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Abstract—The control of communication networks critically
relies on procedures capable of detecting unanticipated load
changes. In this paper we explore such techniques, in a setting
in which each connection consumes roughly the same amount of
bandwidth (with VoIP as a leading example). We focus on large-
deviations based techniques developed earlier in [8] that monitor
the number of connections present, and that issue an alarm
when this number abruptly changes. The procedures proposed
in [8] are demonstrated by using real traces from an operational
environment. Our experiments show that our detection procedure
is capable of adequately identifying load changes.
Key words: Overload detection, statistical testing, VoIP

I. INTRODUCTION

There is an increasing interest in developing and implement-
ing scalable techniques for traffic control and management, as
a result of the persistent growth of the volume of the data to be
carried, as well as the increased complexity of the underlying
networks. To ensure that these procedures function adequately,
they should at least be backed by empirical support, but prefer-
ably by sound mathematical argumentation as well. One of the
rapidly emerging topics within this area concerns the detection
of (statistically significant) deviations from the ‘normal’ traffic
pattern, most notably unanticipated load changes. It is evident
that the resulting procedures may become of great help to
network administrators, as they can be instrumental in warning
against developing threats.

In [8] we developed models and techniques for detecting
load changes in a setting where every user consumes more or
less the same amount of bandwidth, the leading example being
Voice-over-IP (VoIP). Based on queueing-theoretic techniques,
in conjunction with probabilistic methods stemming from the
theory of large deviations, we succeeded in developing a
set of procedures that are capable of ‘on the fly’ detecting
a sudden change of the load. The test-statistic used is of
the CUSUM-type: if the cumulative sum of the log-likelihood
ratios associated with a certain time window exceeds a given
threshold, then an alarm is issued. These procedures were
supported by an extensive set of simulation experiments, that
assessed the sensitivity of the procedure with respect to various
tuning parameters (width of sampling interval, the length of
the moving window, etc.).

It is noted, however, that these experiments were performed
making use of synthetically generated traces only. The results
of the simulation experiments (with synthetic traffic) giving a
strong indication that the method is sound, the genuine ‘reality
check’ of the method is the validation by using traces of real
VoIP traffic. The primary goal of our paper is to assess the
efficacy of the methodology proposed in [8], by performing a
set of validation experiments with real traffic. A secondary
goal is to obtain additional insight in the sensitivity with
respect to a set of tuning parameters.

The experiments performed can be roughly divided into two
categories. In the first set of experiments we add an artificially
generated stream to the trace, and we investigate whether (and
if yes, how soon) this change is detected. The performance of
this procedure is studied as a function of several parameters,
for instance the load generated by the added stream (i.e.,
we consider both a sharp and gradual increase of the load),
and the value of the load tested against. The second group
of experiments uses traces only (so no synthetic traffic is
added), and we verify whether the load changes (for instance
those related to the diurnal pattern that is visible any day)
are indeed detected. Arguably, the former set of experiments
is more meaningful than the latter, in the sense that they are
controlled: we precisely know when a changepoint takes place,
and therefore we can verify whether our procedures indeed
do what they should; experiments based on trace data only
(i.e., uncontrolled experiments) evidently lack this feature. The
main conclusion of our paper is that the procedure, as was
proposed in [8], indeed captures the changepoint adequately.

The present paper focuses on the timescale at which the
traffic supply can be considered (approximately) stationary,
i.e., the time-scale up to, say, one or multiple hours. This
stationarity setting enables the use of the methods developed
in [8], as were described above. Considering longer timescales,
there are evidently the ‘regular’ intra-day patterns that should
not play a role in the changepoint detection: one should not
issue an alarm when a ‘normal’ (that is, predictible) load
change is taking place. One could think, however, of filtering
techniques that remove the regular diurnal pattern, in order to
return to the stationarity setting. It is noted, though, that the



device of such filtering techniques is non-trivial, and therefore
beyond the scope of the current paper (constituting a subject
for future research).

Guidelines for the problem described above have been
developed some time ago in e.g., [9], but these were of
an empirical nature and lacked rigorous support; in [8] we
presented procedures that were backed by a firm mathemat-
ical justification. Several earlier papers considered similar
questions; without aiming to give an exhaustive overview,
we mention here related work on a fractal model [18], and
also [5], [16], [17]. An application of the celebrated CUSUM
technique [14] in the networking domain can be found in [6],
see also [12]. Several valuable contributions to the changepoint
detection problem are due to Tartakovsky and co-authors, cf.
[15].

