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Résumé / Abstract 
 
 

Les méthodes métriques, et qui utilisent des données non-étiquetées pour détecter les 
différences brutes pour les comportements loin des pointes d'entrainement, ont été récemment 
introduites pour la sélection de modèles, apportant une amélioration dans beaucoup de cas 
(incluant la validation croisée). Nous présentons des prolongements à ces méthodes qui 
prennent avantage du cas particulier des séries temporelles pour lesquelles la tâche consiste en 
une prédiction avec un horizon "h". Les idées sont (i) d'utiliser au temps "t" les "h" exemples 
non-étiquetés qui précèdent "t", et (ii) profiter des différentes distributions d'erreur de 
validation croisée et de méthodes métriques. Des résultats expérimentaux établissent 
l'efficacité de ces prolongements dans le contexte de la sélection d'un sous-ensemble de 
caractéristiques. 

 
Mots clés : Données non-étiquetées, sélection de modèles, séries 
temporelles. 

 
 

Metric-based methods, which use unlabeled data to detect gross differences in behavior away 
from the training points, have recently been introduced for model selection, often yielding 
very significant improvements over alternatives (including cross-validation). We introduce 
extensions that take advantage of the particular case of time-series data in which the task 
involves prediction with a horizon "h". The ideas are (i) to use at "t" the "h" unlabeled 
examples that precede "t" for model selection, and (ii) take advantage of the different error 
distributions of cross-validation and the metric methods. Experimental results establish the 
effectiveness of these extensions in the context of feature subset selection. 

 
Keywords: Unlabeled data, model selection, time-series. 
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MODEL SELECTION AND REGULARIZATION

Supervised learning algorithms take input/output training pairs{(x1, y1) · · · (xl, yl)}
sampled (usually independently) from an unknown joint distributionP (X,Y ) and
attempt to infer a functionf ∈ F that minimizes the expected value of the loss
L(f(X), Y ) (also called thegeneralization error). In many cases one faces the
dilemma that ifF is too “rich” then the average training set loss (training error)
will be low but the expected out-of-sample loss may be large (overfitting), and vice-
versa ifF is not “rich” enough (underfitting).

In many cases one can define a collection of increasingly complex function
classesF0 ⊂ F1 ⊂ · · · ⊂ F (although some methods studied here work as well
with a partial order).Model selectionmethods attempt to choose one of these func-
tion classes to avoid both overfitting and underfitting. For example, in the case of
variable subset selection, these subsets may correspond to the number of input vari-
ables that are allowed (e.g.Fi is the set of linear regressions withi input variables).
One approach to model selection is based oncomplexity penalization[5, 3]. Another
approach to model selection is based onheld-out data: one selects the model with
the lowest generalization error, estimated by repeatedly training on a subset of the
data and testing on the rest, e.g. using the bootstrap, leave-one-out orK-fold cross-
validation (XVT). Themetric-basedmethods introduced by Schuurmans [6, 7] are
somewhat in between in that they take advantage ofunlabeleddata not used for
training (but only the input part) in order to introduce a complexity penalty. These
methods take advantage of unlabeled data: the behavior of functions corresponding
to different choices of complexity are compared on the training data and on the unla-
beled data, and differences in behavior that would indicate overfitting are exploited
to perform model selection. An overview of advances in model selection and feature
selection methods can be found in a recent Machine Learning special issue [1].

After a review of metric-based model selection methods, we introduce the ex-
tensions proposed in this paper that deal specifically with time-series data.

METRIC-BASED MODEL SELECTION

Metric-based methods for model selection are based on the idea that solutions that
overfit are likely to behave very differently on the training points and on other points
sampled from the input densityPX(x). This occurs because the learning algorithm
tries to reduce the loss at the training points (but not necessarily elsewhere since
no data is available there), whereas we want the solution to work well not only on
the training points but in general wherePX(x) is not small. These metric-based
methods are all based on the definition of ametric (or pseudo-metric) on the space
of functions, which allows to judge how far two functions are from each other:

d(f, g) = ψ(E[L(f(X), g(X))])



where the expectationE[·] is overPX(x) andψ is a normalization function. For
example with the quadratic lossL(u, v) = (u− v)2, the proper normalization func-
tion isψ(z) = z1/2. AlthoughPX(x) is unknown, Schuurmans (1997) proposed to
estimated(f, g) using an averagedU (f, g) computed anunlabeled setU (i.e. points
xi sampled fromPX(x) but for which no associatedyi is given). In what follows
we shall usedU (f, g) to denote the distance estimated on the unlabeled setU :

dU (f, g) = ψ(
1
|U |

∑
i∈U

L(f(xi), g(xi))) (1)

