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A b s t r a c t .  A linear predict ion approach reduces convolutive in- 
dependent  component  analysis ( I C A )  to the fol lowing three steps: 
Solut ion of  a set of  mul t ivar ia te  linear predict ion problems, a linear 
mul t ivar ia te  deconvolution problem with known mat r i x  coefficients, 
and f inally  solut ion of  a convent ional  ins tantaneous  mix ing  I C A  
problem. 

C O N V O L U T I V E  M I X I N G  

Independent component analysis (ICA) of convolutive mixtures is a prob- 
lem of considerable current interest in neural computation, say for modeling 
speech processing and furthermore has numerous applications in signal pro- 
cessing, see, e.g., [1, 2, 3, 4, 5]. 

Convolutive ICA in its simplest form concerns reconstruction of the L + 
1 mixing matrices and the T source signal vectors from a D-dimensional 
convolutive mixture, 

L 

x t - E A ~ s t - ~ ,  t - 1 , . . . , T .  (1) 
T--0 

The K-dimensional source signal vectors are assumed temporally indepen- 
T 

dent" p({st}) - r l t= l  p(st). We will assume L is so large that  the correlations 
in the process x can be explained by the mixing matrices. In fact, as noted 
by [1], possible auto-correlations of the source signals can not be identified 
without additional a priori information. In order to see this, note that  in the 
frequency domain the convolution becomes a product of Fourier transforms 

= (2) 

hence, any non-zero 'filter' h(w) can be multiplied on a given source if 1/h(w) 
is applied to the corresponding column of A~. Another observation is that  



for s tat ionary Gaussian white noise sources, the sufficient statistic (xtx[+5} 
does not allow full recovery of the mixing matrices since 

-I- 

T 

which is invariant to common rotation A~ -+ A~U of all mixing matrices. 
Most earlier approaches to convolutive ICA are based on frequency do- 

main est imation using (2). This leads to a set of conventional ' instantaneous '  
ICA problems, one for each frequency, and is hampered by a massive permu- 
tat ion problem which can be tamed by adding a prior source 'smoothness '  
information or other more elaborate schemes [2, 3, 4, 5, 6]. Another line of 
work is based on optimization of certain ' independency measures' ,  informa- 
tion maximizat ion or other heuristics, see e.g., [7, 8, 9, 10, 11, 12, 13]. 

Statistically motivated maximum likelihood schemes have been proposed, 
typically leading to high-dimensional optimizations w.r.t, to all elements of 
all mixing matrices, see e.g. [14, 1, 15]. The aim in this paper is to invoke a 
few simple approximations and use these and straightforward linear algebra 
to reduce the problem to a conventional ICA problem. We will avoid the fre- 
quency domain representation all together, hence, we will not further address 
the frequency component permutat ion problem. 

T E M P O R A L  U N - M I X I N G  

We will present a temporal  un-mixing procedure in which the key new ingre- 
dient is the use of prediction matrices, hence, this step is first i l lustrated on 
the well-understood problem of ins tantaneous ICA of temporal ly correlated 
sources. 

Consider the instantaneous mixing system 

xt - Ast .  (4) 

For simplicity we will consider square mixing so that  D - K,  i.e., A is a 
K × K matr ix  with real elements. Let the prediction matr ix  W~ be the best 
linear predictor of the series x 

x~+~ - W~x~ + e~+~. (5) 

Now right multiply (5) by the transposed source vector s~ and average w.r.t. 
the source distribution. If we assume {et+~s[} ~ 0, we obtain 

AC~ = W ~ A C 0 ,  (6) 

where the matrices Co and C~ are diagonal because the sources are indepen- 
dent and constant in t ime by stationarity. From (6) we learn that  the mixing 
matr ix  A is the matr ix  formed by the eigenvectors of the prediction matrix.  



The eigenvalues in the diagonal of the matrix C~-Co 1 are normalized auto- 
correlation values of the given source at the lag r. Equations (5-6) form an 
alternative route to the so-called Molgedey-Schuster algorithm, see [16, 17]. 
This algorithm is a quick (closed form) ICA approach, for mixing problems 
with time-correlated sources and where there are values of r for which the 
sources have different normalized auto-correlations, see e.g., [18] for a more 
detailed discussion and multi-media applications. 