The rest of the paper is organized as follows. Section II
introduces the model used, sketches some relevant prelimi-
naries, and details the goals of the overload detection proce-
dures. Section III briefly recapitulates the detection algorithm
proposed in [8]. Section IV describes how our traces were
measured, and presents some preliminary analysis of these
traces. The detection procedure is then validated in great
detail in Section V, using both the controlled and uncontrolled
experiments described above.

II. MODEL, PRELIMINARIES, AND GOALS

In this section we describe the goals of the paper as well the
underlying mathematical model. It is assumed that calls arrive
according to a Poisson process (with rate, say, λ), and that the
call durations form a sequence B1, B2, . . . of i.i.d. random
variables with finite mean. It is a well-known fact that the
number of calls present in this system obeys (in steady state)
a Poisson distribution; its mean is equal to the system load
% := λ/µ, where 1/µ denotes the mean value of a generic
call duration B. The resulting queueing system is commonly
referred to as M/G/∞; it is known that the number of trunks
occupied has a Poisson distribution with mean %, which we
abbreviate to Pois(%).

In practice, there is a limit on the number of calls that can
be simultaneously present (say, C lines are available), but it
is generally accepted that we can approximate the resulting
blocking probability by the probability of having C or more
concurrent calls in our M/G/∞ model. The M/G/∞ queue is
a standard model to describe, locally in time, the evolution of
the number of calls present; a broader discussion on this is
provided in [8].

We recall that in practice, the stationarity assumptions (i.e.,
λ and µ constant) will not apply over periods longer than, say,
hours. Locally they are valid, though. Later in this paper we
point out how to deal with this non-stationarity issue.

As discussed in the introduction, the main goal of our
work is to study techniques intended to detect changes in
the value of the load parameter. Suppose that % denotes, as
before, the load imposed on our system, and %̄ the maximum
allowable load (in order to meet a given performance criterion,

for instance in terms of a blocking probability), then our
objective is to test whether all samples correspond to load
% (which we associate with hypothesis H0), or whether there
has been a changepoint within the data set, such that before
the changepoint the data was in line with load %, and after the
changepoint with %̄ (which is hypothesis H1).

Then the data we use in our detection procedure is gathered
as follows; see again [8] for a more detailed account. Let Y (t)
denote the number of calls simultaneously present in the trace
data at time t. We do not keep track of Y (t) constantly in
time, but we ‘thin’ it by just observing the system occupation
at equidistant time points ∆, 2∆, . . .; as a result, the ∆ > 0 is
the length of the interval between two subsequent observations.
Now realize that Y (0), Y (∆), Y (2∆), . . . are not independent,
as there will be positive dependence between the observations.
Actually, it can be verified that the corresponding correlation
coefficient reads

Corr(Y (0), Y (t)) = P(B? > t) =
1

EB

∫ ∞
t

fB(s)ds;

here random variable B? denotes the excess life-time [1]
of B and fB(·) the density of B (assumed to exist). This
relation indicates that when choosing ∆ sufficiently large, the
dependence between the samples becomes negligible; in [8]
a procedure is given for choosing ∆ to make sure that the
samples can be considered as ‘sufficiently independent’.

III. CHANGEPOINT DETECTION PROCEDURE

As we explained in Section II, it is possible to choose
∆ large enough to enforce ‘approximate independence’, thus
justifying the use of procedures for i.i.d. observations, for
instance those developed in [3, Section VI.E]. We now reca-
pitulate this approach for the specific situation of our M/G/∞
queue.

