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Abstract—In most robotic and biomedical applications, the
interest for real-time embedded systems with tactile ability has
been growing. For example in prosthetics, a dedicated portable
system is needed for developing wearable devices. The main
challenges for such systems are low latency, low power con-
sumption and reduced hardware complexity. In order to improve
hardware efficiency and reduce power consumption, approximate
computing techniques have been assessed. This strategy is suitable
for error-tolerant applications involving a large amount of data
to be processed, which perfectly fits tactile data processing.
This paper presents the first case study of applying Inexact
Speculative Adders (ISA) to the FPGA implementation of a
Coordinate Rotation Digital Computer (CORDIC) module within
the Machine Learning algorithm of a tactile data processing
system. The design has been synthesized and implemented on a
Xilinx ZYNQ-7000 ZC702 device. Preliminary results have shown
dynamic power reduction up to 40 % and delay latency reduction
up to 21 % compared to a conventional CORDIC module, at the
cost of a negligible average relative error of 0.049 % for sine and
0.003 % for cosine computations.

Keywords—Approximate computing, inexact speculative adder,
tactile data processing, FPGA, CORDIC.

I. INTRODUCTION

Restoring the sense of touch is one of the biggest challenges
in prosthetics. Commercial prostheses can be successfully
controlled using the electrical activity of muscles, but they
cannot provide sensing information when touching or being
touched: the somatosensory feedback from the prosthesis to the
patient is still missing [1, 2]. Closing this loop in the prosthesis
control would allow better control of grasping and manipulation.
In addition, it is hypothesized that this could enhance the utility
as well as improve the embodiment of such artificial system as
this tactile information could stimulate the psychological and
cognitive mechanisms related to body ownership [3].

In [4], an interface prototype integrating both distributed
sensing and stimulation has been presented as a new concept
towards providing prosthetic devices with tactile sensing capa-
bilities. This prototype system was comprised of an electronic
skin (e-skin) made of an array of piezoelectric polymer sensors
with an interface electronics and a stimulation system. This
global system, which was validated on Matlab and running
in real time on PC, was experimentally tested, evaluating
the capacity of the brain to correctly interpret the elicited
tactile sensations. In this case, low level information has been
extracted by only applying basic processing (i.e. spatial fusion
and time integration) to raw tactile data. Those encouraging
results represent a breakthrough towards the development of
an embedded and real-time system for tactile data processing
as required by prosthetics.

Nevertheless, the current challenge of such system relies
on the efficient implementation and power requirements of
the tactile information processing. Machine Learning (ML)
paradigms [5]-[10] have been used to retrieve information
about object contacts as they are powerful methods for tackling
clustering, regression or classification problems. Therefore, real-
time implementation of tactile data processing algorithms for
extracting high-level information (e.g. shapes, textures) has
been taken into account. A ML approach based on tensorial
kernel has been chosen as it has proven effectiveness in tactile
data processing [11] and as it can preserve the inherent tensorial
structure of the signals produced by the sensing array. However,
the creation of a real-time embedded data processing unit for
e-skin is yet far from achievement. This ML approach requires
the use of Singular Value Decomposition (SVD) algorithm,
which is a computationally intensive [12] process.

Many techniques and methods from circuit [13]-[16] to
system level [17]-[20] have recently emerged to lower hardware
complexity or energy consumption of embedded electronic
systems. A multitude of applications are intrinsically resilient
to approximations and errors. Hence, inexact circuits and
approximate computing have risen as one of the most promising
techniques to improve power efficiency of those systems as they
involve cognitive perceptions of humans, who can easily tolerate
indiscernibly variations about touching or being touched.

