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Abstract. We compare L1 and L2 soft margin support vector ma-
chines from the standpoint of positive definiteness, the number of
support vectors, and uniqueness and degeneracy of solutions. Since
the Hessian matrix of L2 SVMs is positive definite, the number of
support vectors for L2 SVMs is larger than or equal to the number
of L1 SVMs. For L1 SVMs, if there are plural irreducible sets of
support vectors, the solution of the dual problem is non-unique
although the primal problem is unique. Similar to L1 SVMs, de-
generate solutions, in which all the data are classified into one class,
occur for L2 SVMs.

INTRODUCTION

As opposed to L2 soft margin support vector machines (L2 SVMs), L1 soft
margin support vector machines (L1 SVMs) are widely used for pattern clas-
sification and function approximation. And much effort has been done to
clarify the properties of L1 SVMs [1, 2, 3, 4]. Pontil and Verri [1] clarified
dependence of the L1 SVM solutions on the margin parameter C. Rifkin,
Pontil, and Verri [2] showed degeneracy of L1 SVM solutions, in which any
data are classified into one class. Fernández [3] also proved the existence of
degeneracy without mentioning it. Burges [4] discussed non-uniqueness of L1
SVM primal solutions, and uniqueness of L2 SVM solutions. But except for
[4], little comparison has been made between L1 and L2 SVMs [5].

In this paper, we compare L1 SVMs with L2 SVMs from the standpoint
of positive definiteness, the number of support vectors, and uniqueness and
degeneracy of solutions. Since the Hessian matrix of L2 SVMs is positive
definite, the solutions are unique. For the L1 SVMs, we introduce the con-
cept of irreducible set of support vectors and show that if there are plural
irreducible sets, the dual solutions are non-unique. Finally, we show that L2
SVMs have degenerate solutions similar to L1 SVMs.

In the following, first we summarize L1 and L2 SVMs and discuss the
Hessian matrices for L1 and L2 SVMs. Then we discuss non-uniqueness of



L1 SVM dual solutions. Finally, we prove the existence of degeneracy for L2
SVMs.

SOFT MARGIN SUPPORT VECTOR MACHINES

In soft margin support vector machines, we consider the linear decision func-
tion

D(x) = wtg(x) + b (1)
in the feature space, where w is the weight vector, g(x) is the mapping
function that maps the m-dimensional input x into the l-dimensional feature
space, and b is a scalar. We determine the decision function so that the
classification error for the training data and unknown data is minimized.
This can be achieved by minimizing

1
2
‖w‖2 + C

M∑
i = 1

ξp
i (2)

subject to the constraints

yi (wt g(xi) + b) ≥ 1 − ξi for i = 1, . . . , M, (3)

where ξi are the positive slack variables associated with the training data xi,
M is the number of training data, yi are the class labels (1 or −1) for xi,
C is the margin parameter, and p is either 1 or 2. When p = 1, we call the
support vector machine L1 soft margin support vector machine (L1 SVM)
and when p = 2, L2 soft margin support vector machine (L2 SVM).

The dual problem for the L1 SVM is to maximize

Q(α) =
M∑

i = 1

αi − 1
2

M∑
i,j=1

αi αj yi yj H(xi,xj) (4)

subject to the constraints
M∑

i =1

yi αi = 0, 0 ≤ αi ≤ C, (5)

where αi are the Lagrange multipliers associated with the training data xi

and H(x,x′) = g(x)tg(x) is the kernel function.
The dual problem for the L2 SVM is to maximize

Q(α) =
M∑

i =1

αi − 1
2

M∑
i,j=1

αi αj yi yj

(
H(xi,xj) +

δij

C

)
(6)

subject to the constraints
M∑

i = 1

yi αi = 0, αi ≥ 0. (7)

Let the solution of (4) and (5), or (6) and (7) be α∗
i (i = 1, . . . , M).