The metric-based methods proposed in [6, 7] are based on comparingdU (f, g) with
the corresponding average distancedT (f, g) measured on thetraining setT .

Schuurmans (1997) first introduced the idea of a metric-based model selection
by taking advantage of possible violations of thetriangle inequality. Improved re-
sults were described in [7] with a new penalization model selection method, based
on similar ideas, calledADJ, which chooses the hypothesis functionfl which min-
imizes theadjusted loss

dT (fl, PY |X) max
k<l

dU (fk, fl)
dT (fk, fl)

,

wheredT (fl, PY |X) denotes the training error. See [7] for more detailed justifica-
tion, including proofs of bounds on the maximum overfitting and underfitting, and
experiments showing that these methods outperform classical model selection pro-
cedures (including XVT) on some small artificial data sets (with between 10 and 30
training examples) on which overfitting can be severe.

EXTENSION TO TIME-SERIES FORECASTING

We now turn to the case of applying statistical learning algorithms to time-series
data, such as economic or financial data, that may be non-stationary. At timet,
we have an information setIt which includes all measurable observations at and
prior to timet. We want to forecast some aspectyt+h = y(It+h) of this informa-
tion set at a future timet + h, using some aspect of the information available att,
xt = y(It). Because of the possible non-stationarity of the data (dependence on
t of Pt(yt+h|xt)), estimating generalization error is often done with thesequen-
tial validation technique, rather than with leave-one-out or K-fold XVT. Sequential
validation is based on the analysis of the sequence of losses obtained by sliding a
learning algorithmA over the time sequence, as shown in Algorithm 1.

The most important result of the sequential validation algorithm is the average
loss, which can be compared across several algorithms. The individual losses are
useful to estimate confidence intervals around the average loss or around differences
in average loss.

In the sequential validation algorithm we would in general prefer to choose
∆t = 1 but larger values allow to save computations (in proportion to the value
of ∆t). The choice of the training window sizewt depends on the degree of non-
stationarity expected (or estimated) from the particular data sequences. The most



Algorithm 1 Sequential Validation

Input: data sequences{xt}, {yt} (t ranging from 1 toT ), learning algorithmA,
loss functionalL, forecast horizonh, step∆t, training window sizewt (often fixed
to a constant), and first test pointt0.
For t ranging from t0 to T − h by steps ∆t

Training set: Dt = {(xs, ys+h)}, s ∈ [t− wt, t− h)
Solution at t is: ft = A(Dt)
Test set: Tt = {(xs, ys+h}, s ∈ [t, t+ ∆t)

Forecast at s: ft(xs)
Loss at s: ls = L(ft, (xs, ys+h))

Output: the sequence of losses{lt}, for t ∈ [t0, T − h]

Forecast Horizon
Target to forecast

End of
training set

Available unlabeled observations

Input value

t Figure 1. A natural
source of unlabeled
data for time series
forecasting with an
horizon arises at the
end of the training set.

common choices arewt = min(w0, t) (a fixed value) andwt = t (use all the avail-
able data). Using sequences shorter thant may be justified when the conditional
distribution of the data changes so much witht as for old training pairs to hurt gen-
eralization to new cases. Note that unlesswt is constant the amount of training
data may change ast increases, thus usually requiring an adaptive model selection
algorithm.

Natural Source of Unlabeled Data

Inspection of the sequential validation algorithm quickly reveals that at timet there
areh input vectorsxs (s ∈ [t − h + 1, t]) which cannot be associated with a cor-
responding target outputys+h. The idea of the proposed extension is to use these
unlabeled points to form the unlabeled setU required in the metric methods (to
computedU , as in equation 1). This phenomenon is illustrated in Figure 1.

