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Abstract—Aggressive MOS transistor size scaling substan-
tially increase the probability of faults in NoC links due to
manufacturing defects, process variations, and chip wire-out
effects. Strategies have been proposed to tolerate faulty wires
by replacing them with spare ones or by partially using the
defective links. However, these strategies either suffer from
high area and power overheads, or significantly increase the
average network latency. In this paper, we propose a novel
flit serialization method, which divides the links and flits
into several sections, and serializes flit sections of adjacent
flits to transmit them on all available fault-free link sections
to avoid the complete waste of defective links bandwidth.
Experimental results indicate that our method reduces the la-
tency overhead significantly and enables graceful performance
degradation, when compared with related partially faulty link
usage proposals, and saves area and power overheads by up to
29% and 43.1%, respectively, when compared with spare wire
replacement methods.

Keywords-Networks-on-Chip; partially faulty link usage;
permanent error; flit serialization;

I. INTRODUCTION

While the aggressive transistor size shrinking improves
the chip capability, it also makes the manufacturing yield and
chip dependability increasingly serious concerns. Links in
Networks-on-Chip (NoC) are becoming more prone to var-
ious kinds of failures caused by manufacturing defects [1],
chip wear-out effects [2], or Process Parameter Variations
(PPV) [3] [4]. As a single permanent fault in a link may
degrade the system’s performance dramatically or even
render the chip useless, defective links need to be tolerated.

The most intuitive way to deal with defective links is
making use of fault-tolerant adaptive routing protocols [5]
[6]. Defective links are discarded and alternative fault-free
routes are chosen by the routing function to forward packets.
This ineffective usage of link bandwidth increases packet
delivery time if the route is not on the minimal path, and
decreases network throughput due to the congestion around
the faulty links.

For a given permanent wire fault rate, the fault probability
in a defective link is typically low, thus rather than com-
pletely discarding a defective link, a more effective approach

is to isolate the faulty wires in the defective links and to keep
on use the fault-free ones to transmit packets. While wires
with small frequency deviation due to PPV can be dealt with
by the methods described in [7] or [8], this paper proposes
a novel flit serialization method to tolerate permanent faulty
wires and to utilize partially faulty links.

In order to achieve the maximum utilization of the link
bandwidth, links and flits are divided into several sections,
and novel fault-tolerant transmitters and receivers, which are
placed inside the output and input ports of NoC routers,
respectively, are proposed to efficiently utilize the fault-free
sections. Adjacent flits are serialized at the transmitter side
to fit the narrowed link and are deserialized at the receiver
side. The proposed transmitter and receiver are transparent
to the router such that their utilization is not constrained
by the router architecture and implementation, nor by the
network topology.

The proposed link fault-tolerant architecture is com-
pared with equivalent state of the art solutions described
in [9], [10], and [11] in the context of a baseline NoC system.
The experimental results indicate that the proposed method
has following advantages:

1) The proposed method utilize the remaining link
bandwidth more efficiently than other partially
faulty link usage strategies and enables graceful
performance degradation of the NoC system.

2) When compared with the spare wire replacement
method, which has a similar fault-tolerant capabil-
ity, our approach reduce the area and the dynamic
power overheads by up to 29% and 43.1%, respec-
tively.

The rest of the paper is organized as follows. A brief sur-
vey of related work is presented in Section II. Architecture
and detailed implementation of the proposed transmitter and
receiver are described in Section III. Two options to combine
our proposal with Error Control Coding (ECC) logic are
illustrated in Section IV. Section V presents the simulation
result and Section VI concludes the presentation.
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II. RELATED WORK

Grecu et al. [1] proposed a simple link fault-tolerant
method that uses pre-fabricated spare wires to replace faulty
wires due to manufacturing, which can effectively enhance
the NoC interconnect yield. However, this approach has the
drawback of high silicon cost. Since wires do not scale
with transistors, and as the feature size of transistor further
decreases, the overhead brought by using spare wires is
expected to increase [12]. Lehtonen et al. [13] proposed a
cost effective method that divides the link into four sections
and provides each section with one spare wire. However,
this approach cannot tolerate the case in which more than
one faulty wire exist in the same section. To address this
drawback, an improved method was proposed in [9], where
the 4 spare wires are shared rather than exclusively owned by
each section. As the number of cross-points used for sharing
spare wires increases with the link width and the count of
spare wires, this approach is constrained by the link width
and wire error probability. To maintain a fault-free link, more
spare wires and cross-points are needed resulting in a wider
link and a higher permanent error probability.

Palesi et al. [11] and Lehtonen et al. [9] proposed the
method of using flit splitting to tolerate faulty wires. As
opposed to the spare wires replacement method discussed
above, extra transmission latency is introduced by using the
flit splitting method. In this approach, a link is divided into
four sections, and fault-free sections can be used to transmit
flits. However, the available bandwidth is reduced to half
even if only one section is defective, and if faulty wires
exist in every section, the link has to be discarded. In the
remainder of this paper, we name this method as Simple Flit
Quad Splitting (SFQS).

A packet rebuilding/restoring algorithm is proposed by
Yu et al. [14] to utilize the links with reduced bandwidth.
To be transmitted on the defective link, every flit is split
into two parts (a big part and a small part). The first part
(the big part) of each flit is transmitted first in the narrowed
link, followed by a reassembled flit at the end of the packet
containing the rest (the small part) of the flits. The saved
fault free wires are used to replace the broken wires. This
method can efficiently utilize the remaining link bandwidth.
However, because an integral flit can only be rebuilt after
the reassembled flit has been received, this method cannot
be used in low latency routers with wormhole or Virtual-
Cut-Through (VCT) switching technology.

