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Abstract—Location Based Services (LBS) have been gaining
a great deal of attention thanks to their capability to enhance
mobile services with location awareness. While outdoor local-
ization is almost universally achieved via Global Positioning
System (GPS), indoor localization is still challenging and a
general solution is yet to be found. In a vision where wearable
devices are taking over smartphones’ leading role as gateway to
the cyber world, new paradigms of interactive Human Machine
Interfaces (iHMI) are arising. Among others, one of the most
intriguing alternative iHMI is based on decoding the brain
signals. Combining EEG activity data and indoor localization
could dramatically improve the pervasiveness of the interaction
between human, devices and environment. For these reasons, we
propose a portable Hardware-Software platform that acquires
brain EEG signals using a dedicated board along with position
information from a cloud service. The positive results of the
preliminary analysis successfully show the correlation between
EEG signal and motion.

Understanding that this is one of the first intents to merge
these two sources of information, we intend to share publicly the
ever-growing dataset to allow other researchers to investigate
better the interaction between subjects and environments, and
to lay the foundation of new paradigms in HMI.

I. INTRODUCTION

Geolocation is the enabling technique for a wide spectrum
of Location-Based Services (LBS) involving, for instance,
navigation, transport, tourism, entertainment, healthcare and
augmented reality applications. While outdoor localization
is mostly solved by Global Positioning System (GPS) tech-
nology, indoor localization is still an open issue due to
heterogeneity of indoor environments and impracticality of
a common approach for all single cases [1]. In fact, GPS
is an unreliable technology for indoor positioning, since its
signal is not strong enough to be correctly received inside
buildings.

Several approaches for indoor localization have been pro-
posed. Some of them exploit existing communication infras-
tructures like WiFi [2] and FM radio signals [3], others rely
on ad-hoc infrastructures like ZigBee [4], Bluetooth [5], Ultra
Wide Band (UWB) [6] and Radio Frequency Identification
(RFID) [7]. Other systems do not need any kind of specific
infrastructure, since they compute the device position using
embedded sensors like magnetometer [8], accelerometer, and
gyroscope. Furthermore, several hybrid approaches have been
proposed, based on complementary technologies like inertial
sensors and WiFi [9] or Bluetooth and WiFi [10].

Together with indoor positioning, research on new
paradigms for mobile interactive Human-Machine Interfaces
(iHMI) has lately gained interest. Following this trend, in a
close future, the iHMI could potentially rely only on wearable
devices for an integrated and intuitive system that extracts
information exclusively from biomarkers [11].

Particularly, EEG signals carry sensitive information about
the user’s intentions, mood or physiological state. Previous
studies have demonstrated that brain activity can be spon-
taneously triggered by environmental stimuli (colors, visual
patterns, aroma, sound, etc.) [12] [13] and the triggered
emotions [14]. Similarly, evoked potential response can be
extracted when a particular visual or auditory stimuli is pre-
sented [15]. Thus, merging geolocation with EEG response
can serve as a tool to understand the brain activity during
daily tasks, that may empower the efficiency of future iHMI
to interpret the user’s intentions and functional state of mind.

As mentioned above, many research efforts are focused in
the fields of EEG signal processing and indoor positioning,
separately. However, to the best of our knowledge, only few
contributions aimed at merging the two information sources.
In [16], the authors propose a Brain-Machine Interface (BMI)
for controlling a wheelchair, where the BMI is based on the
P300 evoked potential, triggered though the oddball paradigm
technique. The authors also implemented an optical-based
tracking system to achieve autonomous navigation. In [17],
the author proposes a cloud based solution for patients
localization and monitoring in terms of voice pathology
detection. In this solution, EEG signal is acquired through
a deeply embedded system attached to the outer surface of
the patients’ vocal fold, while localization is performed via
GPS and WiFi.

