
AppropinQuo: a Platform Emulator for Exploring
the Approximate Memory Design Space

Giulia Stazi, Antonio Mastrandrea, Mauro Olivieri, Francesco Menichelli
Sapienza University of Rome

Dept. of Information Engineering, Electronics and Telecommunications (DIET)
Rome, Italy

Email: {stazi,menichelli,mastrandrea,olivieri}@diet.uniroma1.it

Abstract—In this work we present AppropinQuo, a flexible
and configurable emulator for embedded platforms with approx-
imate memory. The emulator includes models of the effects of
approximate memory circuits and architectures, that depend on
the internal structure and organization of the cells. The ability
to emulate a complete platform, including CPU, peripherals
and hardware-software interactions, is particularly important
since it allows to execute the application as on the real board,
reproducing the effects of errors on output. In fact, output quality
is related not only to error rate but it also depends on the
application, implementation and its data representation.

AppropinQuo allows to run actual applications and operating
system as on the physical platform, to analyze the behavior and to
expose the effects of specific approximate memory circuits and
architectures on output quality. By exploring the design space
regarding approximate memories, a complete characterization
of the application is possible, as a step toward the determination
of the trade-off between saved energy and output quality (energy-
quality tradeoff).

I. INTRODUCTION

In modern digital systems, memory represents a significant
contribution to overall system consumption [1]. This is mainly
going in parallel with the increasing performance of com-
puting platforms, which put under stress memory bandwidth
and capacity. Applications as deep learning, high definition
multimedia, 3D graphic, contribute to the demand for such
systems, with added constraints on energy consumption.

Techniques for reducing energy consumption in SRAM and
DRAM memories have been proposed in many works. A
class of very promising approaches, generally called approx-
imate memory techniques, is based on allowing controlled
occurrence of errors in memory cells [2]. Although errors
may degrade quality of output results, the effects can be
tolerated by many applications, known as ETAs (error tolerant
applications)[3].

In approximate memories, errors are allowed by design
and are non-negligible for the software application. Their
presence is the result, in general, of design implementations
introduced to significantly reduce energy consumption [4], [5],
[6]. Different strategies can be actively used in order to reduce
energy consumption introducing approximation: in SRAM, for
example, supply voltage scaling can be applied [7], [8]; while
in DRAM refresh rate can be reduced or completely disabled
[9], [10], [4], since the refresh operation degrades performance

and wastes energy (e.g. when the system is in standby mode,
it can reach up to 50% of total power consumption [1]).

II. RELATED WORKS AND CONTRIBUTION

Emulators of embedded system platforms, including
hardware-software interactions, are considered fundamental
tools to support the design and optimization flow. During the
first design phases, they provide the ability to explore different
architectures and ideas, allowing to collect data regarding
functionality, performance, energy consumption, with reduced
development cost and time compared to physical prototypes.
This is true for functional and performance emulators [11],
[12], energy consumption emulators [13], [14] and fault emu-
lators [15], [16].

Even if emulators including faults in memory units have
already been developed, the fault models are not specific
to the area of approximate memories and many effects of
approximate memory circuits and architectures cannot be
emulated using general fault models.

The contribution of the work described in this paper with
respect to [17] is: (a) to present a complete implementation
for modeling approximate SRAM; (b) to add DRAM models
for approximate memories; (c) to add bit dropping models for
SRAM and DRAM; (d) to add ECC protected cells models.
These models include the ability of emulating the effects
of different approximate designs and implementations, which
depend on the internal structure and organization of the cells.
By exploring the design space and its effects on output,
a complete characterization of the application is possible,
allowing the determination of the trade-off between saved
energy and output quality.

III. ERROR INJECTION MODELS FOR APPROXIMATE
MEMORIES

AppropinQuo is an extension of QEmu [11], which is a
generic and open source emulator of hardware architectures
capable of running different operating systems. In Appropin-
Quo we developed specific units to model approximate memo-
ries inside the architecture; in particular the approximate mem-
ory model is implemented as a QEmu MemoryRegion, mapped
in the I/O memory space, that receives faults according to the
error injection models. These error models take into account
the techniques proposed and the circuital implementations for

approximate DRAM and SRAM. Reducing refresh rate in
DRAMs and allowing errors is a strategy for reducing power
consumption that has produced many research works in the
field of approximate memories [1], [5], [10]. The effects of
these techniques at bit level can vary depending on DRAM
architectures and will be discussed in Section III-A. As regards
SRAMs, the techniques are more varied and applied at circuit
level [7], [8], [18]. In general, energy reduction is obtained
by scaling supply voltage, but the effects at bit level can be
different, depending on circuit design. They are described in
Section III-B.

Along with technology dependent models, some techniques
specifically proposed for approximate memories work at ar-
chitectural or logic level. They will be discussed in Section
III-C and III-D.