It is also interesting to note that this unlabeled set includes in particular the in-
put for the next test point,xt. This suggests that a method that usesxt for model
selection is actually doing a form oftransduction. Vapnik introduced in 1982 the
principle of transductive inference, which differs from the usualinductive infer-
enceprinciple in that the learner chooses a solution based not only the training set
but also on the input values of the test point(s). Here, this is particularly true when
the sequential validation step∆t is chosen equal to 1 (which is however more com-
putationally costly). Otherwise, only one out of∆t of the test points would be inU .
Why would it be useful to use the metric model selection methods with the future
test points as unlabeled data?— the intuition is simply that these are the data points
that we care about: this is where we want to reject functions that “misbehave”.



Time-Series Transduction Experiments

Experimental Setup.
To verify the potential of metric model selection methods in time-series fore-

casting applications, we performed feature-selection experiments using artificially-
generated data in a controlled setting. We wish to compare model selection algo-
rithms (in this case the metric method ADJ against XVT) on the set of progressively
more complex models that arise in forward (stepwise) feature selection.
Data Generation. The artificial data series are generated from the class of lin-
ear autoregressiveAR(K) models, where given a fixed coefficients vectorα ≡
(α0, . . . , αK)′ and initial conditionsy−1, y−2, . . . , y−K , we have the process

yt = α0 +
K∑

k=1

αkyt−k + εt, t ≥ 0. (2)

with εt ∼ N(0, σ2) i.i.d. gaussian noise. To simplify matters and ease analysis, we
restrict the generating models to the specific formyt = α + αyt−K + εt, where in
our experimentsK = 1, 2, 3.
Task Description. We seek to forecast the series{yt} at horizonh, given the
realizations of the past̃K series values (we do not impose thatK̃ be equal to the
orderK of the generating process). One typically considers apoint forecast, or in
other words, at a given timet and given the values of{yt, yt−1, . . . , yt−K̃+1}, one
seeks an estimator ofE[yt+h|It]. However, in our experiments, we shall consider
an “integrated” forecast, consisting of thesum of the series valuesover the hori-
zon. We shall then seek an estimator ofE[yt+1 + yt+2 + · · · + yt+h|It]. In many
applications this type of forecast can be interpreted more naturally in terms of the
underlying problem variables; for instance, given a financial series of (log) returns,
the integrated forecast corresponds to the estimated total portfolio (log) return over
the horizon. Obviously, at horizonh = 1, the integrated forecast is equivalent to the
point forecast.

We shall consider the class ofAR(K̃) models. This is equivalent to estimating
the coefficientŝβ ≡ (β̂0, . . . , β̂K̃)′ corresponding to the model

h∑
j=1

yt+j = β0 +
K̃∑

k=1

βkyt−k+1 + εt,

whereεt is i.i.d. gaussian noise. The estimation ofβ̂, for a fixedK̃, is easily per-
formed analytically using the ridge estimator,β̂∗ = (X ′X + λI)−1X ′Y , where
X is the matrix of regressors,Y is the (column-) vector of targets,λ is a weight-
decay hyperparameter, andI is the identity matrix.1 This estimator implicitly uses
a squared-error loss function, which is appropriate for our task of estimating a con-
ditional expectation.

1In our procedure, we do not penalize the mean estimatorβ̂0; hence, the mean is estimated without
bias.



Feature Selection. The role of feature selection here is to decide whichαk are
significant and should be included in the regression. To this end, we use a standard
forward stepwise selection algorithm, in which the individual features are the lagged
series values,yt−k, k = 0, . . . , K̃ − 1. Forward selection proceeds incrementally,
starting from the mean (the lowest-complexity model that we are willing to con-
sider), and at each step adds the feature that minimizes the training error. At a given
time stept, we have the following sequence of models produced by the algorithm,