Differently from the aforementioned works, our main goals
are to create a Hardware-Software platform to bind the EEG
response with the position of the subject, to understand
the challenges on the acquisition of EEG signals (artifacts,
external noise and hardware constrains) in real environments,
and to study the correlations between the brain activity and
the subject’s location or movements. To enhance the access
to the study of the existing correlations, we intend to make
the obtained dataset publicly available.

To achieve our goals, we designed a system to acquire
EEG signals from a moving subject while tracking his/her
position inside a building. Subject tracking is performed by
IndoorAtlas [18], a cloud based service that exploits smart-
phone embedded magnetometer for indoor positioning, while
EEG data is acquired by a dedicated hardware composed
by a 24-bit analog-to-digital (ADC), a microcontroller and a
Bluetooth module. The location and EEG data is then merged
using an ad-hoc Android application. The capability to extract
valid EEG patterns was tested by projecting visual stimuli
on screens along the walking path. Results show that the
Evoked Potentials (EP) can be successfully extracted and
correlated with position (after 10 seconds of stimulation),
with an average error of 2m. These promising results allow
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Fig. 1. System Architecture

us to collect an ever-growing dataset to investigate better the
interaction between subjects and environments, and to lay the
foundation of new paradigms in HMI.

II. MATERIAL AND METHODS

In this section we present the system designed to acquire
and combine EEG signals and positioning data, along with
the analysis performed on the obtained data.

The system is managed by an Android application running
on a smartphone that computes the location data and merges
it with the EEG raw data, acquired by a dedicated hardware
board. The board is composed by a 24-bit analog-to-digital
(ADC) converter, a Cortex-M4 microcontroller and a Blue-
tooth module for communication with the smartphone. The
smartphone obtains the positioning data using IndoorAtlas
SDK version 2.2.4, with an accuracy of 1 to 3m [18].
After a preliminary setup phase, where the cloud builds
a map of the magnetic field of the floorplan (fingerprint),
device localization is achieved by streaming to the cloud the
magnetometer values.

A. System architecture

The two main components of the system are the Android
application and the EEG acquisition board. The android ap-
plication acts as master for the system, handling the connec-
tions with the EEG acquisition system and the IndoorAtlas
cloud, and funnelling all data for synchronization and output
file generation.

1) Android Application:

The Android app architecture is depicted in Fig. 1. An
introductory activity welcomes the user and let him/her
choose a paired Bluetooth device, then the main activity
starts and immediately spawns the ServiceManager thread.
The ServiceManager in turn generates three services, each
one in charge of collecting a part of the dataset: the Bluetooth
Service is designed to connect with the paired Bluetooth
device and receive EEG data packets of 11 bytes at 500
Hz; the Compass Service is designed to compute orientation
through smartphone magnetometer and accelerometer; the
IndoorAtlas Service is designed to receive the device position
data from the IndoorAtlas cloud. Each service spawns a
dedicated thread for its long-running task, in order not to bur-
den the ServiceManager with high frequency callbacks. Each
dedicated thread stores the received data in an internal thread-
safe buffer, together with a timestamp. The ServiceManager
periodically accesses the three buffers and retrieves data in
the current time window using the timestamp information.
Then, the ServiceManager performs synchronization of the
data received from the three service sources and attaches,
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Fig. 2. EEG acquisition board

for each Bluetooth data entry, the respective device position
and orientation. Such merged and synchronized data is then
stored locally in a file for further offline processing.

