAN base stations can be
deployed on generic compute hardware and leverage software-
defined radios via multiple drivers, or O-RAN RUs with a
7.2x fronthaul implementation. Being open, programmable,
and easily extensible, OAI can be leveraged to implement and
test O-RAN closed-loop control in a 5G-compliant end-to-end
environment.

OpenRAN Gym represents the first publicly accessible plat-
form that features O-RAN-based data collection and control
frameworks for data-driven experimentation at scale [11]. In
particular, OpenRAN Gym frameworks package the entire
software chain required to deploy the O-RAN components
presented in Fig. 1, namely the base stations, the near-RT
RIC, and the xApps. The RIC is based on the O-RAN
Software Community (OSC) RIC implementation, which has
been adapted for deployment on a variety of open testbeds,
including Colosseum (Sec. V) and the Platforms for Advanced
Wireless Research (PAWR) testbeds COSMOS and POWDER.

Figure 2 illustrates how we designed and implemented the
integration between OAI and the OpenRAN Gym framework
through the E2 interface, enabling experiments with a 3GPP-
compliant, O-RAN-enabled 5G standalone (SA) deployment.
As discussed in Sec. II, the E2 interface is functionally
split into 2 sub-protocols: E2AP and E2SM. Similarly, our
custom E2 agent has been split into 2 components, according
to the principle of separation of responsibilities. The E2AP
component runs as a standalone application, and it is based
on E2AP libraries extracted from OSC E2 simulator library
(e2sim) [14]. This component manages the E2AP connection
lifecycle with the near-RT RIC. It is standard-compliant, i.e., it
encodes and decodes E2AP messages based on O-RAN ASN.1
definitions and an SCTP transport layer.

1Refer to the openrangym.com website for links to code and tutorials.

The component that provides E2SM functionalities is in-
tegrated into OAI codebase and runs as a task inside the
gNB process, similarly to the implementation in [15], [16].
Consequently, the E2 agent implementing the E2SM has direct
access to the gNB data structures and processes and can ef-
fectively perform data collection and apply control actions by
directly interacting with the variables that define the relevant
3GPP parameters to tune.

The two components run as independent processes in the
same machine (potentially providing a resilient E2 interface in
case of failures in the gNB), and they communicate through
UDP sockets. When the E2AP component receives an E2AP
message from the near-RT RIC, the E2SM payload is ex-
tracted, decoded according to the ASN.1 schema, and sent to
the OAI E2 agent. Here the E2SM payload is further decoded
and processed. Similarly, any E2SM payload produced by the
E2SM component in the gNB is sent to e2sim, which handles
E2AP encapsulation and message delivery.

In this architecture, the E2SM payload is a buffer of bytes
without additional specifications or requirements. Therefore,
it can be an O-RAN-compliant E2SM ASN.1-encoded pay-
load, a custom unstructured string, or—as we propose in this
paper—a protobuf buffer. Protobuf, or Protocol Buffers, is a
data serialization format developed by Google to efficiently
exchange structured data between different systems [17]. It
uses a language-agnostic schema to define the data structures,
which can then be compiled into specific implementations in
different programming languages (e.g., C for the OAI E2 agent
and Python for the xApp described in Sec. III-B). Compared
to ASN.1, protobuf data structures are more user-friendly to
extend, compile, and integrate into the code, making it a
practical tool for developing custom E2 service models for
research and testing.

B. A Python Framework for Flexible RAN Control xApps

To streamline and simplify the xApp development process,
we developed and made publicly available2 an xApp SDK
in Python, a popular programming language which is also
used in several state-of-the-art frameworks for data-driven
inference [18]. Figure 3 illustrates at a high level the structure
of the xApp and its SDK, where the xApp logic leverages
the SDK for operations related to data encoding/decoding and
interaction with the rest of the RIC platform.