Let Yi := Y (i∆) be the sequence of observations of
the number of calls present at time i∆. We are interested
in detecting a changepoint, i.e., we wish to assess whether
during the observation period the load parameter % (which
we associate to the probability model P) changes into %̄ 6= %
(to which we refer as the model Q). More formally, we
consider a problem of a multiple-hypotheses test, which can
be represented as:
H0: (Yi)ni=1 are distributed Pois(%).
H1: For some δ ∈ {1/n, 2/n, . . . , (n − 1)/n}, it holds that

(Yi)
bnδc
i=1 is distributed Pois(%), whereas (Yi)ni=bnδc+1 is

distributed Pois(%̄), with %̄ 6= %.
We construct the following likelihood-ratio test statistics (cf.

the Neyman-Pearson lemma), for some function ϕ(·) to be
specified later on. Define

Tn := max
δ∈[0,1)

Tn(δ), withTn(δ) :=
1
n

n∑
i=bnδc+1

Li−ϕ(δ); (1)

here, in self-evident notation,

Li := log
Q(Yi)
P(Yi)

= (%− %̄) + Yi log
%̄

%
.



The test is such that if Tn is larger than 0, then we reject
H0. In [8] it is shown how the machinery of [3, Section VI.E]
can be used to further specify this test. We first introduce the
moment generating function M(·) of the Li:

M(ϑ) := EeϑLi =
∞∑
k=0

%k

k!
e−%

(
eϑ(%−%̄) eϑk log(%̄/%)

)
=

∞∑
k=0

(
%̄k

k!
e−%̄
)ϑ(

%k

k!
e−%
)1−ϑ

= e−%e(%−%̄)ϑ exp

(
%

(
%̄

%

)ϑ)
.

The so-called Legendre transform can then be used to measure
the likelihood of a specific outcome. More specifically, in pop-
ular notation, Cramér’s theorem [3] identifies the exponential
rate of decay of the probability that the sample mean of the
Li exceeds some rare value:

κn(u) := P

(
1
n

n∑
i=1

Li ≥ u

)
≈ e−nI(u), (2)

with I(u) given by

I(u) := sup
ϑ

(ϑu− logM(ϑ)).

The approximation (2) can be formalized, in the sense that
‘Cramér’ actually states that the decay rate n−1 log κn(u) con-
verges to −I(u) as n→∞. It is noted that in our framework
of i.i.d. Poisson random numbers the Legendre transform I(u)
can be explicitly computed; it equals ϑ?(u)u− logM(ϑ?(u)),
where

ϑ?(u) :=
log(u+ %̄− %)− log(% log(%̄/%))

log(%̄/%)
.

From [3, Section VI.E, Eqn. (46)–(48)], we can compute the
decay rate of issuing an alarm under H0, for a given threshold
function ϕ(·):

lim
n→∞

1
n

log P
(

max
δ∈[0,1)

Tn(δ) > 0
)

= max
δ∈[0,1)

(1− δ) · lim
n→∞

1
n(1− δ)

log P
(
Tn(δ)
1− δ

> 0
)

= max
δ∈[0,1)

ψ(δ) with ψ(δ) := (1− δ) · I
(
ϕ(δ)
1− δ

)
;

the first step reflects the principle that the decay rate of the
union of events equals the decay rate of the most likely among
these (known as the ‘principle of the largest term’, see e.g. [4,
p. 25]), whereas the second equality uses ‘Cramér’.

The remaining issue is then to choose an appropriate func-
tion ϕ(·). In order to get an essentially uniform alarm rate, we
can define ϕ(·) by requiring that

δI

(
ϕ(1− δ)

δ

)
= α?, (3)

for all δ between 0 and 1, where α? = − logα/n; here α is a
measure for the likelihood of false alarms (for instance 0.05).

Unfortunately, ϕ(·) cannot be solved in closed form, but it
can be obtained numerically in a straightforward way (using
a standard bisection procedure).

The test described above is of CUSUM-type: H0 is rejected
if Tn > 0, corresponding to the cumulative sum of log-
likelihoods being unusually large. One could think of some
simpler test procedures, for instance those in which an alarm
is issued as soon as the number of calls present exceeds
some threshold (rather than the cumulative sum of the log-
likelihoods, as we did in our approach). The reason why one
should not adopt such a simple threshold method, is that it has
the danger of classifying an observation which is actually just
a ‘regular’ statistical fluctuation, as a change of the load. In our
method the amount of evidence for a load change should be
sufficient, and therefore it gives us a better statistical indication
of the likelihood of the given event.