2) EEG system Acquisition:

The EEG signals are acquired with the system implemen-
tation presented in Fig. 1[19] [20]. The EEG signals are
sampled using the 8-channel Texas Instrument ADS1298 low
power analog-to-digital converter, designed for the acquisi-
tion of biopotentials (ExG). Each channel has a resolution of
24 bits with a power consumption of 0.75 mW. The sampling
rate ranges from 250 Hz to 32 kHz. The current system uses
only three channels at 500 Hz, located at Oz, Pz and P4,
according to the 10-20 reference system [21], with a common
reference to Al (left earlobe) and GND connected to Fz.
Circular gel-based electrodes with a surface contact of 2 cm?
are used to transfer the signals from the skin to the ADC. All
the sampled data is then transmitted to a microcontroller via
SPI. The STMicroelectronics STM32F407 microcontroller
purveys the required computational power. It is based on an
ARM Cortex-M4 core running at 168 MHz, with floating
point unit, 192 kB of SRAM and 1 MB of non volatile
Flash memory. Finally, the raw data is transmitted to the
Android application using the Bluegiga WTI12 Bluetooth
Class 2 Module.

These components populate a 9 x 4.5cm 6-layer Printed
Circuit Board (PCB) as shown in Fig. 2!. The board’s power
supply is managed by a dedicated integrated circuit with an
internal switching voltage regulator and Low-dropout (LDO)
regulators.

B. Signal processing:

The recorded data is analyzed using initially a time-
frequency domain transformation. The spectrogram of the
signal is computed to visualize the position/frequency relation
over time. For this, the EEG data is down-sampled to 100Hz.
Fig. 3 is obtained using the spectrogram function (Matlab)
with window size of 100 samples and 50% overlap. It is
plotted in relation to the cartesian coordinates in m from a
corner of the corridor. The points where the position remains
unchanged reveal the moments where the subject is receiving
the visual stimulation (10 seconds approx). Since the quality
of the spectrogram is not sufficient to correctly quantify
the EPs, the sections containing the visual stimulation are
extracted for a thorough analysis. Given the time-locked
nature of the stimuli, signal averaging (on a given time
window) is used to increase the signal-to-noise ratio of the

The board size and weight can be optimized in a future implementation.
Current dimensions furnish reconfiguration flexibility during the tests.
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Fig. 3. Spectrogram of the EEG data and positions

segment. Subsequently, the window is analyzed using the
frequency tagging technique by average of the frequency
components of small chunks of the original signal.

C. Challenges working with the system.

The major challenge regarding the Android application is
data synchronization between services. In fact, there is no
practical way to determine via software the arrival time of
a Bluetooth packet with ms precision. The Bluetooth unit
of the smartphone stores locally the received packets and
delivers them to the Android Bluetooth adapter in batches.
The frequency of the batch delivery to the Android Bluetooth
adapter depends not only on the remote Bluetooth transmis-
sion frequency, but also on the internal implementation of
the two units. To overcome this problem, we devised an
algorithm to estimate the arrival time of one packet and then
we exploit the transmission frequency knowledge to update
the timestamp for each following packet. We omit further
details of the algorithm for the sake of conciseness.

Regarding the acquisition of the EEG signals, challenges
arise because of the different sources of noise. These are nor-
mally lessened by carrying out experimentation in carefully
controlled environments. Mainly, three sources of interfer-
ence are present during the recordings. The first corresponds
to the movement artifacts (MA), caused by the movement
of the electrode and/or the electrical changes due to en-
ergy equalization between the subject and the ground. The
second, the blink artifacts (BA), normally present in EEG
measurements, are generated by the movement of the eyes.
The third corresponds to the SOHz power line interference
(PLI). While recording on real-life scenarios, the location of
the electrodes plays an important role in reducing the effects
of the mentioned artifacts, but simultaneously, it can also
affect the amplitude of the studied signal. Since SSVEP are
mostly present at the right side of the occipital lobe [22]. The
use of three electrodes on this region balances complexity and
the likelihood of capturing the signal.

The reduction of artifacts is finally achieved after selecting
a proper electrode placement. Empirical experimentation was

TABLE 1
COMPARISON BETWEEN DIFFERENT ELECTRODE PLACEMENT

Conf | SNR (SSVEP) | PLIZ | BA? MA?
A 3.14 326 | 929 | 129.25
B 165 224 | 39.03 | 130.29
C 410 280 | 870 | 115.21

2Measured in pVrms

performed to quantify the PLI, BA and MA interference
in three different configurations. These are: GND and all
reference electrodes connected to Al (A), GND at Fz and
all references at connected to the Fpl (B) and GND at
Fz and all references connected to Al (C). Table I shows
the results of the experimentation, demonstrating that C
rejects successfully more noise than the other configurations,
notwithstanding that it does not have the best SNR.