We use the OSC Python xApp framework as a library to
wrap primitives for the communication with the other internal
RIC components, i.e., the E2 termination to the RAN nodes,
the RIC Message Router (RMR), which dispatches internal
messages across xApps and the RIC infrastructure, and the
Shared Data Layer (SDL), containing multiple data reposito-
ries with information on the E2 nodes (e.g., the RAN Network
Information Base (NIB) (NIB)). The xApp SDK wraps the
code required to interact with these components into functions
that the developer can easily embed in their xApp logic. Some
examples are shown in Fig. 3. The get_gnb_id_list()

2https://github.com/ANTLab-polimi/xapp-e2ap-py

openrangym.com
https://github.com/ANTLab-polimi/xapp-e2ap-py

SDL/RNIB

RMR

E2
Termination

Python + Protobuf
xApp SDK

xApp Logic
• Optimization
• Learning

• Classification
• Prediction
• Control

get_gnb_id_list()
get_queued_rx_msg()

e2ap_control_request()
decode/encode()

RIC
Infrastructure xApps

Fig. 3: Python framework for flexible xApp development.

Application Programming Interface (API) retrieves the list of
RAN nodes connected over E2, which can be either leveraged
to retrieve KPMs or as targets for the control and optimization;
get_queued_rx_msg() is a non-blocking method that
parses the queue of incoming E2 messages for the xApp; and
e2ap_control_request() sends a message to the E2
termination with a control request in its buffer.

In addition, as discussed in Sec. III-A, the xApp natively
embeds the APIs to create, encode, and decode messages
following the protobuf format. The same definition can be
added to the xApp and the E2 agent in the RAN and properly
compiled in the desired programming language.

For this paper, we implement a service model equivalent
to E2SM RC to control and optimize the semi-persistent
scheduling patterns in the gNB. Further details are provided
in Sec. IV, where we describe the optimization policies and
their enforcement through the RC-based service model.

IV. OPEN RAN CONTROL — SLA ENFORCEMENT
POLICIES AND CONTROL

This section describes the two SLA enforcement strate-
gies we implement on top of the Open RAN framework
described in Sec. III, leveraging the implementation of an
E2SM based on RC for Guaranteed Bitrate (GBR) control
in OAI (Sec. IV-A) and a data-driven optimization framework
implemented the SLA xApp (Sec. IV-B).

A. RC for GBR in OAI.

The SLA xApp leverages data collection and control prim-
itives to provide a guaranteed bitrate to the User Equipments
(UEs). The xApp needs information on the cell resource
utilization and the per-UE channel quality, and it needs to
inform the gNB MAC layer about how many resources should
be allocated to each UE. This is achieved through E2 service
models.

The O-RAN RC and KPM service models provide prim-
itives to query telemetry from the gNB. Specifically, RC
provides the Transport Block Size (TBS) information, namely
the bits that are exchanged between the gNB and each UE
in a Transmission Time Interval (TTI). This information can
be used in the xApp to estimate the UE MAC throughput
with extreme precision. In 5G NR, the gNB resources are
partitioned in Physical Resource Blocks (PRBs), i.e., the
minimum unit of spectrum and time resources that can be

allocated to UEs at each TTI. Baseides the TBS information
in RC, KPM exposes the PRB allocation information at the
UE level, which the xApp requires to know the gNB resource
distribution.

By combining the MAC throughput and PRB allocation
information, the xApp can compute the per-PRB throughput
for each UE. This measure is a proxy for the UE spectral
efficiency, and it can be used to inform the allocation decisions
behind any SLA management policy.

Once the GBR allocation decision is taken in the xApp
(with the policies discussed in Sec. IV-B), it must be enforced
in the gNB. To this end, we leverage the E2SM RC capabilities
of controlling the Semi-Persistent Scheduling (SPS) process.
In 5G NR, SPS is a mechanism that allows the gNB to
schedule parts of the resources on a fixed and persistent basis,
as opposed to the more traditional dynamic scheduler where
resources are granted based on traffic conditions. By properly
configuring SPS, the xApp can reserve the fixed resource
portion required by each UE to obtain the desired GBR.
Note that this is an NR-compliant feature, thus, by controlling
this with E2SM RC, it is possible to practically implement
dynamic GBR policies for SLA enforcement in 5G gNBs.

The OAI 5G MAC implementation does not support SPS,
neither it supports the necessary APIs to control it through RC.
As previously mentioned, we have implemented a lightweight
RC service model that exposes the required data collection and
control knobs into OAI. In particular, the PRB allocation and
TBS information are collected inside OAI MAC implementa-
tion by adding the required hooks in both the downlink and
uplink schedulers. Additionally, we provide SPS support in
OAI by modifying the aforementioned schedulers so that the
TBS of any UE can be fixed through our custom RC control
messages, at any time. This effectively results in a fixed per-
UE resource allocation, as one would have with SPS.