HESSIAN MATRIX

Rewriting (4) for the L1 SVM using the mapping function g(x), we have

Q(α) =
M∑

i =1

αi − 1
2

(
M∑
i=1

αi yi g(xi)

)t M∑
i=1

αi yi g(xi). (8)

Solving (5) for αs (s ∈ {1, . . . , M}),

αs = −ys

M∑
i=1
i�=s

yi αi. (9)

Substituting (9) into (8), we obtain

Q(α) =
M∑
i=1
i�=s

(1 − ys yi)αi

−1
2


 M∑

i=1
i�=s

αi yi (g(xi) − g(xs))




t
M∑
i=1
i�=s

αi yi (g(xi) − g(xs)). (10)

Thus the Hessian matrix of −Q(α), HL1, which is an (M − 1) × (M − 1)
matrix, is given by

HL1 = −∂Q(α)2

∂2α′

=
( · · · yi(g(xi) − g(xs)) · · · )t ( · · · yj(g(xj) − g(xs)) · · · ) , (11)

where α′ is obtained by deleting αs from α. Since HL1 is expressed by
the product of a transposed matrix and the matrix, HL1 is positive semi-
definite. Let Ng be the maximum number of independent vectors among
{g(xi)−g(xs)| i ∈ {i, . . . , M, i �= s}. Since Ng does not exceeds the dimension
of the feature space, l, the rank of HL1 is given by [6, pp. 311–312]

min(l,Ng). (12)

Therefore, if M > (l + 1), HL1 is positive semi-definite.
The Hessian matrix HL2, in which one variable is eliminated, for the L2

SVM is expressed by

HL2 = HL1 +
{

yiyj + δij

C

}
. (13)

Because of the term
∑M

i=1 α2
i /C in Q(α), HL2 is positive definite. Thus, un-

like HL1, HL2 is positive definite irrespective of the dimension of the feature
space.
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Figure 1: Convex functions. (a) Strictly convex function. (b) Convex function

Table 1: CONVEXITY OF OBJECTIVE FUNCTIONS

Hard Margin L1 Soft Margin L2 Soft Margin

Primal Strictly Convex Convex Strictly Convex

(w, b) (w, b, ξi) (w, b, ξi)

Dual Convex Convex Strictly Convex

(αi) (αi) (αi)

NON-UNIQUE SOLUTIONS

If a convex function gives a minimum or maximum at a point not in an
interval, the function is called strictly convex. In general, if the objective
function of a quadratic programming problem constrained in a convex set is
strictly convex or the associated Hessian matrix is positive (negative) definite,
the solution is unique. And if the objective function is convex, there may be
cases where the solution is non-unique (see Fig. 1). Convexity of objective
functions for different support vector machine architectures is summarized in
Table 1. The symbols in the brackets show the variables.

We must notice that since b is not included in the dual problem, even if
the solution of the dual problem is unique, the solution of the primal problem
may not be unique [4].

Assume that the hard margin SVM has a solution, i.e., the given problem
is separable in the feature space. Then, since the objective function of the
primal problem is ‖w‖2/2, which is strictly convex, the primal problem has
a unique solution for w and b. But the dual solution may be non-unique
because the Hessian matrix is positive semi-definite. Since the hard margin
SVM for a separable problem is equivalent to the L1 SVM with an unbounded
solution, we leave the discussion to that for the L1 SVM.

The objective function of the primal problem for the L2 SVM is strictly
convex. Therefore, w and b are uniquely determined if we solve the primal
problem. In addition, since the Hessian matrix of the dual objective function
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Figure 2: An example of a non-support vector

is positive definite, αi are uniquely determined. And because of the unique-
ness of the primal problem, b is determined uniquely using the Kuhn-Tucker
condition.

The L1 SVM includes the linear sum of ξi. Therefore, the primal objec-
tive function is convex. Likewise, the Hessian matrix of the dual objective
function is positive semi-definite. Thus the primal and dual solutions may
be non-unique.

Theorem 1 For the L1 SVM, vectors that satisfy yi(wtg(xi) + b) = 1 are
not always support vectors.

Proof. Consider the two-dimensional case shown in Fig. 2. In the figure, x1

belongs to Class 1, x2 and x2 belong to Class 2, and x1 − x2 and x3 − x2

are orthogonal. The dual problem with the dot product kernel is given as
follows. Maximize

Q(α) = α1 + α2 + α3

−1
2

(α1x1 − α2x2 − α3x3)t(α1x1 − α2x2 − α3x3) (14)

subject to

α1 − α2 − α3 = 0, C ≥ αi ≥ 0, i = 1, 2, 3. (15)

Substituting α3 = α1 − α2 and α2 = a α1 (a ≥ 0) into (14), we obtain

Q(α) = 2 α1

−1
2
α2

1(x1 − x3 − a(x2 − x3))t(x1 − x3 − a(x2 − x3)). (16)

Defining

d2(a) = (x1 − x3 − a(x2 − x3))t(x1 − x3 − a(x2 − x3)), (17)

(16) becomes

Q(α) = 2 α1 − 1
2
α2

1d
2(a). (18)



When

C ≥ 2
d2(a)

, (19)

Q(α) is maximized at α1 = 2/d2(a) and takes the maximum

Q

(
2

d2(a)

)
=

2
d2(a)

. (20)

Since x1 − x2 and x3 − x2 are orthogonal, d(a) is minimized at a = 1. Thus
Q(2/d2(a)) is maximized at a = 1. Namely, α1 = α2 = 2/d2(a) and α3 = 0.
Since y3(wtx3 + b) = 1, the theorem is proved.