III. EXPERIMENTAL RESULTS

The system described in the previous section is tested
on one healthy subject with no previous history of neural
diseases. The evaluation was performed using the hardware-
software implementation presented in section II-A. The board
is placed on the subject’s head, as shown in 1. The electrodes
are located at Oz, Pz and P4, following the 10-20 reference
system, while the reference electrode was placed at Fz.

The subject was asked to follow the predefined path as
indicated in Fig. 4. The visual stimulation is presented along
the walking path by two identical Full High-Definition (HD)
screens (157, 1920x1080px) with a refresh rate >60FPS.
The separation between the screen and the user during
the stimulation is about 1 meter. The visual stimulation is
generated by using a checkerboard (10x10 square elements)
covering 35% of the screen over a grey background. Each
screen projected a stimuli with a different frequency. For this
experimentation we used frequencies of 12.5 and 20 Hz.

The subject explores the walking path from the starting
point. Once the first screen is reached, the subject observes
the screen with the corresponding visual stimulation to gen-
erate the SSVEP. Subsequently, the user moves to the next
screen for the last stimuli observation.

During the task, the subject’s position and EEG data is
recorded using the implementation presented at the section
II-A for posterior offline analysis. The resulting raw data
is processed following the methodology presented at II-B.
The two plots presented in Fig. 5 and Fig. 6 reveal the
capability of the system to detect the generated stimuli. It is
worth noticing also that the channel carrying the strongest
frequency response is not always the same, specially for
different frequencies, which justifies the employment of
multiple electrodes.

As an another study case using the proposed platform, we
focused on the correlation between the moving artifacts and
the displacement of the subject. Fig. 3 shows the frequency
components of the artifacts featuring three spectral lines
components with a bandwidth of 1Hz and a separation of 1.5
Hz approx. Table II shows the results of experimentation with
different increasing walking speeds, where is worth notice
that these lines have the tendency to move towards higher
frequencies. This characterization may be useful to develop
a method to determine the speed of the user or to reduce the
effects of these artifacts. This may be covered in a future
research.

In summary, the current results show that the Evoked
Potentials can be successfully extracted using the proposed
system even in a mobile, wearable setup (as opposed to the
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usual stationary conditions used in EEG experiments). This
encourage the belief that the current platform will enable us
to seek for more complex brain responses in a future research.
Also, correlations between indoor position and motion were
characterized, which can be used to extract extra informa-
tion from the signal or to increase the SNR, demonstrating
significant opportunity for sensor fusion exploiting real-time
location and EEG tracking. It is worth mentioning that all
the data-set generated so far and in future experimentations
will be publicly available, enabling other researchers to study
the brain activity in relation with position. Another important
contribution of this work is that all the data is collected in
real scenarios. This will challenge the current methods but
will empower the development of new algorithms to mitigate
the effects of undesired signals present in the environment.

IV. CONCLUSIONS

In this paper we presented a pilot study in combining
EEG signals with subject position data. We described the
Hardware-Software platform used for data acquisition and
corresponding challenges. We tested the system in a real
environment with the experiment described in section III.
Experimental results show that it is possible to extract Evoked
Potentials from the EEG signal and therefore locate the sub-
ject. Also, the detected correlation between EEG artifacts and
subject’s walking speed encourage us to further investigate
over more complex brain responses related to the subject
position and motion, since we believe that such research
could boost both LBS and BMI.

To allow other researchers to study the brain activity in
correlation with indoor positioning, the growing dataset will
be publicly available.
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