B. Dynamic SLA Enforcement Strategies

We leverage the dynamic closed-loop control framework
provided by O-RAN to design, implement, and evaluate two
SLA enforcement strategies that dynamically manage radio
resources with the goal of providing a guaranteed bitrate to
UEs and data flows that require it. Through the data collection
capabilities of the custom RC service model, the xApp can
enforce allocations for a GBR, as long as enough resources
are available. Whenever this is not true, the system cannot
support all the GBR requests, and the resources must be
managed according to specific resource contention resolution
policies to minimize the SLA violation. For a specific UE u,
we define its SLA violation as the difference vu between the
throughput SLAu requested as the guaranteed GBR value and
the experienced throughput puηu, with pu amount of allocated
PRBs and ηu the per-PRB throughput.

We propose and evaluate two policies. The first is a flexible
SLA enforcement (policy Soft). When resource contention
resolution is required, the xApp dynamically allocates the
available PRBs such that the overall sum of the per-UE

SLA violation vu is minimized. This policy can be expressed
through the following linear program:

min
∑
u∈U

vu, (1)∑
u∈U

pu ≤ C, (2)

vu ≥ SLAu − puηu ∀u ∈ U , (3)
vu, pu ≥ 0 ∀u ∈ U . (4)

Here U represents the set of GBR UEs associated with the
gNB, and vu,SLAu, pu, ηu are defined as above. Constraint (2)
limits the overall allocated PRBs to the maximum amount C
of PRBs available to the gNB.

The second policy is based on a more rigid GBR enforce-
ment (policy Strict). According to this policy, each UE u is as-
signed with a weight wu representing priority, economic value,
or other importance metrics. In case of resource contention,
the policy selects a subset of UEs to continue to serve with
GBR such that the overall weight (i.e., the sum of selected UEs
weights) is maximized. The UEs outside the optimal subset are
either given the remaining resources or disconnected from the
gNB. This policy can be mathematically expressed through
a knapsack formulation [19] using the previous notation, as
follows:

max
∑
u∈U

xuwu, (5)∑
u∈U

xucu ≤ C, (6)

xu ∈ {0, 1} ∀u ∈ U . (7)

Here xu is a binary variable indicating whether the UE is in-
side the GBR-enforced subset or not. Parameter cu represents
the gNB resources required to guarantee the SLA for UE u,
considered in the capacity constraint (6).

V. EXPERIMENTAL EVALUATION

This section describes the experimental setup and evaluation
of the dynamic SLA policies on Colosseum and OAI.

A. The Colosseum Testbed

We evaluated the solutions discussed in Sec. IV—together
with the xApp-based control framework for OAI—on Colos-
seum, the world’s largest wireless network emulator with
hardware-in-the-loop [20]. The Colosseum testbed provides
users with access to 128 pairs of servers and USRP X310
(collectively defined as Standard Radio Nodes (SRNs)). The
server can load an LXC container with a custom image
provided by the user (e.g., the OpenRAN Gym near-RT RIC,
the OAI gNB, and OAI UE). The radio is connected to
Colosseum’s Massive Channel Emulator (MCHEM), which
implements virtual RF scenarios with path loss, fading, and
interference by filtering the transmitted signal from the SRN
radio with the channel impulse response. MCHEM leverages
a bank of 64 Field Programmable Gate Arrays (FPGAs) and

can emulate channels with up to 4 multi path components and
pre-defined mobility for the nodes.

Colosseum has already been widely used to evaluate custom
control logic for Open RAN systems through OpenRAN Gym.
Here, we deploy a network with 6 nodes, including a 5G Core
Network (CN) node, one gNB, 3 UEs, and a near-RT RIC. The
RF scenario emulates a typical laboratory testing environment,
with a fixed pathloss among the RAN nodes. The gNB is
configured for transmitting at 3.6 GHz in band n78, with a
bandwidth of 40 MHz and numerology 1. iperf generates
full-buffer downlink TCP traffic. We limit our analysis to the
downlink only case. The xApp is configured to adjust the
resource allocation every 100 ms.

