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Abstract—This work describes an approximate DCT architec-
ture for the High Efficiency Video Coding (HEVC) standard.
Since the standard requires to support multiple block sizes,
architectures based on exact implementation require a relevant
amount of hardware resources, namely multipliers and adders.
This work aims to reduce the amount of hardware resources
while keeping the rate-distortion performance nearly optimal. To
achieve this goal, this work exploits an exact factorization of the
DCT of size N = 8, which is then extended to obtain approximate
DCTs of size N = 16 and N = 32. Simulation and implementation
results prove that the proposed approximate solution features a
complexity reduction with respect to exact one of more than 43%
with an average rate-distortion performance loss of 4.74% for
the worst-case (all-intra) configuration.

I. INTRODUCTION

Transform coding is an important feature of the High
Efficiency Video Coding (HEVC) standard [1], which allows
to improve coding efficiency by removing redundancy between
residuals after the intra/inter prediction stage. To achieve
higher coding efficiency, transform coding in HEVC has been
improved at the expense of much higher complexity with
respect to H.264/AVC [2]. Indeed the HEVC standard specifies
Discrete Cosine Transform (DCT) block sizes from 4 × 4
up to 32 × 32 [3]. Moreover, the rate-distortion optimization
leads to an increased complexity at the encoder side [4], which
puts severe throughput requirements on the design of the DCT
module of an HEVC encoder.

Therefore, several hardware architectures to compute the
variable-size DCT in HEVC have been proposed in the last
years. Dias et al. [5] exploited a 2D systolic array to implement
the DCT as matrix-vector multiplication, thus supporting mul-
tiple standards. On the other hand, Meher et al. [6] designed
an efficient integer DCT architecture for HEVC by relying
on the odd-even decomposition of the DCT matrix and by
reusing the core N /2-point DCT for the even computation
of the N -point DCT. Moreover, to achieve high throughput,
such an architecture includes and additional N /2-point DCT
unit, so that it computes 32/N N -point DCTs concurrently.
However, these approaches require a lot of hardware resources
as they implement exactly the DCT matrix specified by the
HEVC standard [3]. For this reason, approximation has been
introduced as a new paradigm to efficiently compute the
DCT in video coding applications, by trading complexity for
rate-distortion performance loss [7]. Several approximations
of the 8-point DCT have been derived by manipulating the
coefficients and by simplifying the DCT matrix. A collection
of these methods is available in [8]. To extend the transform
size from 8 to 32, Jridi et al. [9] proposed a generalized

algorithm and a reconfigurable hardware architecture. In par-
ticular, their solution relies on factorizing the DCT matrix
by using the odd-even decomposition and processing both
the even and the odd parts with the approximate 8-point
DCT proposed by Cintra and Bayer [10], which requires 22
additions only. However, this approach results in poor rate-
distortion performance because of the rough approximation of
the core 8-point DCT.

The aim of this work is to explore the design space
generated by the adoption of an exact low-complexity factor-
ization of the 8-point DCT to be used as core module in the
generalized algorithm proposed in [9]. Among the different
DCT factorizations described in [11], the one proposed by
Arai et al. [12] has been chosen in this work, because it
needs 5 multiplications and 29 additions only. Thus, this work
implements the 8-point Arai-based DCT and exploits it as the
core unit for the reconfigurable architecture proposed in [9].
This solution allows to investigate different trade-offs between
rate-distortion performance and hardware cost by changing the
number of bits used to represent the internal multiplication
constants.

The paper is organized as follows. Section II briefly
overviews the generalized DCT algorithm for HEVC proposed
in [9] and shows the proposed low-complexity fixed-point
DCT based on the Arai factorization [12]. The proposed
architecture is shown in Section III while Section IV shows
the results of the rate-distortion performance analysis and the
hardware details. Finally, Section V concludes the paper.

II. APPROXIMATE DCT ALGORITHM

This Section recalls the generalized algorithm proposed in
[9], which is used to approximate the 16-point and the 32-point
DCT by employing the inner core 8-point DCT. Moreover, the
DCT factorization proposed in [12] is briefly summarized.