{f̂ (0)
t , f̂

(1)
t , . . . , f̂

(K̃)
t },

wheref̂ (k)
t is the estimated regression model containing thek “best” features ac-

cording to forward selection (which are not necessarily the firstk lagged series
values). The model̂f (0)

t is simply the mean on the current training set (obtained
from It). We observe that this sequence of models forms a total order with respect
to complexity, and is thenceamenable to selection by metric methods. We exploit
this crucial property, which arises naturally from the nature of the forward selection
algorithm, in the experiments.
Experimental Plan. The experiments measure the relative ability of 10-fold
XVT versus metric model selection (in this case, ADJ) to select among the se-
quence of models produced by stepwise selection. We compare the methods across
a whole spectrum of parameters, i.e. all permutations of (i) Forecasting horizon
h = {1, 2, 5, 10, 15}, (ii) Generating modelAR orderK = {1, 2, 3}, (iii) Gen-
erating model coefficient magnitudeα = {0.1, 0.3, 0.5, 0.7, 0.9}. This last coeffi-
cient controls the seriessignal-to-noise ratio; α = 0.1 yields series very close to
white noise, whereas series withα = 0.9 exhibit much more structure. Each triplet
〈horizon,AR order,magnitude〉 is henceforth called anexperiment.

We fix the maximum model order̃K = 10, and a constant training window size
wt = 75 = t0, making this a challenging task. The sequential validation increment
is ∆t = 10, and the total length of each generated series is 1000 observations.
In addition, each “basis” modelf (k)

t is estimated with a small ridge penaltyλ =
10−

1
4 . (This hyperparameter was not tuned extensively, but empirically produced

quite reasonable results.)

Statistical Methodology.
We compare the performance of two models by a usual pairedt-test on their mean-

squared error difference. However, the results of individual experiments (e.g. across
different horizons) cannot be pooled randomly, since the expected error distribution
is quite different across experiments. For instance, weexpect a priorithe MSE to
be higher when forecasting across a longer horizon, given a stationary underlying
generating process. To perform a valid statistical test of the performance difference
between methodsacross experiments, it is necessary to normalize the distribution
of paired differenceswithin each experimentto have unit standard deviation, before
pooling the observations across experiments, and then performing the statistical test.

More specifically, suppose we performM experiments, each one withNm test
points. Letem

i ,m = 1, . . . ,M, i = 1, . . . , Nm be the squared error differences
between two methods we wish to compare (e.g. XVT against ADJ in our case).



The first step is to normalize the distribution of error differences to unit standard
deviation,

ẽm
i =

em
i√

σ̂2(em)
, (3)

where the variance estimatorσ̂2(em) is described below. Then we compute the
overall mean differencēe and standard error̂σē as

ē =
∑M

m=1

∑Nm

i=1 ẽ
m
i∑M

m=1Nm

, σ̂ē =
1√∑M

m=1Nm

. (4)

Throughout this section, the so-obtained mean differenceē is termednormalized
MSE difference.
Estimation of σ(em). The question left open is the estimation of the standard
deviation of the error-difference distribution within a single experiment. The usual
estimator cannot be used here for it rests upon an i.i.d. assumption, whereas the
series we consider exhibit mild to strong autocorrelation patterns. This autocorrela-
tion is induced, on the one hand, by the problem structure, and on the other hand by
the sequential validation testing procedure.2

To properly estimate the variance, we use the Newey–West estimator well-
known to econometricians [4, 2], which in addition to being consistent, has the
desirable property of being robust at small sample sizes,3

σ̂2(em) = γ̂m
0 + 2

q∑
j=1

q − j

q
γ̂m

j , (5)

whereq is the maximum lag length to be considered,4 andγ̂m
j is the empirical lag-j

autocovariance,

γ̂m
j =

1
Nm − j

Nm−j∑
i=1

(em
i − ēm)(em

i+j − ēm), (6)

with ēm the sample mean.

Experimental Results.
Figure 2 presents a summary of the experiments described above, comparing XVT

against ADJ. The left plot outlines the effect of the series signal-to-noise (SNR)
ratio (for which the generating model AR coefficient magnitude are a proxy) on
performance. At very low SNR, the series being essentially white noise, both meth-
ods perform about equally poorly (worse, in fact, than a naïve constant model (not
shown on the figure)). At the other end of the spectrum, at high coefficient values,

2Since successive training sets in sequential validation tend to highly overlap, the trained models are
generally very correlated—especially at small step sizes∆t—thence inducing correlation in the error
structure.