IV. DATA TRACES DESCRIPTION

As stressed in the introduction, the main goal of this paper
lies in the validation of our changepoint detection procedures
using real data. These experiments are based on an extended
set of real traffic traces collected via passive monitoring of
real-world VoIP traffic. A detailed description of the trace
collection methodology is available in [2]. In this section, we
briefly review the adopted measurement techniques, and give
some details on the dataset used.

We have collected real traffic traces from an Internet service
provider (ISP) in Italy offering telecommunication services to
over 5 million households. Owing to its full-IP architecture,
and the use of either Fiber to the Home (FTTH) or Digital Sub-
scriber Line (xDSL) access, the ISP has optimized the delivery
of converged services, like data, VoIP and IP television, over
a single broadband connection. No PSTN circuit is offered to
end-users, so that native VoIP is adopted.

In particular, the ISP’s VoIP architecture, which is the topic
of the measurements in this paper, is based on both H.323
and SIP standards. Customers are given a set-top-box, which
is the interface between the traditional phones and the VoIP
infrastructure used by the ISP. The set-top-box acts as a VoIP
gateway, by interfacing traditional analog phone to the VoIP
technology. Phone calls are then directly originated as VoIP
calls by the user. Considering the voice transport, a simple
G.711a codec without loss concealment is used, so that two
64 kbps streams are required to carry the bidirectional phone
calls. Packetization time is set to 20 ms, leading to 160 B of
voice samples per packet. RTP as well as RTCP over UDP are
used to transport the voice streams.

The ISP network infrastructure includes several Points-Of-
Presence (POPs) in the largest cities in Italy. POPs aggregate
traffic from users, using traditional DSLAMs in case the ADSL
access is offered, or fibre optical Ethernet rings in case FTTH
is used. POPs are then interconnected using a multi-gigabit
WDM transport network, which forms the ISP backbone. Per-
class differentiation is performed at the network layer, so that
VoIP and video streams are served using a strict priority policy



compared to data packets, offering excellent QoS to the VoIP
traffic.

To collect traffic traces, a monitoring probe is used to
sniff packet headers from traffic flowing on a link, so that
the first bytes of the packet payload (i.e., up to the part of
the RTP/RTCP headers) are exposed to the analyzer. As a
monitoring tool, we use Tstat [11], an IP networks monitoring
and performance analysis tool developed by the Telecommuni-
cation Networks Group at Politecnico di Torino. By passively
observing traffic on a network link, Tstat computes a set of
performance indexes at both the network (IP) and transport
(TCP/UDP) layers. Originally focusing on data traffic, Tstat
has been enhanced to monitor multimedia streams, based on
RTP/RTCP [13] protocols carried over UDP or tunneled over
TCP. In particular, to identify an RTP flow, a stateful Deep
Packet Inspection (DPI) mechanism has been implemented. It
guarantees to detect all RTP flows compliant with the standard,
and proved highly robust [2]. In this paper we report on
experiments that were mainly performed using measurements
collected in a large POP in Torino, which aggregates traffic
from over 20 000 customers. We also provide some results on
data collected from an aggregation point in Milano.

In view of validating our changepoint detection procedure,
we are interested in just recording call arrival times and call
durations (thus neglecting the precise details regarding the
packet arrivals within the call). The call arrival time is defined
as the time the first RTP packet has been observed by the
probe, and the call duration as the time elapsed between the
first and last RTP packet reception at the monitoring probe.
There are differences (in terms of starting epoch and duration)
in the statistics of the outgoing streams (that is, ‘outbound’:
the flow originating the POP under consideration) and the
incoming streams (that is, ‘inbound’: the flow towards the
POP). These differences are minor, though; we have chosen,
for the sake of the exposition, to consider the outgoing calls.

Below we proceed by presenting a set of key characteristics
of the traffic pattern we observed. We concentrate on data
recorded on Sept. 29, 2009, but we conducted the same tests
for other days yielding results that were highly similar. Fig.
1 depicts the number of the active calls during the day under
consideration, sampled every ∆ = 60 s so as to comply with
the rules described in Section II.