A. Generalized DCT Algorithm

According to [11], the DCT matrix CN is defined as:

[CN ]i,j = εi

√
2

N
cos

π(2j + 1)i

2N
0 ≤ i, j ≤ N − 1, (1)

where ε0 = 1/
√

2 and εi = 1 for i > 0.
By applying the odd-even decomposition, the DCT matrix

in (1) can be rewritten in the following form:
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where CN
2

is the N /2-order DCT matrix and SN
2

is composed
of the first N /2 coefficients of the odd rows of

√
2 ·CN . The

PN matrix is the alternating permutation matrix defined by
ΦN , which assigns the φN (k)-th input to the k-th output:

ΦN =

(
k

φN (k)

)
k = 0, . . . , N − 1, (3)
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and BN is the input butterfly matrix, which is defined using
IN and JN , the N -order identity and anti-diagonal identity
matrices, respectively:
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2
JN

2

IN
2
−JN

2

]
. (5)

The DCT approximation proposed in [9] modifies (2) by
substituting the inner CN

2
and SN

2
matrices with the approx-

imated ĈN
2

:

ĈN =
1√
2
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2
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2
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2

ĈN
2

]
·BN . (6)

This recursion applies for N = 32 and 16, while for N = 8, Ĉ8

is the one proposed in [10]. This matrix has been generated
by rounding the original DCT matrix in (1) as Ĉ8 = b2 ·C8e,
thus showing null multiplicative complexity, since the only
constituent elements are 0, 1 or -1. Moreover, it is worth noting
that ĈN is orthogonalizable. Therefore, for each ĈN it is
possible to compute DN as:

DN =

√(
ĈN ×

(
ĈN

)T)−1

, (7)

which can be integrated in the quantization process of the
video encoder, thus not introducing any additional computation
when calculating the DCT.

B. Low-Complexity Arai-Based Factorization

The 8-point DCT factorization proposed by Arai et al.
[12] has been considered in this current work, because of
its very low complexity. It is derived by only computing
the real part of the first eight output coefficients of the 16-
point Discrete Fourier Transform (DFT) factorized using the
Winograd algorithm [13]. The DCT inputs x(k) are connected
to the DFT inputs X(k) according to the following mapping:

X(k) =

{
x(k) 0 ≤ k ≤ 7

x(15− k) 8 ≤ k ≤ 15
, (8)

while the output DCT coefficients y(n) are calculated by
applying the final normalization:

y(n) =
2 · εn · <[Y (n)]

cos nπ16
(9)

where Y (n) is the DFT output and ε0 = 1/
√

2 and εn = 1
for n > 0.

TABLE I
REAL AND INTEGER VALUES OF αi FOR Nq=8.

Coefficient Real value Integer Value Nq=8

α1, α3 cos 4π
16

181x = x+ (((3x << 4) − 3x) << 2)

3x = (x << 2) − x

α2 cos 2π
16

− cos 6π
16

138x = (5x+ (x << 6)) << 1

5x = x+ (x << 2)

α4 cos 2π
16

+ cos 6π
16

334x = ((8x− x) + (5x << 5)) << 1

5x = x+ (x << 2) 8x = x << 3

α5 cos 6π
16

97x = x+ (((x << 2) − x) << 5)

TABLE II
ACCURACY MEASURES AND ARITHMETIC COMPLEXITY OF DIFFERENT

8-POINT DCT APPROXIMATIONS.

Algorithm ε MSE Cg η Mult Add
Exact DCT 0 0 8,83 93,99 64 56

HM-16.12 [15] 0,0020 0,0009 8,83 93,82 22 28
CB-2011 [10] 1,7945 0,9800 8,18 87,42 0 22

Arai [12]

Nq=4 0,0529 0,0693 8,98 92,83

5 29
Nq=5 0,0137 0,0093 8,97 93,65
Nq=6 0,0025 0,0010 8,88 93,94
Nq=7 0,0030 0,0020 8,86 93,81
Nq=8 0,0006 0,0002 8,84 93,97

