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Abstract. We propose a time-domain BSS algorithm that utilizes geometric 

information such as sensor positions and assumed locations of sources. The al­

gorithm tackles the problem of convolved mixtures by explicitly exploiting the 

non-stationarity of the acoustic sources. The learning rule is based on second­

order statistics and is derived by natural gradient minimization. The proposed 

initialization of the algorithm is based on the null beamforming principle. This 

method leads to improved separation performance， and the algorithm is able 

to estimate long unmixing FIR filters in the time domain due to the geometric 
initialization. We also propose a post-filtering method for dewhitening which 

is based on the scaling technique in frequency-domain BSS. The validity of the 

proposed method is shown by computer simulations. Our experimental results 

confirm that the algorithm is capable of separating real-world speech mixtures 

and can be applied to short learning data sets down to a few seconds. Our 

results also confirm that the proposed dewhitening post-削除ring method main­

tains the spectral content of the original speech in the separated output. 

INTRODUCTION 

Blind source separation (BSS) refers to the problem of recovering signals from sev­
eral observed linear mixtures.官le adjective“blind" stresses the fact that the source 
signals are not observed and that no information on the mixing process is available. 
The lack of a priori knowledge of the mixing system is compensated by a statisti­
cally strong but physically plausible assumption of independence. The weakness of 
the prior information is precisely the strength of the BSS model. Thus BSS has re­
ceived considerable attention in the last few years， and many algorithms have been 
proposed [4，5，6， 10]. However， the separation of broadband signals in reverberant 
environments remains a challenging problem. 
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In this paper we consider the BSS of convolutive mixtures of speech. Many re­
searchers have proposed frequency domain algorithms， which in general transform 
the convolutive mixture problem in the time domain to multiple instantaneous mix­
tures in the frequency domain. However， in [3] it was shown that for long reverber­
ation the separation performance of frequency domain BSS degrades for long FFT 
frame sizes. This was our motivation in approaching the convolutive BSS problem 
in the time domain. 

CONVOLUTIVE BSS MODEL 

In real environments， where sound travels slowly compared to the distances in a 
typical acoustic environment， the signal arrives at the sensors with di百"erent time 
delays. This scenario is referred to as a multi-path environment and can be described 
as a 白nite impulse response (FIR) convolutive mixture: 

P-1 
x (t) = 玄 H(k)s(t-k)

k=O 
where s (t) = [81 (t) ，…，8n (t)]T are the mutually independent source signals and 

x (t) = [X1 (t) ，…，Xn (t)]T are the mixed signals obtained by the microphones. 
The superscript T denotes transposition. The mixing system H is a n x n matrix 
consisting of channel impulse responses hμ(k) (ω= 1，…，η) that are modeled 
by FIR filters with k = 0，…， p -1. P denotes the length of the co汀esponding
mixing filter， e.g. for a reverberation time of 300 ms and a sampling frequency of 8 
kHz to P = 2400 taps. Equation (1) can be compactly written as 

、‘，，ノ唱・・A/，，、、

x (t) = H * s (t) (2) 

where * denotes the convolution. 
To obtain the estimated sources y (t)， we seek a n xηmatrix of FIR filters 

operating on the sensor measu陀mentsx (t)， such that the components of the output 
vector y (t) are statistically independent: 

Y (t) = 乞 W(k)x(t-k) (3) 

We introduce W (z) as the z-transform of the unmixing印刷coe伍cient W (k) 
with k = 0，…，M- 1: 

W(z) = 乞む1W (k) z-k 「1 ω11(k)z-k 

E ごとJbhnl(k)z-k

Lとふl切1n(k) z-k 1 

L��1 Wnn (k) z-k J 

(4) 

where M denotes the length of the unmixing filter and z -1 is used as the unit­
delay operator for convenience， iムZ-k ・X(t) = X (t -k). Therefore (3) can be 
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expressed as 
Y (t) = W (z) x (t) (5) 

The mutual independence of the sources s (t) is not a百ected by permutation or 
filtering. Thus， y (t) can only approximate s (t) up to an unknown permutation and 
filtering operation. In this paper we consider a two-speaker， two-microphone BSS 
scenario as shown in Fig. 1. 
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ALGORITHM DERIVATION 

The assumption of independence causes the correlation matrix R 88 of the sources 
s (t) to become a diagonal matrix. Acoustic sources are assumed to be non­
stationary， i.e.， the auto-correlations of sources change independently with time t. 
Hence the correlation matrix of the outputs Ryy also varies with time t. Thus if we 
force estimated outputs y (t) to be uncorrelated at every time point t， we obtain a 
much stronger condition than simple decorrelation， and thus we are able to separate 
the sources. 

