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ABSTRACT 
 

Speech segregation from acoustic interference is a very challenging task. 
Previous systems have dealt with voiced speech with success, but they cannot 
handle unvoiced speech. We study the segregation of stop consonants, which 
contain significant unvoiced signals. We propose a novel method that 
employs onset as a major cue to segregate stop consonants. Our system first 
detects stops through onset detection and Bayesian classification of acoustic-
phonetic features, and then performs grouping based on onset coincidence. 
The system has been tested and performs well on utterances mixed with 
various types of interference. 
 
 
1. INTRODUCTION 
 

The segregation of speech from acoustic interference is required in many 
applications, such as speech recognition and hearing aids design. Currently, no 
method performs this task well in real environments. Listeners extract speech 
signals through a process called auditory scene analysis (ASA), in which the time-
frequency regions dominated by the target speech are identified and grouped into 
a stream [2]. Previous speech separation efforts based on ASA principles utilize 
harmonicity as the major ASA cue, hence are limited to voiced speech [3] [4]. To 
deal with unvoiced speech, other ASA cues must be explored. 

In this paper, we address the problem of separating stop consonants from 
interference. Stop consonants contain /t/, /d/, /p/, /b/, /k/, and /g/, which occur 
frequently in natural speech. A stop usually starts with a closure [10], which 
corresponds to the stop of airflow in the vocal tract, and a burst, which 
corresponds to a sudden release of air. As an example, the waveform of a stop /g/ 
and its spectrogram are shown in Fig. 1(a) and 1(b). Consistent with ASA 
principles [2], our objective is to identify the time-frequency regions where stop 
sounds are dominant, and grouping them into a target stream. Because the closure 
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of a stop consonant contains little acoustic information, we will focus on 
separating stop bursts.  

Since the acoustic realization of a stop burst is mainly unvoiced, it cannot be 
separated based on harmonicity. Nevertheless, at its onset, a significant intensity 
increase happens across a wide frequency range (see Fig. 1(b)). Therefore, we can 
identify stop bursts by detecting their onsets, and then group them based on onset 
coincidence. Note that onset is an important ASA cue [2]. To detect the onsets of 
stop bursts, an acoustic mixture is first decomposed through an auditory 
filterbank. Then an onset detector identifies stop candidates by detecting local 
onsets in each filter channel and integrating information across all the channels. 
Finally, to distinguish true stop bursts from burst-like interference, these stop 
candidates are further classified through a Bayesian decision rule on auditory-
acoustic features. Here three features are employed: burst duration, auditory 
spectrum, and relative intensity. Prior probabilities for these features are obtained 
from a training dataset, which contains all utterances from the training set of 
TIMIT database for stops, and 18 natural sounds for interference.  

This paper is organized as follows. Sect. II and Sect. III describe details of stop 
detection and classification. Sect. IV presents the results of classification and 
grouping. A brief discussion is given in Sect. V. 

 
 

2. ONSET DETECTION  
 

The input signal is sampled at 16 kHz and normalized into 80 dB sound pressure 
level. It is first analyzed by a model of auditory periphery, which includes cochlear 
filtering and auditory nerve transduction. We use an auditory filterbank with 150 
gammatone filters [7] centered from 80 Hz to 7 kHz to model cochlear filtering, 
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Figure 1. Waveform (a) and spectrogram (b) of /g/ in word “good”; corresponding 
auditory nerve activity (c) and smoothed nerve activity (d) in a channel centered at 1 
kHz. 
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and the Meddis model for neural transduction [5]. The output, in the form of 
auditory nerve activity, is decomposed into 20 ms frames with 10 ms frame shift. 

We first detect onsets in each filter channel. The Meddis model exhibits 
saturation and fast adaptation that can be conveniently used for onset detection. An 
onset of an acoustic event in a frequency band corresponds to a large intensity 
increase in the response of the corresponding gammatone filter. Following the 
increase, the auditory nerve activity increases rapidly to a significant level and 
then decreases to a steady state. As an example, Fig. 1(c) shows the nerve activity 
from a channel centered around 1 kHz for the input in Fig. 1(a). Based on the 
above analysis, we propose to detect onsets as follows. First, to remove some 
small intensity fluctuations, each auditory nerve response is smoothed with a 
lowpass filter, and its first derivative is computed. Since a large increase 
corresponds to a large derivative, we identify onsets by marking peaks that exceed 
a certain threshold (to eliminate spurious peaks due to small intensity fluctuations 
that do not correspond to onsets). Our onset detector is similar to the standard 
Canny edge detector in visual processing, in which Gaussian smoothing performs 
lowpass filtering [8].  