This work aims at implementing approximate circuit tech-
niques in the FPGA implementation of real-time tactile data pro-
cessing for e-skin application. It focuses on the implementation
of the Coordinate Rotation Digital Computer (CORDIC) [21]
algorithm, as it is used for several computing tasks such as
SVD, the most computationally expensive algorithm for ML
approaches that has ever been considered [11]. This first attempt
of approximate CORDIC implementation on FPGA uses Inexact
Speculative Adder (ISA) architectures [22], a circuit-level
technique optimized for high-speed arithmetic computations.
The paper is organized as follows: Sections II and III explain the
ISA architecture and CORDIC algorithm, section IV describes
the implementation and general architecture of the approximate
CORDIC and section V shows the results for a selection of
ISA configurations in the approximate CORDIC.

II. INEXACT SPECULATIVE ADDER

Additions are the most frequent arithmetic units used in
digital systems. Hence, many have tried to improve their speed
or power efficiency. For this purpose, some approximate adders
have been built using the concept of carry speculation [23].
This is feasible as carry chain propagation typically does
not cover the entire length of the adder, allowing to guess
relatively accurately an internal carry based on a small number



of preceding stages. As a result, the carry propagation chain,
critical path of the circuit, can be sliced in multiple shorter
paths executed in parallel, loosing up delay constraints over
the whole circuit and enabling performance beyond theoretical
bounds of exact adders.

Among numerous speculative adders [24], the Inexact
Speculative Adder (ISA) [22] is a general and optimum
architecture of speculative addition to improve speed, power ef-
ficiency and accuracy management thanks to a short speculative
path and to an adaptable double-direction error compensation
mechanism. This technique allows to precisely control mean
and maximum errors. It has also shown significant benefits
compared or combined with other low-power techniques [25]-
[27] or successfully integrated within bigger ASIC systems [28].
In the case of FPGA, the ISA could be particularly interesting
in order to overcome FPGA’s hardware limitations, e.g. fixed
number of Look-Up Tables (LUT) and interconnect constraints.

The general block schematic of the ISA is presented on
Fig. 1. It slices the carry chain in several speculative sub-
paths executed in parallel, each of them consisting of a carry
speculation block (SPEC), an addition block (ADD) and an
error compensation block (COMP) that overlaps on two ADD
blocks. For each of these paths, the functionalities of the blocks
are the following:

e The SPEC block produces a speculated internal carry
from a very short number of input bits. This is generally
done with a carry look-ahead unit. If a carry propagation
spans the entire SPEC block, it cannot predict exactly
the carry and a wrong guess could lead to a speculative
error. Since long propagation sequences are uncommon,
the rate of erroneous speculations decreases with larger
the SPEC block size.

e The ADD block computes a local sum from the carry
speculated in the SPEC block.

Without compensation, incorrect carry speculations could
cause disastrous errors. The COMP block detects those
incorrect speculations and compensates erroneous sum
either by trying to correct a fixed number of bits in the
current sum, or by balancing some bits in the preceding
sum to limit its relative arithmetic value.

The achieved adder arithmetic is shown on Fig. 2. Errors
only occur in the speculative paths on the right. The COMP
is triggered when the speculated carry differs from the carry-
out of the prior sub-adder. The COMP’s correction technique
implements an incrementer or decrementer on a fixed group of
LSBs of the current ADD block that fully corrects a missed

Ansci-Anax

AWZXrl»An%x
n-2x-17On-3x

4

Snx17Sn-2x Sw1-So

SHVZXVIESn%x

Fig. 1: Block schematic of the Inexact Speculative Adder (ISA) [22]. Every
speculative path comprises a carry speculation block (SPEC), an adder block
(ADD) and a double-direction error compensation block (COMP).
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Fig. 2: Example of arithmetic computation in an ISA with 4-bit ADD, 2-bit
SPEC, 1-bit COMP correction and 2-bit COMP reduction.

carry. This technique fully resolves most speculative errors,
as in the central path of Fig. 2 for which the sum’s LSB of
the has been corrected. In the cases where the stages above
correction bits are all in propagation modes, the sum bits cannot
be corrected as it would cause an internal overflow. Thus, the
COMP’s reduction flips the MSBs of the preceding sum in
order to reduce the arithmetic error as in the right path of Fig 2.