We use the cost function proposed by Kawamoto [8] as a measure of unco汀b
latedness. For off-line learning， this cost function has been modi白ed with a block 
averaging technique: 

Q(b，W (z)) = 去 三 { log (det dゆか0)) -叫detRU(州

where B denotes the number of local analysis blocks， diag {X} are the diagonal 
elements of恥matrix X， and R�bJ (T) rep印sents the correlation matrix of y (t) 
in the b-th analysis block with time delay T. The correlation matrix is defined by 
R�bJ (ァ) = E(b) [y (t) Y (t + T)] ， where the expectation value E(b) [x] denotes the 
time average of x for the b-th block. 

The segmentation of the observed mixtures into blocks ensures that we are cal­
culating the cross-correlations at multiple times. The non-negative cost function 
becomes zero only when Yi (t) and Y j (t) are uncorrelated for all of the local analy­
sis blocks， i.e.， E(b) [Yi (t) Yj (t)] = 0 (ω= 1，…川;ii:j，b=l，…，B).

We use the natural gradient method， as pointed out by Amari [1]， to minimize 
the cost function. 

δQ(b，W(z)) ，." T I \ T ムW (k) α - G""T 什 、 W(zr W (z) (k = 0， ...， M - 1) (7) 
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where the symbol cx is read “proportional to". This minimization leads to the adap­
tation rule [11] 

【 ( I 〆 川、 a 、 T 〆 ，.、 、 \
Wi+1 (k) = き乞乙二1 � ( (R�';j (0)ー ょ ) - (diag R�';j (0) ) ) 

R1� (一的} Wi (z) + Wi (k) 
(8) 

where αis the step size parameter. Equation (8) converges if the 0百'-diagonal com­
ponents ofR1� (0) are minimized for all blocks. We confirmed in experiments伽t
by considering only time-delay T = 0， we cannot achieve separation in a reverber­
ant environment. Therefore， we expand (8) to the following equation to evaluate the 
off-diagonal components ofR 1� (-k) for all time delays k = 0，…，M - 1 [11]. 

Wi+1 (k) = ロL ( (diagRU (-k) -RW ( ーめ)
(ω勾(0川 Wi(z) 仰

+ Wi (k)， (k = 0，…，M - 1) 

This iterative algorithm is based only on second-order statistics and uses the prop­
erty of non-stationarity to achieve the separation of the sources. 

UTILIZATION OF GEOMETRIC BEAMFORMING 

The convergence and the result of the separation of gradient-based algorithms is 
very much inftuenced by the initial value. We propose a new approach to calculate 
the initial value by adding geometric information on the positions of the micro­
phones and the assumed positions of the speakers. 

The equivalence of adaptive beamformers and BSS showed in [2] was our mo・
tivation to use a beamformer technique for initializing the adaptation algorithm. As 
we assume the sources spatially separated we can employ a null beamformer with 
beams that place spatial zeros at the orientations of interfering sources. The per­
formance of a null beamformer is depending on the ratio of direct to reverberant 
sound energy. We assume that the contribution of the direct sound prevails. For 
the two-speaker， two-microphone scenario， we assume two sources with angles of 
()i =土600， measured with respect to the normal of the microphone aπay. Figure 

0-→O 
Y1 

Figure 2: Null beamformer system configurations. 

2 shows the configurations for calculating the null beamformer when S 1 and S2 is 
the target signal， respectively. The delay D is calculated for both con白gurations in 
respect to the angle of the interfering source and the microphone positions. These 
delays are then used as cross path filtersω12 and ω21， respectively， and subtracted 
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from the straight path. As these delays 訂e fractions of the sampling time， we are 
using a sinc function for representation. The filter in the straight path is initialized 
as a dirac function. The small components besides the dirac (Fig. 3) originate from 
neglecting frequency components smaller than 62.5 Hz. This is done because we 
cannot calculate a sharp spatial nuI1 for low frequencies due to the small microphone 
spacing of 4 cm. 

When applying the system to real-world signals， we have to consider that the 
mixing system can be non-minimum phase. Consequently， when calculating the 
inverse of the mixing matrix H， we wiI1 not obtain a stable causal filter. However， 

there exists a stable non-causal inverse of the system. By time-delaying the initial 
values of the unmixing matrix W for Ml2 taps， our algorithm accesses both future 
and past values of the observed signals， and thus a non-causal filter is incorporated. 

It should be note that the unmixing filters in BSS can only be estimated as the 
mverse 白lters of the mixing system subjected to an arbitraηI filtering. Figure 3 
shows the initial values of the unmixing matrix for a filter length of M = 64 taps. 
ConventionaI1y， a unity matrix initialization (W (k) = 1， k = M/2 and W (k) = 
の， k f. M /2) would be used. In the following performance comparison， we show 
that our new initialization method improves the separation performance significantly 
and that we can estimate long unmixing FIR filters in the time domain that cover the 
entire reverberation. 

i十=JJ w" 

Figure 3: Initial value W for an unffiixing自lter length of M = 64 taps. 