In this work, we propose an hardware-oriented implemen-
tation of the Arai-based DCT, where all the internal multipli-
cations have been substituted with add-and-shift blocks [14].
Indeed, the sinusoidal factors (αi) defined by the Winograd
algorithm (see Table I) have been scaled on Nq fractional
bits, thus generating a space of DCT approximations which
trade accuracy for hardware complexity. As it can be observed,
0 < αi < 2 for i = 1,. . . ,5, thus only one bit is required to
represent the integer part. In order to analyze the effectiveness
of each approximation, the matrix proximity metrics and the
transform-related measures defined in [8], [11], namely the
error energy (ε), the Mean Square Error (MSE), the transform
coding gain (Cg) and the transform efficiency (η) metrics have
been calculated and compared with the exact 8-point DCT,
the integer DCT used in HEVC [15] and the low complexity
approximation proposed in [10] and exploited in [9]. Table II
reports these accuracy measures and the arithmetic complexity
in terms of number of multiplications and additions as well. As
shown in the Table, using more than Nq = 4 bits to represent
the internal coefficients, the fixed-point DCT based on the Arai
factorization approximates very well the exact DCT and the
one employed in the reference software of the HEVC standard
[15]. Moreover, it is observed that the CB-2011, which was
adopted in [9], shows the minimum arithmetic complexity
while providing worse accuracy measures. The integer values
of the sinusoidal coefficients of the Arai-based DCT have
been calculated as bαi · 2Nqc. Table I lists the real and the
integer values of each coefficient, as well as the add-and-
shift implementation with Nq = 8 [14]. Moreover, it is worth
noting that the final normalization in (9) does not affect the
structure of the factorization. Therefore, it has been integrated
in the quantization step, thus not requiring any additional
multiplication in the transform stage.
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Fig. 1. Proposed 8-point DCT architecture. Dashed lines represent inputs to be subtracted.
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Fig. 2. Reconfigurable architecture for DCT of size N = 16 and 32, which
uses the core approximated 8-point DCT architecture [9].

III. PROPOSED ARCHITECTURE

The proposed 8-point DCT architecture based on the Arai
factorization is depicted in Fig. 1. It is composed of 29
adders/subtracters and 5 integer multipliers, which are fol-
lowed by right-shift of Nq bits. It is worth noting that Nq is
fixed, therefore the shift operation is implemented by simple
wiring, thus not incurring additional hardware overhead. Also,
since αi are constants, multipliers are simplified as adders and
wired shift operations (see Table I).

The adopted reconfigurable architecture which implements
the generalized algorithm proposed in [9] is reported in Fig.
2. This recursive structure applies for Ĉ32 and Ĉ16, where
the inner Ĉ8 is the 8-point DCT architecture of Fig. 1. By
adopting this strategy, the architecture is able to concurrently
process 32 samples which are grouped according with the
transform size. To this purpose, the architecture makes use
of two approximate N /2-point DCT units plus the additional
hardware of the N -point butterfly unit, which implements
BN , and of the banks of multiplexers used to reconfigure the
architecture to support variable-size computation. Specifically,
the first bank between the butterfly unit and the approximate
DCTs, is used to skip the computation of the butterflies when
sel=0, i.e. two N /2-point DCTs have to be executed in parallel.
When sel=1 the results produced by the butterfly unit become
the inputs of the two approximate N /2-point DCT cores. On

the other hand, the multiplexers at the output implement the
permutation defined by the PN matrix when sel=1; otherwise
they select the outputs of the two N /2-point DCTs without
reordering.

This architecture has been designed to work in a Folded
structure. As proposed in [6], the Folded implementation
reuses the one-dimensional DCT unit for computing the two-
dimensional DCT. Indeed, the DCT block is fed with 32
samples taken row-wise from the 32/N input data blocks of
size N × N in the first N cycles. Then, the output of the
DCT block is scaled according to [3] and stored row-wise in a
transposition buffer. During the following N cycles, successive
columns are read from the transposition buffer and fed to the
DCT unit, which produces the final output DCT coefficients.
The whole computation needs 2N clock cycles to compute
N×N results independently of the DCT size N , thus resulting
in a constant throughput of 16 samples/cycle. Since the DCT
block in Fig. 2 is used for both the row-wise and column-wise
computations, its inputs and outputs are represented with 16
bits, as specified in [3], while the internal signals have been
sized in order to avoid overflow.