It is noted that, due to the intra-day trends, one has to
be cautious using the changepoint-detection procedure in its
simplest form. One has to identify within the day chunks in
which the stationarity assumption roughly applies, and then
test against the load % that applies there. A very sharp and
continuous increase in the number of calls (as is, for instance,
the case during the morning) violates the assumption that, at
least for some time, we are dealing with a constant load %.
During a second half of the day, after the lunch break, Fig.
1 reveals a ‘steady period’ which lasts for about 5 hours and
which we will use in our experiments. The solid vertical lines
on Fig. 1 mark the time interval between 2:02 PM and 7:02
PM, and will be denoted in the sequel as the time window A;
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Fig. 1. Typical daily pattern

its extension up to 8:42 PM (marked with the dashed line) will
be labelled as the time window B.

The rest of this section is devoted to presenting a set of
statistical characteristics of the data from window A; we use
the original data traces, that is, not the one obtained when
sampling every ∆ s. The goal here is to see whether our traffic
stream meets the requirements of our testing procedure.
• We start by verifying the requirement that the call inter-

arrival times follow an exponential distribution, i.e., that
calls arrive according to a Poisson process. We found
no evidence to reject it using Kolmogorov-Smirnov,
Anderson-Darling and Chi-square tests at any reasonable
significance level. The quantile-quantile plot (see Fig. 2)
further supports this conclusion (as this gives a nearly
straight line; the numbers on the axes are in seconds). It
is also worth to note the negligible sample autocorrelation
(Fig. 6), indicating that there is hardly any correlation
between subsequent interarrival times.

• Note that in Section III no specific condition was imposed
on the distribution of holding times. For the sake of
completeness, we include some observations here.
The call durations do not obey an exponential distribution
(see the quantile-quantile plot in Fig. 3; the numbers on
the axes again in seconds). The tail of the distribution
turns out to be heavier than exponential, as seen from
Fig. 4. This plot displays the survivor function of the call
durations (i.e., it gives the fraction of calls longer than
x, for any value of x > 0); a (nearly) straight line in
this semi-log plot would indicate exponential decay. On
the other hand, the tail is lighter than power-law (such
as Pareto), as seen from Fig. 5; a (nearly) straight line
in this log-log plot would indicate polynomial decay. As
this is not in the scope of this paper, we did not attempt
to fit a distribution to the call durations.
In [8] actually two procedures were described for change-



0 2 4 6
0

1

2

3

4

5

6

model quantiles

sa
m

pl
e 

qu
an

til
es

Fig. 2. QQ-plot of our interarrival
times vs. the exponential distribution
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point detection. The first, which is the one we described
in Section III, is for generally distributed call durations,
but this test requires that subsequent samples Y (i∆) are
(more or less) independent. In the second approach, the
call durations should be exponentially distributed. The
resulting test uses all call arrival and departure events
(rather than the samples Y (i∆)), but has the attractive
feature that no independence requirement applies. How-
ever, it is obvious that we cannot use this test due to
the non-exponentiality described above; the use of the
method described in Section III makes more sense, under
the proviso that the correlations between the samples are
indeed sufficiently low.

V. EXPERIMENTS

We conducted several experiments, some of them being real-
data counterparts of the simulations described in [8], using the
number of calls present in the system, sampled every 60 s. In
the experiments that we denote by ‘A’, we use the data from
the time window A (as defined in Section IV), but perturbed
with some artificial component. The goal is then to assess to
what extent this perturbation is identified. First, the original
data is tested against the changepoint hypothesis; if we decide
that there is no evidence to reject H0, then we introduce
a perturbation. This procedure gives us the opportunity to
‘control’ the experiment (albeit not to the extent possible in
the synthetic simulations reported in [8]): we know when an
alarm should be issued.

In the experiments that we denote by ‘B’, the so-called
‘uncontrolled’ experiments, we use the data ‘as is’; therefore,
by their very nature, there is no possibility to objectively assess
the accuracy of the detecting procedure, other than visual
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inspection.

A. Controlled experiments

We now present a number of statistical characteristics of
the data used in our controlled experiments — see the trace
labelled as ‘original trace’ in Fig. 7 for the evolution of the
number of calls as a function of time.

The quantile-quantile plot (Fig. 9) suggests that the marginal
distribution does not deviate much from the assumed Poisso-
nian distribution.