III. CORDIC ALGORITHM

The CORDIC [21] is an iterative and particularly well
parallelizable algorithm extensively used in digital signal pro-
cessing. It only contains iterative Shift-Add operations to cal-
culate a variety of functions, such as logarithmic, trigonometric
and hyperbolic functions. It can be operated in vectoring mode
or in rotation mode. The first produces a rotation of the input
vector to the x axis while recording the angle needed for that
rotation. The second, called rotation by Deprettere et. al [29],
makes a rotation of the input vector by a specified angle. Despite
the CORDIC can be operated in both modes, only the latter
has been considered in this work.

The CORDIC rotation-mode algorithm starts by initializing
the angle accumulator z with the requested rotation angle z.
Then, depending of the sign of the angle after every iteration, a
decision d; is taken in order to decrease the angle accumulator
magnitude. The equations in rotation mode are:

Ziy] = 2 — dyarctan(27)
Tipg = 1 — 27" d;y; ()
Yirr =Yi — 27" diz;
where (i) ¢ = {0, N — 1}, (ii) N the number of iterations, and
(iii) d; = —1 if z; < 0 and +1 otherwise;
which implies that:
x, = A, (xo €0S zg — Yo sin zo)

Y = A, (gco sin z¢ + o cos zo)
2, =0

A =[[Viie ™

where A, is a gain depending on the number of iterations.

@

IV. HARDWARE IMPLEMENTATION

The CORDIC algorithm architecture uses a single Shift-Add
operation for each component: x, y, and z. Each unit consists
of a MUX (2:1 multiplexer), a shift register and an adder-
subtractor. At the beginning of each CORDIC computation,
g, Yo and zy values are given as inputs to the MUX. Then
the computation proceeds using the values stored in Xreg,
Yreg and Zreg, respectively. In the ROM, the micro-rotation
angles arctan(27") are stored. The CORDIC algorithm is an
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Fig. 3: Architecture of the CORDIC in rotation mode.

iterative process varying according to the ROM input i. In the
considered case, the assigned values of the variable ¢ are from
0 to 29. To control the ROM addresses, the FSM tracks the
shifting distance and enables the multiplexer signals.

In order to apply ISA within the CORDIC architecture,
modifications have been needed. The new architecture is
illustrated in Fig. 3. As ISA normally works with unsigned
numbers, the adder-subtractors for x, y and z components have
been substituted with conventional adders. Adding a MUX that
considers the positive or the negative signal depending on a
control signal makes possible to construct a circuit performing
both addition and subtraction at the same time. This expedient
has been used to have the right working principles of the
CORDIC algorithm as both addition and subtraction operations
can occur depending on the sign of Zreg.

Since only the rotation mode of the CORDIC has been taken
into account, only the MUX selecting the angle accumulator z
or the initialization input value zy (the desired angle of rotation)
has been implemented. Fig. 3 shows the implementation
example underling the independence of zy and yy on the initial
CORDIC operations.

According to (1) and (2), the results of the rotation-mode
CORDIC computation are the cosine x, and sine y, of the
input angle zy. In particular, by setting:

Yyo=10 (3)
the equations in (2) are reduced to:

z, = A, cos 2

4
Yn = A, sin zg @)
and by setting:
1
Lo = /Tn 5

where A, = 0.6073, the rotation produces the unscaled cosine
and sine of z.

V. EXPERIMENTAL RESULTS

The proposed CORDIC architecture has been modeled in
VHDL and simulated using Xilinx Vivado (Fig. 3). It has then
been synthesized and implemented on a Xilinx ZYNQ-7000
ZC702 device.