B. Results

We configure the three UEs with different GBR values, i.e.,
15 Mbps for UE1, 10 Mbps for UE2, and 5 Mbps for UE3. The
gNB can allocate 65 PRBs, which are not sufficient to satisfy
SLA for all the UEs. We sequentially generate full-buffer
traffic (starting from UE1, to UE2, and then UE3) and analyze
the system performance. During the experiments, the xApp
actively enforces a policy described in Sec. IV. Additionally,
we have included a baseline in which the xApp is inactive and
the UEs allocations follow a proportional fairness scheduler.
In every case, we measure the experienced throughput and the
SLA violation, i.e., the difference between the nominal GBR
value and the actual throughput.

We start by analyzing the system behaviour when policy
Soft is active (Fig. 4a). At the beginning of the experiment,
only UE3 is receiving traffic and its SLA is met. UE2 becomes
active at time t = 19 s, but the resources are still sufficient
to meet both SLAs. When UE1 becomes active, it requests
resources for 15 Mbps, exceeding the available PRBs and
activating the contention resolution mechanism of the xApp.
In this case, the optimization formulation of policy Soft selects
UE1 to obtain the full GBR, while UE2 and UE3 obtain less-
than-required resources, but the overall throughput degradation
is limited, following the goal of policy Soft (minimize the
overall SLA violation, Eq. (1)). This is also confirmed by
Fig. 5, which reports the per-UE and total SLA violation and
shows how policy Soft has a smaller overall violation with
respect to policy Strict and the baseline, at the expense of
higher per-UE violation for UE2 and UE3.

Similarly, for policy Strict (Fig. 4b), the xApp contention
resolution mechanism is required at time t = 21 s, when UE1
starts exchanging traffic. In this case, however, policy Strict
results in UE2 and UE3 being served their full GBR, while
the remaining gNB resources are left to UE1. This is expected
since all the UEs are set with the same weight and, thus,
the xApp simply maximizes the number of satisfied UEs. As
shown in Fig. 5, for policy Strict, most of the overall violation
comes from UE3, while UE1 and UE2 have a negligible level
of SLA violation.

Finally, we compare the two policies with the baseline,
where no bitrate is guaranteed, and the resources are allocated
according to proportional fairness scheduling (Fig. 4c). In this

0 20 40 60 80
0

5

10

15

20

Time t [s]

T
hr

ou
gh

pu
t

[M
bp

s]
UE1 UE2 UE3

(a) Policy Soft

0 10 20 30 40
0

5

10

15

20

Time t [s]

T
hr

ou
gh

pu
t

[M
bp

s]

UE1 UE2 UE3

(b) Policy Strict

0 20 40 60
0

5

10

15

20

Time t [s]

T
hr

ou
gh

pu
t

[M
bp

s]

UE1 UE2 UE3

(c) Porportional fairness (no SLA enforcement)

Fig. 4: Evolution of the per-UE throughput during different experiments, where traffic is started in sequence for UE3, UE2, and UE1.

Soft Strict Prop. Fairness
0

5

10

SL
A

V
io

la
tio

n
[M

bp
s]

UE1 UE2 UE3
Total

Fig. 5: SLA violation, i.e., difference between requested GBR and actual
measured throughput, per UE and total.

case, all the UEs obtain the same average throughput of around
7.5 Mbps. Consequently, UE1 and UE2 experience a high SLA
violation, while UE3 does not, as its throughput is higher than
the GBR value for most of the duration of the experiment.

Overall, these experiments show how the proposed frame-
work enables an effective implementation of near-RT dynamic
SLA management mechanisms, which can be directly inter-
faced with real 5G RAN deployments.

VI. CONCLUSIONS

This paper presented experimental capabilities that enable
data-driven O-RAN experimentation at scale with an open-
source 5G implementation based on OAI. This has been
packaged into the OpenRAN Gym framework, including an O-
RAN compatible extension of OAI, with an easily extensible
E2 agent, and an xApp SDK compatible with the OSC near-RT
RIC. We have leveraged on this framework to build a near-real-
time O-RAN-based dynamic GBR SLA management solution,
where two different resource contention resolution policies are
implemented as xApps. We have deployed the framework on
Colosseum, and results demonstrate the effectiveness of both
the proposed SLA management solution and the framework as
a whole. REFERENCES

[1] J. Navarro-Ortiz et al., “A Survey on 5G Usage Scenarios and Traffic
Models,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp.
905–929, Second quarter 2020.