A. DRAM orientation dependent models

DRAM memory cells use a single transistor and a single
capacitor to store a bit, represented as charge on the capacitor.
Lowering the refresh rate of DRAMs determines that the
charge loss induced by leakage current will proceed until
discharge. The effects on bit value depend on the DRAM
circuit architecture, that we discuss briefly.

In DRAM, single cells are organized in arrays (memory
banks) and are connected to an equalizer and a sense amplifier
(Fig. 1). Being differential, every sense amplifier is connected
to two bitlines in order to determine whether the charge of
one of them can be interpreted as logical 0 or 1: when a
bitline is activated, the other holds the reference precharge
voltage (VDD/2). The sense amplifier architecture, which is
a specific manufacturer design choice, determines the DRAM
cells orientation. In particular the following implementations
exist:

• true-cells: cells store a logical value of ‘1’ as VDD and
a logical value of ‘0’ as 0V ;

• anti-cells: cells store a logical value of ‘0’ as VDD and
a logical value of ‘1’ as 0V ;

• mixed-cells: a combination of both true-cells and anti-
cells.

Fig. 1. DRAM true cell and anti cell. Source:[19]

When lowering refresh rate, the corresponding charge loss
appears, at logic level, as a bit flip, whose orientation depends
on the internal DRAM array structure. In particular, the fol-
lowing errors can emerge and are implemented in our model:

• true-cell error model: when a cell loses charge, a ‘1’ to
‘0’ bit flip is observed;

• anti-cell error model: when a cell loses charge, a ‘0’ to
‘1’ bit flip is observed;

• mixed-cell error model: both ‘1’ to ‘0’ and ‘0’ to ‘1’ bit
flip occurs.

Each error model is characterized by an error probability
(fault rates p 01, p 10 are defined respectively for the emu-
lation of true-cell and anti-cell error effects). The probability
distribution is assumed uniform in the array of cells, as showed
in many works (e.g. [20]), and expressed as an error rate
(errors per second per bit).

B. SRAM models

SRAM approximate memories are designed with aggressive
supply voltage scaling. In SRAM bitcells, read and write errors
are caused by low read margin (RM) and write margin (WM)
[21]. Since process variations affect RM and WM in opposite
directions, the corner defines which is the critical margin (i.e.
the slowfast (SF) corner makes the bitcell write critical, the
fastslow corner makes it read critical). Under voltage scaling,
WM and RM are degraded, increasing read and write bit
error rates (BERs). The degradation is in general abrupt (BER
increases exponentially at lower voltages), but techniques have
been proposed to make such degradation graceful [22].

Given this behavior, our model implements an error on
access mechanism, which happens when a cell is activated
to perform a read or write operation. Depending on the access
we distinguish three kind of errors:

• Error on write: introduced during a write operation, the
bit stored in the cell is flipped with respect to the bit
coming from the data bus;

• Destructive error on read: introduced during a read
operation, the bit stored in the cell is flipped and passed to
the data bus (both cell and data bus contain the corrupted
bit);

• Non-destructive error on read: introduced during a read
operation, the bit stored in the cell is not corrupted during
the operation, but it is flipped when passed to the data
bus.

For each one of these access errors, a uniform probability
distribution in the array of cells is assumed, expressed as error
per access.

C. Bit dropping fault model

Bit dropping is a bit-level technique which consists in com-
pletely disabling some memory bitlines. The approach showed
to be interesting since cells can be completely powered off or
even omitted [8]. The dropped bitlines correspond to a certain
number of LSBs in each word, starting from the consideration
that the impact of errors is exponentially lower for smaller
bit weights. The technique is transversal and can be applied
in both SRAM and DRAM memory circuits (e.g in [8] for
SRAM memory cells, the drop signal disables the precharge
circuit during read and write operations; while in DRAMs, for
dropped bitlines, the refresh operation is completely disabled).

In our model, bit dropping is implemented as follows:

• in SRAMs, when a word in memory is read or written
and the bit dropping is enabled, a given number of LSBs
is set always to ‘0’.

• in DRAMs, when a word in memory is read or written
and the bit dropping is enabled, a given number of LSBs
is set to ‘0’ or ‘1’ depending on memory cell orientation
distribution.

D. Looseness level and models

Bit level approximate techniques have been introduced in
order to exploit the exponential weight that bits assume in
data words. In [8] selective voltage scaling is proposed in
order to modulate error rate, at the cost of an increase in
circuit complexity; in [23] DRAM banks are reorganized and
refresh rate modulated in order to obtain a similar effect.
From the results, the technique appears effective, but the
effectiveness is dependent on the microprocessor ISA and its
data representation and organization in memory.