The sample autocorrelation, however, appears to be higher
than desired, as seen in Fig. 8; recall that the procedure
described in Section III assumes a negligible correlation. Of
course we can increase our sample interval ∆ to reduce this
correlation, but this at the expense of a substantial reduction
of our number of datapoints. Instead, we took the approach of
taking this considerable correlation for granted; if the detection
turns out to perform well, then it is apparently ‘robust’ with
respect to violations of the independence assumption. In fact,
our experiments show that this is indeed the case, as will be
reported on in detail later.

We first performed our changepoint test in the time window
A without additional traffic, and found no evidence to reject
the hypothesis H0 that this sample is consistent with model
Pois(%) for % = 320, and %̄ = 375 for the alternative
hypothesis. We therefore conclude that this dataset (which can
be considered as the ‘base trace’) can be called stationary, and
is hence a good candidate for the designed experiments which
we now present in detail.

Experiment A1. First, we consider the situation that a sudden
jump in the load appears. We estimated % of the original
sample as being equal to 320. Then we generated and added a
stochastic perturbation from time epoch 201 on, i.e., we added
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an additional Poissonian arrival stream, where we picked the
parameters such that the new equilibrium becomes %̄ = 375.
The resulting pattern is then subject to our detection procedure:
a window of 50 observations moves forward selecting a part
of the (new) trace, and performs the changepoint test on these
observations.

We repeated this experiment (each time generating a new
perturbation) 500 times; a typical trace without and with
perturbation can be seen of Fig. 7. The first window in which
samples affected by the perturbation appear is that with id 151;
in the next figures this time point is marked by a vertical line.
Fig. 10 displays the spread of the time of detection by showing
the associated quantiles, as a function of the window id. It
shows that the alarm is issued somewhat after the load change
(the curves need to be compared with the solid line which
we call ‘true delta’ in the graph for obvious reasons). This
effect is due to the fact that there must be a certain number of
the ‘new’ samples to sufficiently affect the test statistics. The
small dispersion of the detection window numbers shows that
the test performs well.

Fig. 11 shows the detection ratio (as a fraction over the 500
experiments performed), as a function of the window id. The
detection ratio graph differs to some extent from the one we
obtained by synthetic simulations (as reported on in [8]), in
the sense that with the real data we do not see a monotone
increase. It can be argued that a potential reason for this lies in
the fact that in our synthetic simulations both the ‘base trace’
and the perturbed trace were generated during each of the 500
experiments, while here the ‘base’ trace is always the same.

Experiment A2. In this setup we have a single window
of length 50 selected from the original trace and introduce
a perturbation similar to the one in Exp. A1 starting from
the 31st observation within this window of length 50. The
difference is that the perturbed part has %̂ ∈ {331, . . . , 375}
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while we always test against %̄ = 375. The outcomes are
gathered in Fig. 12; we display the detection ratio as a function
of the new load %̂. We see that the curve shows a sharp increase
around %̂ = 350; as soon as the %̂ reaches a value of 365 the
detection ratio reaches (nearly) 100%.

Experiment A3. Here, instead of the sudden jump we
introduce a gradual increase in the load % from 320 to 375 by
one per time unit (that is, minute); again, the load change starts
at time epoch 201. Strictly speaking, this kind of scenarios is
not the type of scenarios our procedure was designed for, as
in the test there is an instantaneous load change. However,
in real situations, there will often be a gradual load change
rather than an instantaneous one. Our intention is therefore to
assess how robust the test is to this violation of the setup of
the test. We remark here that the corresponding experiments
with synthetically generated traffic, as reported on in [8], were
rather encouraging (in the sense that gradual load changes
were adequately detected).

In Fig. 13 a typical trace plot is shown. Again we present
the distribution of the detection times (see Fig. 15) and the
detection ratio (see Fig. 14). Note that now there in no notion
of a ‘true changepoint’ anymore, but still we can speak about
the border between the ‘original’ and ‘perturbed’ part of the
trace; this border is visualized by the vertical line.
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Fig. 14. Exp. A3. Detection ratio
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Fig. 15. Exp. A3. Detection epoch (δ vs window number)

The conclusions are quite similar to those regarding Exp.
A1, as again the ‘base trace’ is the same in every experiment
run. In addition, observe that the start of artificial stream
injection coincides with a (relatively small) local increase in
the values of the original trace itself. It may create some bias
towards earlier detection, but as we work with the real data,
such situations are difficult to avoid.