3It guarantees the positive-definiteness of the estimated covariance matrix in the multivariate case.
4This must scale with the sample size for the estimator to be consistent, but not too rapidly.
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Figure 2: Left: Normalized MSE difference between the models chosen by XVT and ADJ, as a func-
tion of the magnitude of the AR coefficients (across all forecast horizons and generating model order).
The error bars represent 95% confidence intervals on the mean difference (normalized as explained in
the text). Right: Same measure, as a function of the forecast horizon; we note that even with extremely
few unlabeled observations (one or two), ADJ does not lose catastrophically against XVT, which is very
surprising; the two methods become essentially equivalent for longer horizons.

XVT performs, overall, significantly better than ADJ. However, the opposite picture
emerges at small but significant coefficient values, where ADJ significantly beats
XVT. We conjecture that at these moderate SNR levels, the intrinsic variance of the
choice made by XVT causes costly mistakes, whereas a less-variable (albeit biased)
method such as ADJ can pick out important structures without being swamped by
the noise level.

The right plot in Figure 2 is, in some ways, more surprising: first, the expected
outcome shows a steady improvement in the performance of ADJ with respect to
XVT as the forecast horizon increases, as a result of the increase in the number of
unlabeled observations that ADJ can use to make its choice. But the unexpected
outcome is, relatively speaking,how well ADJ performs given extremely few un-
labeled observations(one or two); recall that these observations are used to form
a Monte Carlo approximator of an expectation (c.f. eq. 1), and that so few obser-
vations are sufficient to make a reasonable model selection choice in this context
strikes us as a surprise.

Moreover, we can count the number of experiments for which each method sta-
tistically significantly beats the other; a kind of model selection tournament (we
shall takep ≤ 0.05 as the significance level). The results comparing ADJ to cross
validation are shown in Table 1. The hypothesis about the behavior of each method

XV Wins ADJ Wins Total Exp.
Overall 17 7 75
AR Coeff = 0.01 15
AR Coeff = 0.03 7 15
AR Coeff = 0.05 1 15
AR Coeff = 0.07 6 15
AR Coeff = 0.09 10 15
Horizon = 1 7 1 15
Horizon = 2 6 1 15
Horizon = 5 3 3 15
Horizon = 10 1 2 15
Horizon = 15 15

Table 1. “Tournament” results compar-
ing XVT against ADJ for individual ex-
periments. A “win” indicates that the cor-
responding method beats the other statis-
tically significantly (p ≤ 0.05) on the
MSE criterion. A blank stands for zero.
The results corroborate those of Figure 2.



Algorithm 2 Logistic Hybrid Model Selection
Input at t: the sequence of solutionsfxv

s andfp
s , respectively for XVT and com-

plexity penalization selected models, and the data sequence{(xs, ys)} for s ≤ t.
1. Let ds = fxv

s (xs)− fp
s (xs)

2. Let ws(β) = 1/(1 + exp(−(β0 + β1ds + β2d
2
s)))

3. Let C(β) =
∑

s≤t−h(ws(β)fxv
s + (1− ws(β))fp

s − ys+h)2

4. Let β∗ = argminβC(β)
Output at t: the solutionft = wt(β)fxv

t + (1− wt(β))fp
t .

at a given series SNR finds more confirmation; a further surprise emerges from the
horizon data, where we find that ADJ sometimessignificantly beatsXVT even at
very small forecast horizon (i.e. using extremely few unlabeled points). The two
methods become indistinguishable at longer horizons.