Definition 1 For L1 SVMs a set of support vectors is irreducible if deletion
of all the non-support vectors that satisfy yi(wtg(xi) + b) = 1, and any
support vector results in the change of the optimal hyperplane. It is reducible
if the optimal hyperplane does not change for deletion of all the non-support
vectors that satisfy yi(wtg(xi) + b) = 1, and some support vectors.

Deletion of non-support vectors from the training data set does not change
the solution. In the following theorem, the Hessian matrix associated with
a set of support vectors means that the Hessian matrix is calculated for the
support vectors, not the entire training data.

Theorem 2 For L1 SVMs, let all the support vectors be unbounded. Then
the Hessian matrix associated with an irreducible set of support vectors is
positive definite and the Hessian matrix associated with a reducible set of
support vectors is positive semi-definite.

Proof. Let the set of support vectors be irreducible. Then, since deletion
of any support vector results in the change of the optimal hyperplane, any
g(xi)−g(xs) cannot be expressed by the remaining g(xj)−g(xs). Thus the
associated Hessian matrix is positive definite. If the set of support vectors is
reducible, deletion of some support vector, e.g., xi does not cause the change
of the optimal hyperplane. This means that g(xi) − g(xs) is expressed by
the linear sum of the remaining g(xj) − g(xs). Thus the associated Hessian
matrix is positive semi-definite.

Theorem 3 For the L1 SVM, if there is only one irreducible set of support
vectors and the support vectors are all unbounded, the solution is unique.

Proof. Delete the non-support vectors from the training data. Then since the
set of support vectors is irreducible the associated Hessian matrix is positive
definite. Thus, the solution is unique for the irreducible set. Since there is
only one irreducible set, the solution is unique for the given problem.

Example 1 Consider the two-dimensional case shown in Fig. 3, in which x1

and x2 belong to Class 1 and x3 and x4 belong to Class 2. Since x1, x2, x3,
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Figure 3: Non-unique solutions

and x4 form a rectangle, {x1,x3} and {x2,x4} are irreducible sets of support
vectors for the dot product kernel.

The training is to maximize

Q(α) = α1 + α2 + α3 + α4 − 1
2
(
(α1 + α4)2 + (α2 + α3)2

)
(21)

subject to

α1 + α2 = α3 + α4, C ≥ αi ≥ 0, i = 1, . . . , 4. (22)

For C ≥ 1, (α1, α2, α3, α4) = (1, 0, 1, 0) and (0, 1, 0, 1) are two solutions.
Thus,

(α1, α2, α3, α4) = (β, 1 − β, β, 1 − β), (23)

where 0 ≤ β ≤ 1, is also a solution. Then, (α1, α2, α3, α4) = (0.5, 0.5, 0.5, 0.5)
is a solution.

For the L2 SVM, the objective function becomes

Q(α) = α1 + α2 + α3 + α4

−1
2

(
(α1 + α4)2 + (α2 + α3)2 +

α2
1 + α2

2 + α2
3 + α2

4

C

)
. (24)

Then for αi = 1/(2 + 1/C) (i = 1, . . . , 4), (24) becomes

Q(α) =
1

1 +
1

2C

. (25)

For α1 = α3 = 1/(1 + 1/C) and α2 = α4 = 0, (24) becomes

Q(α) =
1

1 +
1
C

. (26)

Thus, for C > 0, Q(α) given by (26) is smaller than that by (25). Therefore,
α1 = α3 = 1/(1 + 1/C) and α2 = α4 = 0 or α2 = α4 = 1/(1 + 1/C) and
α1 = α3 = 0 are not optimal, but αi = 1/(2 + 1/C) (i = 1, . . . , 4) are.



In general, the number of support vectors for L1 SVMs is larger than that
for L2 SVMs.

The above example shows non-uniqueness of the dual problem but the
primal problem is unique since there are unbounded support vectors. Non-
unique solutions occur when there are no unbounded support vectors. Burges
and Crisp [4] derive conditions in which the dual solution is unique but the
primal solution is non-unique.