Note that as the initial value of the unmixing matrix ，布， we can also use the 
constraint null beamformer， i.e. ， the null beamformer which can make a spatial null 
towards a jammer signal and maintain the gain and phase of a t訂get signal. 

Using this initial value， the whitening effect mentioned in the following section 
is not so strong. Even if we do not apply our following dewhitening method， the 
separated signals do not have big distortions. 

DEWHITENING OF THE OUTPUT SIGNALS 

In the BSS of convolutive mixtures， Sun and Douglas clearly distinguished mul­
tichannel blind deconvolution from the convolutive BSS [12]. Multichannel blind 
deconvolution tries to make the output both spatially and temporally independent. 
The sources are assumed to be independent from channel to channel and from sam­

ple to sample. On the other hand， convolutive BSS tries to make the output mutually 
independent without deconvolution. Since speech is temporally correlated， convolu­

tive BSS is appropriate for the task of speech separation. If we apply multichannel 
blind deconvolution for speech， it imposes undesirable constraints on the output， 

causing undesirable spectral equalization， ftattening， or whitening. 

It can be observed that the spectrum of the output signals is ftattened due to our 
new initialization method. Additionally， the algorithm contributes to this whiten-

ウinhu

 

taA

 



ing of the spectrum because we are minimizing alI off-diagonal components of 

R�� (-k) for k = 0， . . .， M - 1， i.e.， we 訂e removing the time-dependencies of 

the speech signals. 百1Ìs whitening of the spectrum causes the speech signals to 
sound unnatural. 

To overcome this problem， we apply post-filters to our system. These filters 訂e
based on the method of removing the ambiguity of amplitude in frequency domain 
BSS proposed by Ikeda [7]. To the authors' knowledge， no post-processing method 

for time domain BSS using this principle has been proposed. The general idea is 
to transfer the separated output signals y (t) into the frequency domain and then 

solve the problem of irregular amplitude for each frequency bin. The observed 
mixtures X (ω) are described by X (ω) = H(ω) . s (ω) and X (ω) = W-1 (ω) . 
Y(ω). We can assume that， when sou民es are set at almost the same distance from 
a microphone array， the amplitudes of all elements of the mixing filter matrix H (ω) 
to be equal because the attenuation of all observed sound signals are nearly equal 
due to the small microphone spacing. The inverse of the unmixing matrix W (ω) is 
denoted as W-1 (ω) = [Wij1 (ω) ]. For the two叩eaker， two-microphone scenario 
we obtain: 

(10) 

(11) 

(12) 

(13) 

W41(ω)五(ω) + W121 (ω)九(ω)
1・51(ω) + 1・52(ω) 

W211 (ω)九(ω) + W221 (ω)九(ω)
1 .51 (ω) + 1・52(ω) 

X1 (ω) = 

X1 (ω) = 

X2 (ω)= 
X2 (ω) = 

We can now rescale the output signal Y1 (ω) in each frequency bin by multiplying 
YI(ω) wi th the factor W 111 (ω) so that the amplitude of X 1 (ω) in (10) is equal to 
the amplitude of X 1 (ω) in (11). The same process is applied to the output signal 

九(ω) so that the amplitude of X 2 (ω) in (12) and (13) are the same. Thus we 
obtain a dewhitening matrix V (ω) which is defined as V (ω) = diagW-1 (ω) 
The dewhitened output signals Y (ω) 訂e obtained by 

(14) 
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Y(ω) = V(ω)W(ω) X (ω) . 
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Figure 4: a) Output signal with whitened spectrum. b) Spectrum of output signal after post­
processmg. 
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The post-processing filter emphasizes low frequencies to restore the original 
spectral content of the source signals (Fig. 4). The algorithm without dewhitening 

。。《hu--A

 



returns too large SIR values because due to the emphasis of high frequencies， the 
smaller separation capability of our BSS system for low frequencies is not taken 
into account. Thus the dewhitening process is co汀ecting the too large signal-to­

interference ratio. We can observe that the obtained spectrum complies well with 
the original spectral content. 

EXPERIMENTS AND RESULTS 

Conditions for experiments 

The experiments were conducted using speech data convolved with the room im­

pulse responses of a real room (Fig. 5)， with the reverberation time T R = 300 
ms. Since the sampling仕equency was 8 kHz， the reverberation time corresponds to 
a room impulse response of 2400 taps. We used a two-element microphone a汀ay
with inter-element spacing of 4 cm. The speech signals arrived from two differ­
ent directions， -300 and 400• Two sentences spoken by two male and two female 
speakers selected from the ASJ continuous speech corpus were used as source sig­
nals [9]. We used six combinations of speakers and varied the length of the signals 
from one to eight seconds. We used the entire length of the mixed data for learn­
ing， and the same length for separation. In order to evaluate the performance， we 
used the signal-to-interference ratio (SIR)， defined as the ratio of the signal power 
of the target signal to the signal power stemming from the jammer signal. All SIR 
values， except the section examining the block length， were calculated by using the 
del1ノhitened separated output signals. 