In order to support the emulation of bit level techniques,
we have inserted the concept of looseness level and looseness
mask in AppropinQuo. The looseness level allows to define
a 32-bit configurable mask (constant for the whole memory
array) that is applied to every 32-bit word in memory. Its
scope is the selective protection of bits from faults (i.e. the
MSBs). Bits within a word are not affected by faults when
the corresponding bit in the looseness mask is set to zero (i.e.
with a looseness mask set to 0x0FFFFFFF, the 4 MSBs are
exact, while the 28 LSBs are affected by faults). The structure
of the looseness mask allows to effectively tune approximation
at bit level for 32-bit, 16-bit and 8-bit data. The technique
introduces a new level of freedom in the design space, that
can be explored in search of a better energy-quality trade-off.

E. ECC protected cells models

Error correcting code (ECC) is a technique widely used for
designing robust memories. ECC corrects both read and write
errors and has been proposed in approximate memories as:
(1) a uniform ECC that equally protects all bits [24]; (2) a
selective ECC (SECC), that mitigates failures only on MSBs,
that have a stronger impact on quality [25]. SEEC techniques
in union with bit dropping have been demonstrated to be
particularly interesting, since check bits can be taken from
unused (dropped) LSBs, thus saving area and energy [8].

In order to explore ECC and SECC techniques for approx-
imate memories, we implemented the class of Single Error
Correction (SEC) codes of (n, k) Hamming codes, where k
is the number of the information bits (i.e., protected) and n
is the code length (information bits plus check bits). Other
kind of codes, as BCH and ReedSolomon, suffer from larger
complexity, which makes them impractical for error-tolerant
applications [26].

IV. RESULTS

As a case study, we show the impact of approximation
techniques on a signal processing application (digital FIR
filtering). Due to space constraints, we report results derived

from a limited number of approximate memory architectures
and configurations. The digital FIR filter (100 taps) has been
implemented using 32-bit integer arithmetic. The input buffer,
output buffer and internal tap registers have been allocated
in approximate memory. As for the underlying hardware
platform, an x86 based system was configured as target
architecture.

Fig. 2 shows the output SNR, with respect of the exact
case, for an approximate DRAM memory. In the hypothesis
of a circuit consisting of true-cells, different error rates and
looseness levels are explored. For example, an error rate of
about 10−3 is obtained in case of a 60x increase in refresh
period [5]. The figure also shows that the looseness level
can be used in order to rise SNR orthogonally to error rate,
at the cost of keeping some bits exact. As expected in this
application, each exact bit as an impact of +6dB on SNR.

Fig. 2. Output SNR for approximate DRAM

Table I reports the output SNR in case of an approximate
SRAM memory. The SRAM are explored in two corners, one
containing only error on read (EOR) and the other only error
on write (EOW). In this case, due to the access pattern of
the application, it is possible to note that the EOW case pro-
duces higher SNR than the EOR case. Again, by modulating
looseness level, higher SNR values can be obtained.

Table II reports the output SNR in case of bit dropping. The
results show that the LSB dropping is an energy-wise approach
in case of high BER (as can happen in case of VDD scaling
at voltages below the minimum operating voltage), since it
completely eliminates the energy associated with dropped
bitlines.

V. CONCLUSION

In this paper we presented an emulator for embedded plat-
forms with approximate memory, that includes error injections
models derived from approximate memory circuits proposed
in literature for DRAMs and SRAMs. Given an application,
it is possible to explore the impact of memory errors and
approximate memory techniques on its output, discovering the
relation between memory errors and output quality. The fault

TABLE I
SNR [dB] FOR SRAM

Looseness
Level

Fault rate [errors/(bit× s)]
10−4 10−3 10−2 10−1

EOW
0x0000FFFF

127.3 117.6 107.3 94.6
EOR 125.0 114.9 104.2 90.6
EOW

0x000FFFFF
104.2 93.5 83.4 70.5

EOR 101.4 90.9 80.3 66.4
EOW

0x00FFFFFF
80.3 69.3 59.6 46.5

EOR 77.5 66.8 56.3 42.6
EOW

0x0FFFFFFF
56.4 45.5 35.3 22.6

EOR 53.4 42.8 32.9 18.9
EOW

0x7FFFFFFF
38.2 27.6 17.2 4.6

EOR 35.5 24.9 14.8 1.0

TABLE II
SNR [dB] FOR BIT DROPPING

of dropped LSBs
16 bits 20 bits 24 bits 28 bits

82.2 52.9 28.2 4.0

models have been introduced in a modular way in the emulator,
in order to allow extensions as new techniques and circuits for
approximate memories will be proposed.

We showed, as case study, the the impact of approximation
techniques on a signal processing application, producing a
figure of output degradation dependent on memory technology,
error rates, looseness level. The exploration allows to select
the point of work of approximate techniques, dependent on
accepted output quality. As future work, the introduction of
an energy consumption model for approximate memories in
the emulator will allow to explore and directly determine the
energy-quality tradeoff of a given combination of application
and hardware platform.