Here, we use a lowpass filter with transition band from 30 Hz to 80 Hz. Its 
passband ripple and stopband ripple are 0.1 and 0.02, respectively. Fig. 1(d) 
illustrates the smoothed nerve activity corresponding to Fig. 1(c). Let a(c,t) be the 
smoothed auditory nerve response in channel c at time t. Its derivative is 
approximated by a(c,t) − a(c,t−τ). τ is a constant that corresponds to the average 
increase period of the nerve activity for stop bursts, the duration from a local 
maximum of a to the preceding local minimum (D in Fig. 1(d)). From the training 
set, we obtain τ = 14.375 ms. Since the derivative corresponding to an onset is 
generally greater than the difference between the average steady-state nerve 
activity and the spontaneous nerve activity (see [5] for more details), peaks above 
this difference are marked as channel onsets.  

For stops in the training set, except for a few weak stops, they trigger onsets in 
10 or more adjacent channels simultaneously. Therefore, when 10 or more 
adjacent channels have onsets at a particular time, the detector will identify a stop 
candidate there.  

 

3. STOP CLASSIFICATION 

Since detected onset candidates may correspond to burst-like sounds from 
interference, they are classified based on auditory-acoustic features. Let H0 denote 
a hypothesis that a candidate is from interference, and Hj a true stop. Here j = 1, 2, 
…, 6, corresponding to /t/, /d/, /p/, /b/, /k/, and /g/, respectively. Let X be the 
feature vector for a stop candidate, and p(Hj|X) the posterior probability of Hj 
given X, for j = 0, 1, …, 6. According to the Bayesian decision rule, the candidate 
is classified as a stop if p(H0|X) is not the maximum among them. Since our 
objective here is to distinguish true stops from bursts from interference, we do not 
treat it as an error if a stop is classified into another type of stop. As a result, let 
HS denote a hypothesis that a candidate is from a stop. To achieve the minimum 
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error rate of classification, a candidate is classified as a stop if and only if p(H0|X) 
< p(HS|X). Applying Bayesian formula, we have: 
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The key to construct a good classifier is to choose appropriate features. 
Previous research suggested that the following features characterize stops: 
formant transitions, burst spectrum, burst amplitude, durations, and voicing of the 
closure (see [1] for example). Since our main goal is to separate onsets from 
interference, we shall choose the distinctive features that are robust to acoustic 
interference.  

We use the burst duration as the first feature, which is obtained as follows. 
First, we define the auditory spectrum at time t, S(t), as: 

)),150(,),,2(),,1(()( tatatat L=S .               (2) 

We call S(t) auditory spectrum since it is obtained from the output of the auditory 
filterbank. For a stop candidate m, let tm be the time where a stop candidate is 
identified, and T(tm) the time interval centered around tm so that for any t∈T(tm), 
the cross-correlation between S(t) and S(tm) is higher than 0.6. That is,  

)(�6.0)(ˆ)(ˆ
mm tTttt ∈>• SS .               (3) 

Here, )(ˆ tS  is the normalized auditory spectrum, which has zero mean and unity 

variance. The burst duration, dm, is the length of T(tm). 
Each stop phoneme has a particular articulatory gesture, which gives it unique 

spectral characteristics [10]. For each stop phoneme, the average auditory 
spectrum within the training set, as shown in Fig. 2, is obtained to capture its 
spectral characteristics. Note that phonemes with the same place of articulation 
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Figure 2. The average auditory spectra of stops: (a) Circle: /t/; line: /d/ (b) Circle: /p/; 
line: /b/ (c) Circle: /k/; line: /g/. 
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[10] have similar average auditory spectra. For a stop candidate m, the cross-
correlations between its average auditory spectrum in T(tm) and these templates 
quantify their similarities. The six cross-correlations are denoted by cm = (cm,1, cm,2, 

…, cm,6), corresponding to /t/, /d/, /p/, /b/, /k/, and /g/, respectively.  
The intensity of a stop burst is related to the intensity of neighboring voiced 

speech [10], while the intensity of interference is generally independent from 
speech. Let I (m) be the average intensity of a candidate m, and IV the average 
intensity of the input signal in the nearest voiced portion. The relative intensity of 
it, denoted by rm, is defined as: 

]/)([log10 10 Vm ImIr = .                      (4) 

To compute I (m), the intensity of the output from every channel (gammatone 
filter) in T(m) is calculated. The channel with the highest intensity is selected, and 
I (m) is the average intensity of the 10 adjacent channels centered at the selected 
channel. IV is computed in a similar way. 