DEGENERATE SOLUTIONS

Rifkin, Pontil, and Verri [2] discuss degenerate solutions, in which w = 0,
for L1 SVMs. Fernández [3] derived similar results for L1 SVMs, although
he did not refer to degeneracy. Degeneracy occurs also for L2 SVMs. In the
following we discuss degenerate solutions following the proof of [3].

Theorem 4 Let C = KC0, where K and C0 are positive parameters, and
α∗ be a solution of the L1 support vector machine with K = 1. Define

w(α) =
M∑
i=1

αiyig(x). (27)

Then the necessary and sufficient condition for

w(α∗) = 0 (28)

is that K α∗ is also a solution for any K (> 1).

Proof. We prove the theorem for L2 SVMs. The proof for L1 SVMs is given
by deleting αtα/(2C) in the following proof.
Necessary condition. Let α′ be the optimal solution for K (K > 1) and
w(α′) �= 0. Then, there is α′′ such that α′ = Kα′′. Since α′ satisfies the
equality constraint for K = 1, it is a non-optimal solution. Then for K = 1,

Q(α∗) =
M∑
i=1

α∗
i − α∗tα∗

2C0

≥ Q(α′′) =
M∑
i=1

α′′
i − 1

2
w(α′′)tw(α′′) − α

′′tα′′

2C0
. (29)

For K (K > 1),

Q(Kα∗) = K
M∑
i=1

α∗
i − Kα∗tα∗

2C0
≤ Q(Kα′′)

= K

M∑
i=1

α′′
i − K2

2
w(α′′)tw(α′′) − Kα

′′tα′′

2C0
. (30)
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Figure 4: Non-separable one-dimensional case

Multiplying K to all the terms in (29) and comparing it with (30), we see
the contradiction. Thus, Kα∗ is the optimal solution for K > 1.
Sufficient condition. Suppose Kα∗ is the optimal solution for any K (≥
1). Thus for any K (≥ 1)

Q(Kα∗) =
M∑
i=1

Kα∗
i −

1
2
K2w(α∗)tw(α∗) − Kα∗tα∗

2C0

≥ Q(α∗) =
M∑
i=1

α∗
i − 1

2
w(α∗)tw(α∗) − α∗tα∗

2C0
. (31)

Rewriting (31), we have

M∑
i=1

α∗
i ≥ K + 1

2
w(α∗)tw(α∗) +

α∗tα∗

2C0
. (32)

Since (32) is satisfied as K approaches infinity, w(α∗) = 0 must be satis-
fied. Otherwise, Kα∗ cannot be the optimal solution.

Example 2 Consider the case shown in Fig. 4. Here, we use the dot product
kernel. The inequality constraints are

−w + b ≥ 1 − ξ1, (33)
−b ≥ 1 − ξ2, (34)

w + b ≥ 1 − ξ3. (35)

The dual problem for the L1 SVM is given as follows: Namely maximize

Q(α) = α1 + α2 + α3 − 1
2

(−α1 + α3)2 (36)

subject to

α1 − α2 + α3 = 0, (37)
C ≥ αi ≥ 0 for i = 1, 2, 3. (38)

From (37), α2 = α1 + α3. Then substituting it into (36), we obtain

Q(α) = 2 α1 + 2 α3 − 1
2

(−α1 + α3)2, (39)

C ≥ αi ≥ 0 for i = 1, 2, 3. (40)



Equation (39) is maximized when α1 = α3. Thus the optimal solution is
given by

α1 =
C

2
, α2 = C, α3 =

C

2
. (41)

Therefore, x = −1, 0, and 1 are support vectors. Thus from (27), w = 0.
Substituting w = ξ1 = ξ3 = 0 into (33) and (35) and taking the equalities,
we obtain b = 1.

The dual objective function for the L2 SVM is given by

Q(α) = α1 + α2 + α3 − 1
2

(−α1 + α3)2 − α2
1 + α2

2 + α2
3

2C
(42)

The objective function is maximized when

α1 = α2 =
2C

3
, α2 =

4C

3
. (43)

Thus, w = 0 and b = 1/3. Therefore, any datum is classified into Class 1.

CONCLUSIONS

In this paper, we compared L1 and L2 support vector machines from the
standpoint of uniqueness and degeneracy of solutions. We introduced the
concept of irreducible set of support vectors and clarified the condition for
non-uniqueness of L1 SVM dual solutions. We also proved that degeneracy
of L2 SVM solutions occurs.
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