Next we will show how the prediction matrix method can be use to sire- 
plify the convolutive mixing problem. The linear prediction approach is first 
generalized to a multi-lag linear predictor of the form, 

M 

xt+~ - ~ w ~ , x x t _ x  + et+~. (7) 
,~=0 

Substituting the convolutive process (1) we find 

L A4 L 

E A~-,st+~-_~-,- E W¢,:x E A~-,st_~-,_~. (S) 
r ' = 0  )~=0 r ' = 0  

As above we multiply (8) by s~ and average w.r.t, the source distribution now 
assuming, as discussed above, that the sources are temporally uncorrelated: 
(st+~s~} - Co~,o, to get 

A~C0 - W~,oAoCo,. (9) 

Furthermore, assuming that all sources have non-vanishing variance we can 
divide by the diagonal source covariance matrix Co to arrive at the result, 

A~ - W~,oAo. (10) 

Hence, the existence of the linear predictor (7) implies that the delayed mixing 
matrices are generated from the 'zero lag' mixing matrix by the prediction 
matrices. 

We estimate the prediction matrices W~,x by least squares. For each 
value of r separately we obtain a coupled set of equations, 

M 

- Z (11) 
A----O 

with the expectations estimated from the measured time series xt by {...} 
1 T E t  ('")" The linear equations in (11) are easily solved for W~,x by matrix 

inversion. For each value of r we will eventually need the set of L + 1 matrices 
W~,0, c.f., (10). Note that the coupling to the other prediction matrices (for 
a given 7) in (11) makes W~,0 different from the matrix obtained by making 
a linear prediction in (7) with M = 0. 



The generator property (10) is next used to simplify the convolutive mix- 
ing problem. First rewrite (1) 

L L 

xt -- E W~,oAost-~ - E W~,out-~,  • (12) 
T=0 T=0 

The signals ut - Aost form an uncorrelated series as they are proportional 
to the source series st. 

We have already estimated the prediction matrices from measured data, 
hence, (12) is a s tandard linear MIMO system with known matrix coefficients 
W~,o, and can be solved by a variety of methods producing an estimate of 
the time series fit, t - 1, ..., T. In this work we use the simple recursive filter 

L 
A - 1  - 1  u~ - Wo,oX~- ~ Wo,oW~,o~-~. (13) 

r = l  

This filter may become unstable, in such case a more robust regularized esti- 
mator  can be invoked, e.g., substituting 

W - 1  (t~l W ~ 0 W 0 ,  0 --1 W-I -  o,o --+ + ) o,o, (14) 

in (13). The remaining problem is to estimate Ao and the source signals st 
from the series 

fit -- A0st. (15) 

This is a conventional ICA problem with temporally independent source sig- 
nals and can be solved by any of the s tandard approaches. If the distribution 
of the source signals have positive kurtosis, as appropriate for, e.g., speech 
signals we can use the Infomax approach of Bell and Sejnowski [19]. 

Solving the problem (15) we obtain A0 and ~t, using (10) we can then 
A 

generate the matrices A~ using the W~,0's, hence concluding our recipe for 
solving the convolutive mixing problem (1). 

S I M U L A T I O N  E X A M P L E  

We illustrate the viability of the prediction based approach by a small simu- 
lation example. 

A D = K = 2 convolutive mixture was created by first designing a set 
of 2 x 2 mixing matrices (L = 30). These were next applied as in (1) to 
a i.i.d, random source signal (T = 30000). The distribution of the source 
signals was made non-gaussian, with positive kurtosis, by the transformation 
s = s ign (u ) ,  I~1 ~ where u ~ IV(0, 1). The source and the mixed signals can 
be seen in Figure 1, while the mixing matrices are shown for reference in 
Figure 7. 