  We use these three features for classification. More specifically, for a stop 
candidate m, we first use maximum likelihood to identify the stop phoneme j*  that 
is most similar to candidate m according to (dm, cm,j, rm). That is,  
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j
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Note that the above decision does not determine whether the candidate comes 
from interference. Then, Xm = ( dm, cm,j* , rm) is used as the feature vector for 
classification in (1). For simplicity, we approximate p(Xm|HS) with p(Xm|Hj* ). 
Therefore we have: 
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To estimate the likelihood, let Nj be the set containing all the stop phoneme j 
from the training set. We find that the distribution of a certain feature x within Nj 
cannot always be approximated well using a model-based approach. Therefore, we 
estimate p(x|Hj) through the following Kernel estimation [9]: 
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Here, n is the size of the set Nj and K is a Gaussion Kernel. h is the smoothing 
parameter obtained as follows:  

  xn
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where σx is the variance for feature x of the samples within set Nj. For more 
details, see [9]. Through (7), we estimate p(d|Hj), p(r|Hj), and p(cj|Hj), for j = 1, 2, 
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…, 6. Similarly, p(d|H0) and p(cj|H0) are estimated from candidates from the 
interference in the training set.  

As an example, the histograms and estimated likelihood of d, c, and r for /t/, 
and those of d and c for interference in the training set are shown in Fig. 3. In 
addition, since r is the ratio between the intensity of a candidate and voiced 
speech, we cannot estimate p(r|H0) from interference in the training set. 
Therefore, we simply use a uniform distribution from –70 dB to 10 dB as p(r|H0) 
with the following considerations. First, the onset detector generally will not be 
sensitive to signals that are more than 70 dB below voiced speech. Second, stops 
are seldom more than 10 dB above voiced speech.  

To determine their independence, the mutual information among these features 
is computed. The obtained mutual information is very small for each hypothesis. 
As a result, we treat d, c, and r as independent given each hypothesis, which will 
greatly simplify the problem. Finally, for a candidate m, we have 
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The ratio of p(H0) and p(HS) varies considerably under different circumstances. 
For simplicity, we estimate p(HS) as the average number of detected stops per 
second of unvoiced speech, and p(H0) the average number of detected candidates 
per second over different interference. From the training set, approximately we 
have p(H0) /p(HS) = 1. 

The transition between a stop burst and the following voiced phoneme provides 
useful information and could be used as another feature. However, the formant 
transition from a stop to the following voiced phoneme is very difficult to obtain. 
In addition, it is closely related to the burst spectrum. The voicing of the closure is 
not robust when interference is strong. Therefore, they are not employed. 
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Figure 3. (a) White bar: the histogram of c1 for stop /t/; black bar: the histogram of c1 
for interference; solid line: estimated p(c1|H1), solid line: estimated p(c1|H0). (b) White 
bar: the histogram of r for stop /t/; solid line: estimated p(r|H1). (c) White bar: the 
histogram of d for stop /t/; black bar: the histogram of d for interference; solid line: 
estimated p(d|H1), dash line: estimated p(d|H0). 
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4. RESULTS 
 
Detected stops are segregated through grouping signals starting simultaneously 

with them. More specifically, for a detected stop m, if any channel contains an 
onset, a speech-dominant area in this channel is identified. This area is from the 
local minimum of smoothed nerve activity preceding T(tm) to the local minimum 
of smoothed nerve activity following T(tm). It contains the major part of the burst 
since a local minimum of smoothed nerve activity generally corresponds to the 
onset or the offset of an acoustic event. Time-frequency (T-F) units overlapping 
with this area are marked as speech dominant. A T-F unit corresponds to input 
signal in a certain channel and at a certain frame. A binary mask is constructed by 
assigning 1 to a marked T-F unit and 0 otherwise. The segregated stop signal is 
resynthesized through the binary mask, which retains the acoustic energy from the 
mixture corresponding to 1’s and rejects that corresponding to 0’s (see [3] for 
more details). 