This work aims at reducing resource utilization (e.g.
hardware complexity, power consumption and latency) and
analyzing computations accuracy of CORDIC and approximate
CORDIC architectures. Although it would be advantageous to
optimize the bigger number of speculative paths, this study
solely considers limited cases of speculative paths with regular
speculative structures (i.e. identical speculative paths). As
first validation of the use of speculative arithmetic within
an FPGA platform, over a hundred ISA architectures have
been considered and eight of them have been selected. Table I
lists the different ISA configurations of the approximate
CORDIC implementations. The parameters choice is based
on the considered CORDIC data width of 32 bit.

TABLE I: ISA configurations of the approximate CORDIC implementations

# ISA configuration details

1 2 paths, ADD = 16, SPEC = 0, COR = 6, RED = 0
2 2 paths, ADD = 16, SPEC = 1, COR = 2, RED =4
3 2 paths, ADD = 16, SPEC =2, COR = 1, RED = 3
4 2 paths, ADD = 16, SPEC = 3, COR = 0, RED =2
5 4 paths, ADD = 8, SPEC = 0, COR = 1, RED =2
6 4 paths, ADD = 8, SPEC = 1, COR = 3, RED =0
7 4 paths, ADD = 8, SPEC =2, COR =5, RED =0
8 4 paths, ADD = 8, SPEC = 3, COR = 0, RED = 0

In order to quantify the computation accuracy of the
approximate designs, two metrics have been considered as
in [22]. Both are built with the relative error (RE), defined as:

vapp rox — Ucorrect

RE = (6)

vcorrect

Where Ugpprox and veoprec; are the approximate and correct values
of CORDIC computation, respectively. The two metrics used
are the Root Mean Square (RMS) of the relative error (REgys),
which is a well-known accuracy estimator, and the maximum
relative error (REp4x), that defines the worst-case accuracy.

Fig. 4 shows the error characteristics and normalized costs
of each approximate CORDIC implementation for sine and
cosine outputs. Hardware costs, normalized to the conventional
FPGA design, are expressed in terms of dynamic power and
Power-Delay-Area Product (PDAP). Despite different REgys
and REy4x values between sine and cosine computations, the
error characteristics follow the same trends. The persistent gap
between cosine and sine errors is expected to come from the
stimuli angles, ranging from 0 to 45° as required by the tactile
data processing application.

Approximate circuits in the CORDIC design allow a
dynamic power consumption saving of up to 40% and a
general PDAP improvement of 58 % at the cost of low errors
with REgys of 0.049 % for sine and of 0.003 % for cosine
computations. Though, some designs as #5 and 6 display both
bad accuracy and hardware characteristics, showing that small
8-bit ADD combined with low SPEC size do not provide a
good enough addition for the convergence of the CORDIC.
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Fig. 4: Normalized costs and relative errors for both sine and cosine computa-
tions of the approximate CORDIC implementations.

Configurations with 16-bit ADD blocks have lower costs than
8-bit ones. This contradicts the intuitive ASIC results of [22],
it is due to the FPGA’s fixed LUT architecture. In effect, some
ISA architectures might fit better the LUT configurations and
interconnections to minimize their required number or delay.

VI. CONCLUSION

This paper has proposed a first attempt of approximate
Coordinate Rotation Digital Computer (CORDIC) implemen-
tation on FPGA using Inexact Speculative Adders (ISA). The
use of speculative arithmetic has allowed high performance
and efficiency improvements of the CORDIC module, with up
to 40 % power consumption reduction and up to 21 % delay
reduction, offering overall cost reduction of up to 58 %. The
approximate CORDIC has been characterized by its relative
arithmetic error, showing negligible average and maximal
errors, i.e. RMS relative errors being only 0.003 % for cosine
computations and 0.049 % for sine computations.

This first FPGA implementation of approximate CORDIC,
sub-task of the computationally expensive SVD required in
tactile data processing, represents a successful preliminary
investigation of approximate computing for real-time embed-
ded prosthetics. Future work will address the improvement
of larger Machine Learning algorithms required for tactile
data processing combined with advanced use of approximate
arithmetic circuits such as inexact speculative multipliers.
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