HYBRID MODEL SELECTION

The motivation for this final extension to metric model selection follows from sev-
eral years of working with various model selection methods and frustratingly com-
paring them against XVT. XVT does not always work but it almost always per-
forms quite well. However, it tends to have higher variance (in the sense of larger
variations in error) than complexity penalization methods. We also know that it is
almost unbiased (it is unbiased for training with a bit less examples than what is
actually available).5 Since it is usually almost as good (and often better) than these
complexity penalization methods (including the metric methods), it must mean that
these other methods must have smaller variance (and none of them is guaranteed to
be unbiased, so they are likely to be biased). Can we take advantage of this situ-
ation, whereby one method is more biased but has less variance than the other. In
this paper we have just begun to explore this opportunity. Let us callfxv the so-
lution obtained by XVT andfp the solution obtained by some form of complexity
penalization, for a particular training set. A simple-minded combination algorithm
is the following: if, for a given test pointx, the absolute difference|fxv(x)−fp(x)|
is “large”, then trustfp, else trustfxv. The intuition for this heuristic rule is that
a large difference in function value more likely indicates that the cross-validatory
choice is wrong, owing to its large variance. This leaves open the question of choos-
ing the proper threshold. A more sophisticated (and better grounded) algorithm for
the squared loss, which we have tested in the experiments is shown in Algorithm 2.

This algorithm is based on the idea of the logistic regression: it assigns a weight
ws(β) to the XVT model (and1 − ws(β) to the ADJ model) based a quadratic
function of the differencefxv(x) − fp(x); the use of the sigmoid ensures that the
weights are always between 0 and 1. Contrarily to traditional logistic regression, the
coefficient vectorβ for the weights is obtained by directly optimizing a squared-loss
criterion, estimated from thepast test observations(i.e. those fors ≤ t, available

5We are talking about the bias of an estimator of generalization error. However, for most model
selection methods, the only bias we care about is not in the value of the estimator but only of how it
ranks different hypotheses.



TABLE 2: “Tournament” results comparing the logistic combination against, respectively XVT alone
and ADJ alone. A “win” indicates that the corresponding method beats the other statistically significantly
(p ≤ 0.05) on the MSE criterion. A blank stands for zero.

Logis Wins XV Wins Logis Wins ADJ Wins Total Exp.
Overall 6 1 15 1 75
AR Coeff = 0.01 1 15
AR Coeff = 0.03 6 15
AR Coeff = 0.05 1 3 1 15
AR Coeff = 0.07 3 15
AR Coeff = 0.09 8 15
Horizon = 1 1 7 15
Horizon = 2 1 6 15
Horizon = 5 3 1 2 15
Horizon = 10 1 15
Horizon = 15 1 15

without cheating from the sequential validation procedure).

Hybrid Model Selection Experiments

The same experimental setup as described previously was used to compare the lo-
gistic combination rule against XVT alone and ADJ alone. “Tournament” results are
shown in Table 2. The most significant observation is that the logistic combination
almost always performs betterthan either method taken alone. As the table shows,
across all experiments, the logistic combination loses only once to XVT and ADJ,
whereas it wins quite more frequently against them. Finally, Figure 3 illustrates typ-
ical cases of the weight attributed to the XVT model by the logistic combination (as
a function offxv − fp). (The ADJ model, as always, gets the opposite weight). It
confirms the intuition outlined above: in case of “small” differences (but with a bias
empirically estimated from the data) betweenfxv andfp, choose XVT, otherwise
choose ADJ.

-3 -2 -1 1 2 3
f xv - f p

0.2

0.4

0.6

0.8

1

wxv

-3 -2 -1 1 2 3
f xv - f p
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1
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Figure 3: Examples of the weight ws(β) given to the XVT model (c.f. Algorithm 2), obtained by the
logistic regression, as a function of the difference fxv − fp evaluated at the test point.



CONCLUSION

We have proposed extensions to metric-based model selection (ADJ in particular) to
take advantage of (i) the particular structure of time-series data using a transductive
inference procedure, and (ii) the difference in error profiles between ADJ and XVT.
It is a surprising result that ADJ can work so well with time-series data, using only
as few as 1 to 15 unlabeled examples, as one would have expected a very unreliable
complexity correction with so few points. Moreover, we have opened a very exciting
new avenue to combine model selection methods that exhibit very different error
profiles (e.g. one has large variance, the other has bias). The experiments show
that the hybrid method is almost never beaten by XVT or by ADJ, and often beats
one or the other. Probably more questions have been raised than answered in this
work: Why is ADJ working well with so few unlabeled data when these include the
next test point?— this is probably related to the transductive effect, but a true theory
is lacking. Finally, can we push further the last extension to other sets of model
selection methods, or with better combination algorithms?
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