IV. IMPLEMENTATION RESULTS

As observed in Section II, different Nq values define a
design space, which has been explored both in terms of coding
efficiency and hardware complexity. In order to assess the rate-
distortion performance of the modified encoder [16], the Arai-
based factorization of the DCT has been integrated into the
HEVC reference software model HM-16.12 [15]. Only the
forward transform of sizes from 8 to 32 has been changed,
whereas the 4-point DCT and the decoder implements the
original HEVC transform, as specified in [3]. Simulations have
been performed on all the sequences taken from classes A,
B, C, D, E and F according to three encoding configura-
tions, namely All-Intra, Low-Delay and Random-Access main.
Quantization parameters equal to 22, 27, 32 and 37 have been
used according to [17]. The computational resources were
provided by HPC@POLITO (http://www.hpc.polito.it). Table
III reports the Bjøntegaard Delta rate (BD-rate) metric [18],
averaged on all the sequences of the same class and measured



TABLE III
BD-RATE [%] COMPARISON OF THE PROPOSED DCT IN HEVC WITH

RESPECT TO THE WORK IN [9].

Class [9] Nq=4 Nq=5 Nq=6 Nq=7 Nq=8
All-Intra

A 14.82 9.89 9.61 9.59 9.52 9.53
B 9.71 6.89 6.76 6.74 6.70 6.70
C 3.77 2.19 2.10 2.10 2.07 2.06
D 3.76 2.15 2.07 2.06 2.03 2.02
E 7.72 5.59 5.50 5.49 5.46 5.45
F 2.15 1.39 1.31 1.31 1.27 1.27

All 7.07 4.74 4.61 4.60 4.56 4.56
Low-Delay

A - - - - - -
B 6.84 5.44 5.46 5.44 5.43 5.43
C 3.96 2.72 2.72 2.68 2.68 2.68
D 2.87 1.55 1.54 1.52 1.56 1.49
E 5.40 4.15 4.19 4.29 4.26 4.10
F 3.63 2.62 2.63 2.67 2.62 2.57

All 4.61 3.36 3.37 3.38 3.37 3.32
Random-Access

A 12.14 7.55 7.50 7.41 7.42 7.39
B 8.17 6.29 6.28 6.27 6.23 6.23
C 2.67 1.66 1.55 2.14 2.14 2.11
D 2.98 2.12 2.08 2.11 2.09 2.05
E - - - - - -
F 2.67 1.91 1.86 1.89 1.84 1.83

All 5.92 4.00 3.95 3.93 3.92 3.90

between curves obtained by encoding the video sequences with
the modified algorithm and with the original partial-butterfly
approach used in the HM. The table compares the proposed
solutions for 4 ≤ Nq ≤ 8 with the method employed in [9].
As expected, the coding efficiency degrades when lowering
the number of bits used to represent αi, thus showing an
average loss of about 4.74% in the worst-case configuration
(All-Intra). However, the rate-distortion loss is lower than
the one achieved in [9] independently of Nq . On the other
hand, Table IV lists the clock frequency (fCK), the gate count
and the power consumption (P ) of the proposed architectures
when synthesized using a 90-nm standard cell library. As
expected, architectures with small Nq achieve higher clock
frequencies and reduced power consumption and gate count,
thus showing similar hardware complexity as the work in [9]
while providing improved rate-distortion performance. When
used in the folded structure and synthesized for the same
frequency of [6] (fCK=187 MHz), the proposed architectures
show gate counts of 116.9 K and 107.7 K for Nq equal to 8
and 4, respectively. Thus, they feature a complexity reduction
ranging from 43% to 48% with respect to the implementation
of the HEVC non-approximated DCT (208 K) [6].

V. CONCLUSION

This paper has proposed a reconfigurable approximate DCT
architecture for HEVC, which exploits the Arai factorization
to reduce the hardware cost of the core 8-point DCT. The rate-
distortion analysis and the hardware synthesis results show that
the proposed implementations outperform the one presented in
[9] by providing similar complexity reduction with better rate-
distortion performance and reduce the complexity with respect
to the exact DCT in [6] at the cost of small quality loss.

TABLE IV
COMPARISON OF RECONFIGURABLE DCT ARCHITECTURES FOR HEVC.

Design fCK (MHz) Gates P (mW)
Meher et al. [6] 187 131.0 K -
Jridi et al. [9] 322 30.6 K 7.21

Proposed

Nq=4 324 29.2 K 6.63
Nq=5 318 30.8 K 6.91
Nq=6 314 33.5 K 8.07
Nq=7 300 34.5 K 7.90
Nq=8 285 38.4 K 8.53
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