5.73m 

loudspeakers 
(height: 1.35 m) 

I rt 1.1号 冷
2 . 1Sm ム立イ宍
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r∞mh剖ght: 2.70 m 

Figure 5: Layout of the reverberant room used in the experiments. 

Comparison of initial values 

We compared the performance of our proposed null beamforming initialization 
method with the conventionally used unity matrix initialization. The number of 
blocks B was set to 20 and the step size αwas 0.1. The length of the speech data 
was three seconds. 

It is generally known that time domain BSS works only in the case of mixtures 
with a short-tap FIR fiIter. Our experimental resuIts in Fig. 6 confirm that the perfor­

mance of conventionally initialized time domain BSS degrades for long unmixing 
fiIters. Our new null beamforming initialization method overcomes these difficulties 

and shows good results even when using long unmixing FIR fiIters. Hence we can 

cover the entire reverberation and achieve better separation results. 
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Figure 6: Relationship between SIR and filter length M for initialization with unity matrix 
and null beamformer (NBF). 

Relationship between separation performance and block length 

The adaptation rule in (θ9) converges only when the off-diagonal elements of 

R�bJ (←一k刈) a訂re mInlm
(b) the source signals are non-stationary， we obtain a new correlation matrix R �仰U for 

閃rηy内州blo∞ck a加n吋dR�1勾:DJ }hma儲制s tω帥o b悦e吋吋d副la勾gon叫Zおeωd f，おór all bloωcksωsbs幻lmu山I
the sepa訂ra瓜tiぬon pe釘rf，白órmance depends on the number of blocks B. The update rule can 
be seen as an independent-estimation of the unmixing matrix in each analysis block: 

Wi+l (k) =音{ムWb=l(k) + 
+ムWb=2(k) + 

(15) 

+ムWb=B(k)} + Wi(k) 

After estimating eachムWb (k)， we take the ensemble average over all local anal­
ysis blocks. An increase in the number of blocks B has the e百'ect that the ensemble 

average will be estimated over more samples， but the time average used to compute 
the correlation matrix in each block will be estimated over fewer time samples， due 
to the smaller block length. We carried out the experiments with a data length of 
eight seconds， an unmixing filter of M = 1024 taps， and a step size set to 0.01. 
The obtained results in Fig. 7 show that performance increases with the number 
of blocks until it is saturating when the block length becomes smaller than 1200 
samples (i.e.， B=50). This confirms that we obtain a new condition for every block. 
We observed that the saturation effect of the SIR is independent of data length and 
filter length and appe訂s always when the block length becomes smaller than 1200 
samples. It should be noted that the values in Fig. 7 co汀espond to the SIR b々fore
the post-processing step of dewhitening. 

Relationship between separation performance and unmixing filter length 

We investigated the inftuence of the unmixing FIR filter length on the separation 

performance. The optimum value for the number of blocks B was chosen according 
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Figure 8: Relationship between separation performance and unmixing filter length for various 
data lengths. 

to the results in the preceding section， and the step size was set to 0.01. 
In Fig. 8 it can be seen that the separation performance and the optimum filter 

length depend on the length of the observed mixtures. This was expected because 

shorter data means that the mixtures can be segmented into fewer blocks. There­
fore， we obtain a smaller number of correlation matrices that can be diagonalized 
simultaneously and hence the separation performance degrades. However， we are 
still able to achieve reasonable separation performance for a data length of a few 
seconds. 

When estimating long filters， we need more conditions， i.e. more analysis 
blocks， to determine all filter taps. Thus for a short data length of a few seconds， a 
shorter白lter length is more suitable. 

In conventional time domain BSS， the length of the unmixing FIR filter is usu­

ally restricted to a few hundred taps. To the authors' knowledge， no algorithm has 

been presented that can use very long unmixing白lters to deal with highly reverber­

ant environments. Our method is capable of estimating FIR filters on the order of a 
couple of thousand taps. Figure 8 shows that if the data length is sufl白cient， we can 

achieve better performance with long白lters that cover the entire reverberation. 
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CONCLUSION 

In this paper we propose a new time domain convolutive BSS algorithm for non­
stationary sources that utilizes geometric beamforming information. The novel ini­

tialization method provides superior separation performance and allows the use of 
long unmixing FIR filters to cover the reverberation time. Due to the whitening 
effect caused by the initialization and the algorithm， we applied a post-processing 

method to restore the spectral content of the sources. Our simulation results show 
that the algorithm is highly capable of separating real-wor1d speech signals under 
highly reverberant conditions and achieves good performance with short training 

data of a length down to a few seconds. 
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