In Figures 2-3 we first illustrate the excellent quality of the linear model 
in (7). 
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Figure 1: Simulation experiment involving L = 30 square mixing matrices (D = 2) 
convolved with i.d.d, long-tailed source signals. In the upper panel we show a 
short segment of the two convolved signals (xt), in the lower panel we show the 
corresponding segments of the two sources (st). The mixing matrices are shown in 
Figure 7. 

Figure 2 shows scatter plots of the prediction error (et+~, 7- = 3) vs. the 
source signal (st). It is important  for the generator relation (10) that  these 
time series are roughly uncorrelated. In Figure 3 we have further quantified 
this relation as function of the prediction horizon (T). As expected, the 
predictions become more and more noisy as we increase T, i.e., the relative 
power in et increases, however, more important  is it tha t  the correlation 
between the source signal and the error remains limited, supporting relation 
(10). 

Next we investigate the quality of the prediction matr ix  estimates. The 
ratios A ~ A o  ~ were computed with the ' true'  matrices used in the simulation. 
In Figure 4 we compare these matrices with the matrices est imated from data,  
the match is good and the other four channels are of similar quality (data 
not shown). 

The MIMO problem is solved using (13). The relative reconstruction error 
was small ( ( ( x t -  ~t)2>/((xt) 2> < 10-6). Using our in-house implementat ion 
of the Bell and Sejnowski algorithm 1, instantaneous ICA was applied to the 
resulting time series fit. The est imated sources are compared with the ' true'  
sources in Figure 5 and the consistency is remarkable. 

Using the reconstructed A0 we est imated the remaining matrices A~ us- 

1 MatLab toolbox available from www. imm. dtu. dk/cisp 
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Figure 2" Simulation as in Figure 1. The scatter plots illustrate the dependency 
between et+~ ( w -  3) and st, c.f. (7). 

o• o.8 

o.6 
n- 
o 

o.4 

m 

u o.2 

~r 

\ 

. . . . . . .  ~->~--.~ . . . . . . . . . .  0 . . 0 . . 0 - 0 - 0  0 o - e - ~  

I 
--0"20 5 10 15 20 25 30 

PREDICTION HORIZON (tau) 

Figure 3: Simulation experiment as in Figure 1. We show the relative prediction 
error (the mean square error normalized by the signal variance) as function of 
the prediction horizon (w), and the correlation coefficients between el,t+~ and s2,t. 
While the predictions become increasingly random, the correlation coefficients stay 
in the range - 0 . 0 5 -  0.05, ensuring that the error in (10) is bounded. 

ing (10). The matr ix  elements A1,2,~ are compared in Figure 6 with the 
corresponding element of matrices found by generation using the true A0. 
Apart  from the absolute amplitude, these elements are in good agreement, 
indicating that  the approach has quite successfully solved the convolutive 
mixing problem. 
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Figure 4: Simulation experiment as in Figure 1. The estimated W-matrices (using 
(13)) compared favorably with the 'true' matrices W~,0 - A~Ao 1. 
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Figure 5: Simulation experiment as in Figure 1. We plot the true sources of the 
simulation experiment vs. the reconstructed sources. The sign and the ordering of 
the reconstructed sources have been modified for clarity. The reconstructed sources 
are well aligned with the true sources, this is highly non-trivial for convolutive 
mixtures. 

C O N C L U S I O N  

We have proposed a linear prediction approach to the convolutive ICA prob- 
lem. Within a linear prediction assumption and linear algebra, the problem 
is reduced to the following three steps: Solving a set of multivariate lin- 
ear prediction problems, solving a linear multivariate deconvolution problem 
with known matrix coefficients, and finally solving a conventional instanta- 
neous mixing ICA problem. A small simulation example showed that the 
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Figure 6" Simulation experiment as in Figure 1. The recovered matrix elements 
A2,1,~ (bottom row) are compared with true matrices (upper row) and the matri- 
ces obtained by multiplying the prediction matrices W~,0 on the true A0-matrix 
(middle row). 

approach is able to accurately estimate the mixing matrices and the source 
signals. We are currently trying to identify proper conditions for the linear 
prediction assumption and also to invoke more robust schemes for solving the 
MIMO problem. 
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