REFERENCES

[1] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in ACM SIGARCH Computer Architecture
News, vol. 40, no. 3. IEEE Computer Society, 2012, pp. 1–12.

[2] C. Weis, M. Jung, É. F. Zulian, C. Sudarshan, D. M. Mathew, and
N. Wehn, “The role of memories in transprecision computing,” in
Circuits and Systems (ISCAS), 2018 IEEE International Symposium on.
IEEE, 2018, pp. 1–5.

[3] G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli,
“Impact of approximate memory data allocation on a h.264 software
video encoder,” in Approximate and Transprecision Computing on
Emerging Technologies ATCET2018, Workshop on, 2018.

[4] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving
dram refresh-power through critical data partitioning,” ACM SIGPLAN
Notices, vol. 47, no. 4, pp. 213–224, 2012.

[5] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality config-
urable approximate dram,” IEEE Transactions on Computers, vol. 66,
no. 7, pp. 1172–1187, 2017.

[6] G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing
approximate memory support in linux kernel,” in Ph. D. Research in
Microelectronics and Electronics (PRIME), 2017 13th Conference on.
IEEE, 2017, pp. 97–100.

[7] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“Sram for error-tolerant applications with dynamic energy-quality man-
agement in 28 nm cmos,” IEEE Journal of Solid-State Circuits, vol. 50,
no. 5, pp. 1310–1323, 2015.

[8] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approximate srams
with dynamic energy-quality management,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2128–2141,
2016.

[9] D. T. Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approximate
memory architecture for a reduction of refresh power consumption in
deep learning applications,” in Circuits and Systems (ISCAS), 2018 IEEE
International Symposium on. IEEE, 2018, pp. 1–5.

[10] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Efficient reliabil-
ity management in socs-an approximate dram perspective,” in Design
Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific.
IEEE, 2016, pp. 390–394.

[11] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[13] S. K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Unsal, and
A. C. Kestelman, “System-level power estimation tool for embedded
processor based platforms,” in Proceedings of the 6th Workshop on
Rapid Simulation and Performance Evaluation: Methods and Tools.
ACM, 2014, p. 5.

[14] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji,
B. Akesson, N. Wehn, and K. Goossens, “Drampower: Open-source
dram power & energy estimation tool,” URL: http://www. drampower.
info, vol. 22, 2012.

[15] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas,
“Gemfi: A fault injection tool for studying the behavior of applications
on unreliable substrates,” in Dependable Systems and Networks (DSN),
2014 44th Annual IEEE/IFIP International Conference on. IEEE, 2014,
pp. 622–629.

[16] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “Qemu-based
fault injection for a system-level analysis of software countermeasures
against fault attacks,” in Digital System Design (DSD), 2015 Euromicro
Conference on. IEEE, 2015, pp. 530–533.

[17] F. Menichelli, G. Stazi, A. Mastrandrea, and M. Olivieri, “An emulator
for approximate memory platforms based on qemu,” in International
Conference on Applications in Electronics Pervading Industry, Environ-
ment and Society. Springer, 2016, pp. 153–159.

[18] J. Kwon, I. J. Chang, I. Lee, H. Park, and J. Park, “Heterogeneous sram
cell sizing for low-power h. 264 applications,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2275–2284,
2012.

[19] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern dram devices: Implications
for retention time profiling mechanisms,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 3. ACM, 2013, pp. 60–71.

[20] D. M. Mathew, M. Schultheis, C. C. Rheinländer, C. Sudarshan, C. Weis,
N. Wehn, and M. Jung, “An analysis on retention error behavior and
power consumption of recent ddr4 drams,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018.

[21] K. Itoh and M. Horiguchi, “Low-voltage scaling limitations for nano-
scale cmos lsis,” Solid-State Electronics, vol. 53, no. 4, pp. 402–410,
2009.

[22] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“13.8 a 32kb sram for error-free and error-tolerant applications with
dynamic energy-quality management in 28nm cmos,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE
International. IEEE, 2014, pp. 244–245.

[23] J. Lucas, M. Alvarez-Mesa, M. Andersch, and B. Juurlink, “Sparkk:
Quality-scalable approximate storage in dram,” in The memory forum,
2014, pp. 1–9.

[24] M. Spica and T. Mak, “Do we need anything more than single bit error
correction (ecc)?” in Memory Technology, Design and Testing, 2004.
Records of the 2004 International Workshop on. IEEE, 2004, pp. 111–
116.

[25] I. Lee, J. Kwon, J. Park, and J. Park, “Priority based error correction
code (ecc) for the embedded sram memories in h. 264 system,” Journal
of Signal Processing Systems, vol. 73, no. 2, pp. 123–136, 2013.

[26] C. W. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
397–404, 2005.