We tested the above method with 10 utterances, which are randomly chosen 
from the test part of TIMIT database, mixed with 10 intrusions: white noise, pink 
noise, airplane noise, car noise, factory noise, noise burst, clicks, bar noise, a 
firework show, and rain. Neither the utterances nor the intrusions are included in 
the training set. To evaluate the performance, let EM be the percentage of missing 
stops, which is the percentage of undetected stops among all the stops. Let EF be 
the percentage of false detection, which is the percentage of bursts from 
interference among all the detected stops. EM and EF at different overall SNR 
levels are shown in Table 1. EM increases significantly as SNR decreases since 
stops are more seriously corrupted as interference becomes stronger, while EF 
increases moderately. Note that the Bayesian classifier is designed to distinguish 
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Figure 4. The percentage of missing stops with respect to local SNR 
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stops from interference. Therefore, we do not count detected bursts that are 
actually onsets of other phonemes in target speech when calculating EF. This type 
of error is not harmful for speech separation since it in essence includes speech 
signals other than stop consonants, while the goal of speech separation is to 
remove interference.  

To gain more insight into the performance related to the energy relationship 
between a stop and local interference, we calculate the local SNR. For each stop, 
the local SNR is computed with the whole burst part and 30 ms of the closure. The 
EM within a local SNR ranges is shown in Fig. 4. The last data point is the EM for 
stops whose local SNRs are larger than 25 dB. Other points correspond to local 
SNRs with 5 dB increments from 0 dB to 25 dB. When the local SNR is higher 
than 5 dB, EM is around 10%. Note that due to the small amount of data within 
these local SNR ranges, the value of EM fluctuates around 10%. As local SNR 
decreases to 0 dB, EM increases to above 35%  

 
Overall SNR (dB) EM(%) EF(%) 

30  3.3 1.9 
20  10.3 5.9 
10 33.0 14.6 

0 75.5 23.6 

Table 1. EM and EF 

To evaluate the performance of grouping, the speech resynthesized from an 
ideal binary mask is used as the ground truth for target speech (see [4]). The ideal 
binary mask is constructed by assigning 1 to a T-F unit where speech before 
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Figure 5. The percentage of energy loss with respect to local SNR 
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mixing is stronger than interference and 0 otherwise. The use of ideal masks is 
supported by the auditory masking phenomenon: within a critical band, a weaker 
signal is masked by a stronger one [6]. In addition, an ideal mask yields excellent 
recognition performance. Let O1(t) denote the stop signal resynthesized from the 
ideal binary mask, and O2(t) the separated stop signal. Let e1(t) be the signal 
present in O1(t) but missing from O2(t), and e2(t) the signal present in O2(t) but 
missing from the speech resynthesized from the ideal binary mask. The 
percentage of energy loss, PEL, and that of noise residue, PNR, are calculated as 
follows [4]: 

∑∑=
ttEL tOteP )()( 2

1
2
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2
2
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Overall SNR (dB) PEL (%) PNR (%) 

30  14.61 0.07 
20  21.70 0.86 
10 35.00 6.42 
0 76.67 14.42 

Table 2. Average PEL and PNR 
 
Average PEL and PNR at different overall SNR levels are shown in Table 2. The 

system performs well when SNR is high. As SNR decreases, PEL increases 
significantly to 77% while PNR increases to 14%. The average PEL for stops with 
respect to local SNRs is shown in Fig. 5. PEL is around 30% when the local SNR 
is higher than 5dB. It increases to more than 55% as the local SNR decreases to 
0 dB. Two types of error account for the energy loss: missing stops and signals of 
detected stops that are not grouped into the segregated speech. The first one gives 
100% energy loss for each missing stop, while the second one gives 
approximately 20% energy loss for each detected stop. Note that the plot in fig. 5 
has a similar pattern as that in fig. 4, which indicates the relationship between 
percentage of missing stops and percentage of energy loss. 

 
5. DISCUSSION 

 
We have proposed a method to separate stop consonants, which employs onset 

as a major ASA cue. This method is able to detect stops and group their frequency 
components from interfering signals. Onset provides important information for 
speech segregation, which may be a key to separate unvoiced speech. The onset 
cue has been studied in previous systems, e.g. [3], but its utility has not been 
demonstrated. Our approach, i.e., onset detection, feature-based classification, and 
subsequent grouping, provides a general way to utilize onset information for 
unvoiced speech. With a comprehensive training, our system may also be adapted 
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to deal with fricatives and affricates. We include 18 natural sounds in the training, 
which are far from sufficient to account for general interference since the variety 
of natural interference is potentially very large, if not infinite. However, the 
number of most frequently occurring intrusions in a specific environment may be 
limited. In this case, our system could be trained in a more focused manner more 
adaptively to the particular environment and hence could perform better. 
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