B. Uncontrolled experiments

We now perform experiments based on trace data only, i.e.,
we do not add any synthetically generated calls.

Experiment B1. Based on visual inspection, one may suspect
that a changepoint occurs around the observation id 330 in
Fig. 16, cf. the left Y-axis of the graph. We run the detection
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Fig. 16. Exp. B1. Changepoint detection in real trace (Torino)
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Fig. 17. Exp. B2. Changepoint detection in real trace (Milano)

procedure with a moving window of 50 samples, % = 320 and
%̄ = 375. On the right Y-axis we plot the resulting δ, indicating
the position of the changepoint (if any) with respect to the
beginning of the detection window, which corresponds to the
optimizing δ in the test statistic (1).

We now give an example of how to read the graph. The
vertical lines mark the beginning and the end of the moving
window (dashed and solid, respectively). All data within the
window are used to compute the test statistic. It turns out
that the resulting δ (as follows from the definition of the test
statistic — see (1)) is equal to 0.9, see the small textbox in
the graph, which means that we reject H0. This means that we
locate the changepoint at id 0.9 · 50 = 45 with respect to the
beginning of the window, or 281 + 45 = 326 with respect to
the beginning of the trace. One observes from the graph that



the reported values of δ decrease in the observation id in a
linear fashion, which indicates that the procedure detects the
changepoint in a consistent way. In the graphs we also observe
two small ‘dents’ around the epoch 260, which formally mean
that H0 was also rejected there.

Experiment B2. We performed a substantial set of other
uncontrolled experiments, which showed behavior similar to
B1. To illustrate this, we include one more example. The setup
in this experiment is analogous to the B1 case (∆ = 60
s, 50 observations in each window), except that we use
data collected at the Milano POP rather than Torino. The
Milano location has a considerably higher load: the load is
assumed to be % = 650, and we test against %̄ = 775. The
results (Fig. 17) are similar to the outcome of Exp. B1; we
observe, however, that the transition of the δ values around
the suspected changepoint is somewhat less smooth when
compared to Fig. 16.

VI. CONCLUDING REMARKS AND DISCUSSION

In this paper we empirically validated earlier developed
procedures [8] that are capable of detecting load changes, in a
setting in which each connection consumes roughly the same
amount of bandwidth (with VoIP as leading example). Calls
were assumed to arrive according to a Poisson process with
their durations following some general distribution with finite
mean. Low correlation was expected between number of calls
recorded during regular time intervals. The experiments with
real VoIP traffic show that the detection techniques are capable
of tracking load changes.

The fact that we used, unlike in [8], real data, brought
up a number of issues that need to be addressed in a more
systematic way. In the first place, we observed that while the
marginal distribution of the sample does not deviate much
from the anticipated Poisson distribution, the autocorrelations
are substantially higher than the desired level. To cope with
this issue, in principle one should work with procedures that do
not neglect the dependence between subsequent observations.
Such a procedure for the case of exponential call durations
was developed in [8, Section 3]. The empirical findings of
Section IV, however, show that the call durations of our
dataset violate this exponentiality assumption. In other words,
to address this issue one needs to extend the test procedures of
[8, Section 3] to non-exponential job durations. As this makes
the system non-Markovian, this may be a highly non-trivial
task.

In this paper, and in [8], we considered ‘VoIP-like traffic’:
each connection requires (roughly) the same amount of band-
width. A next step could be to extend this to more generally
applicable scenarios, in which the aggregate stream contains
contributions of many heterogeneous users. Then one could
model the traffic aggregate by a Gaussian process [7], [10],
and attempt to develop changepoint detection procedures for
this situation; observe, however, that we again have to resolve
the issue of dependence between the observations.

A last subject for future research concerns the way we
deal with the inherent non-stationarity of the number of calls

present. In this paper we took the approach of using the local
stationarity within the trace; in the experiments we concentrate
on a 5-hour interval in which we could assume stationarity.
One could think, however, of detection techniques that first
filter out the ‘normal’ fluctuations, i.e., the day pattern, and
then perform tests relative to this filtered data set.
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[18] P. Żuraniewski and D. Rincón (2006). Wavelet transforms and change-
point detection algorithms for tracking network traffic fractality. Proc.
NGI 2006, pp. 216–223.