[2] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The next generation
wireless access technology. Academic Press, 2020.

[3] Z. Zhang et al., “Dependent Misconfigurations in 5G/4.5 G Radio
Resource Control,” ACM CoNext 2023 (Proceedings of the ACM on
Networking (PACMNET)), 2023.

[4] N. Patriciello, S. Lagen, B. Bojovic, and L. Giupponi, “An E2E simulator
for 5G NR networks,” Simulation Modelling Practice and Theory,
vol. 96, no. 101933, November 2019.

[5] S.-Y. Lien et al., “5G New Radio: Waveform, Frame Structure, Multiple
Access, and Initial Access,” IEEE Communications Magazine, vol. 55,
no. 6, pp. 64–71, June 2017.

[6] Q. Liu, N. Choi, and T. Han, “Onslicing: Online end-to-end net-
work slicing with reinforcement learning,” in Proceedings of the 17th
International Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’21, 2021, p. 141–153.

[7] H.-T. Chien, Y.-D. Lin, C.-L. Lai, and C.-T. Wang, “End-to-End Slicing
With Optimized Communication and Computing Resource Allocation in
Multi-Tenant 5G Systems,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, pp. 2079–2091, Feb 2020.

[8] A. Abouaomar, A. Taik, A. Filali, and S. Cherkaoui, “Federated Deep
Reinforcement Learning for Open RAN Slicing in 6G Networks,” IEEE
Communications Magazine, vol. 61, no. 2, pp. 126–132, February 2023.

[9] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “In-
telligence and Learning in O-RAN for Data-driven NextG Cellular
Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27,
October 2021.

[10] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Communications Surveys & Tutorials, 2023.

[11] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “OpenRAN
Gym: AI/ML development, data collection, and testing for O-RAN on
PAWR platforms,” Computer Networks, vol. 220, p. 109502, 2023.

[12] F. Kaltenberger, A. P. Silva, A. Gosain, L. Wang, and T.-T. Nguyen,
“OpenAirInterface: Democratizing innovation in the 5G era,” Computer
Networks, no. 107284, May 2020.

[13] O-RAN Working Group 3, “O-RAN Near-RT RAN Intelligent Con-
troller Near-RT RIC Architecture 2.00,” O-RAN.WG3.RICARCH-
v02.00, March 2021.

[14] O.-R. Alliance. (2020) ”e2 simulator”. [Online]. Available: https:
//wiki.o-ran-sc.org/display/ORANSDK/E2+Simulator

[15] C.-C. Chen, M. Irazabal, C.-Y. Chang, A. Mohammadi, and N. Nikaein,
“FlexApp: Flexible and Low-Latency xApp Framework for RAN Intelli-
gent Controller,” in IEEE International Conference on Communications
(ICC), 2023.

[16] R. Schmidt, M. Irazabal, and N. Nikaein, “FlexRIC: An SDK for
Next-Generation SD-RANs,” in Proceedings of ACM CoNEXT, Virtual
Conference, December 2021.

[17] C. Currier, “Protocol buffers,” in Mobile Forensics–The File Format
Handbook: Common File Formats and File Systems Used in Mobile
Devices. Springer, 2022, pp. 223–260.

[18] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[19] H. M. Salkin and C. A. De Kluyver, “The knapsack problem: a survey,”
Naval Research Logistics Quarterly, vol. 22, no. 1, pp. 127–144, 1975.

[20] L. Bonati et al., “Colosseum: Large-Scale Wireless Experimentation
Through Hardware-in-the-Loop Network Emulation,” in Proceedings of
IEEE DySPAN, Virtual Conference, December 2021.

https://wiki.o-ran-sc.org/display/ORANSDK/E2+Simulator
https://wiki.o-ran-sc.org/display/ORANSDK/E2+Simulator
https://www.tensorflow.org/

	Introduction
	Open ran - A Primer
	A Framework for 5G Open ran Closed-Loop Control
	Integrating OpenRAN Gym and OpenAirInterface
	A Python Framework for Flexible RAN Control xApps

	Open ran Control — sla Enforcement Policies and Control
	rc for GBR in OAI.
	Dynamic sla Enforcement Strategies

	Experimental Evaluation
	The Colosseum Testbed
	Results

	Conclusions
	References