By noticing that the faulty wires are typically evenly
distributed, Vitkovskiy et al. [10] introduced a link recovery
mechanism named PFLRM, which is mainly comprised of
a flit shifter, a de-shifter, and a flit re-assembler. Using this
approach, the flits are first rotated at the transmitter side
according to the fault vector of the link and then transmitted.
At the receiver side, the flits are de-rotated and re-assembled.
The number of iterations of shift operation and transmission

to transmit a flit correctly is decided by the maximum width
of the faulty wire cluster in the link. At least two cycles (one
iteration) are needed to transmit a flit successfully even if
only a single faulty wire exists in the link. If 𝑚 broken wires
are clustered together, 𝑚 iterations are required. Although
this approach can theoretically be tolerant to a defective
link with an arbitrary number of faulty wires, the latency
overhead introduced by this approach can be significantly
high.

In summary, spare wires can preserve the performance but
introduce a high silicon overhead. By contrast, flit splitting
and PFLRM have low area overhead but introduce high extra
latency. The method proposed in this paper use a novel
serialization strategy to utilize the partially faulty links. It
significantly reduce the latency, when compared with flit
splitting and PFLRM, while maintaining a more reasonable
silicon cost, when compared with faulty wire replacement
method.

III. THE PROPOSED ARCHITECTURE

A high-level block diagram of the proposed partially
faulty link utilization strategy is depicted in Fig. 1. Similar
with the work proposed in [11], we divide the data link
into several sections, for example 4 or 8 link sections.
Accordingly, flits are divided into the same number of flit
sections. A Test Data Generator (TDG) and a Test Error
Detector (TED) are used to diagnose the link and generate
a fault vector to indicate the faulty link sections. Two
transmitter (TX) and receiver (RX) pairs with unidirectional
links are used to connect adjacent routers. TX and RX are
made aware about the health status of the link via the fault
vector. When the link is fault-free, flits can be transmitted
according to the normal protocol applicable to a healthy
link, bypassing the proposed flit deserialization unit at the
receiver side. When faulty wires exist in some link sections,
flit sections of adjacent flits are first serialized by the flit
serialization unit, and then transmitted via the fault-free link
sections. At RX side, the flit deserialization unit deserializes
all flit sections to reconstruct the original flits. We note in
here that since the number of control lines is much smaller
than the number of data lines, they can be protected by
Triple Modular Redundancy (TMR) method with a marginal
overhead. Moreover, ECC logic (not shown in Fig. 1) can
be added before (after) the flit serialization (deserialization)
unit to protect data from transient errors.

A. Link Diagnosis

TDG and TED diagnose the link and provide the fault
vector to the flit serialization and deserialization modules.
Unlike spare wire replacement or PFLRM, which require
the precise status of each wire, our method just need link
fault vectors at the section level. For example, if the third
section of a link (with four sections in total) contains faulty
wires, the fault vector of the link is marked as ‘1101’. Thus
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Figure 1. Proposed link fault-tolerant architecture.

the effort to do link diagnosis is reduced, when compared
with the complicated bit level link diagnosis methods in [13]
and [15].

Link testing is performed periodically and can be triggered
by an uncorrectable error detected by the ECC logic. Each
section is tested independently while data transmission is
still going on other sections. Test vectors are generated by
TDG at TX side and are transmitted on the section under
test. Received test vectors are analyzed by TED at RX side.
This process is repeated on each section until the link fault
vector is obtained. Because intermittent errors may have
the same syndrome as permanent errors when they happen,
sections which are marked as faulty in the previous test are
also tested, to prevent situations when vanished intermittent
errors are still disabling sections. At the end of the diagnosis
process the achieved fault vector is sent to the transmitter
and receiver control units.

B. Flit Serialization

The flit serialization unit is presented in Fig. 2. For the
sake of simplicity, we assume that both the flit and link are
divided into four sections, and the link width is 32-bit. We
note that the proposed principle is more general and can
be applied to wider links with more sections. To serialize
the flits, a link register (link reg TX) with a width of two
flits is used. The link register is divided into eight sections
and each section can be read and write independently. The
register is designed in this way such that a new flit can be
registered in the Least Significant Half (LSH) of the register
if there are flit sections in the Most Significant Half (MSH)
still waiting to be transmitted, and vice versa. If the link is
fault-free, only the MSH of the register is used, acting as
a conventional link register. Otherwise, flits are serialized
in link reg TX under the control of the flit serialize ctrl
unit. The serialization process is presented in more detail in
Section III-D. Multiplexers are used to select the flit sections
to be transmitted. The link sections containing faulty wires
that are indicated by the fault vector are not used for data
transmission. The signal flit type indicates the presence of
a new flit from the crossbar (output buffers are not used).

With a narrowed link, the flit is transmitted at a lower rate
on the link than on the crossbar within the router, thus a
data acceptable signal is added to disable the transmission
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Figure 2. Flit serialization unit - TX.
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Figure 3. Flit deserialization unit - RX.

requests when the buffer space in the serialization unit is
full and cannot accept a new flit. For networks that em-
ploy STALL/GO and ACK/NACK flow-control mechanisms,
data acceptable can be directly connected to the flow-
control signals. For networks that use credit-based flow-
control mechanism, a Virtual Channel (VC) can only request
for flit transmission when the credit in its downstream VC
is larger than zero, so the cancellation of requests does not
affect the implementation of the flow-control mechanism.

C. Flit Deserialization

The flit deserialization unit is depicted in Fig. 3. Similar
with the flit serialization unit, a link register (link reg RX) is
also employed. Multiplexers are used to select the valid sec-
tions from the link under the control of flit deserialize ctrl
unit. Relative sections of the link register are updated when
new flit sections are received. When the MSH or LSH of
the link register is full, one flit is recovered and can be read
out by the router. A flit type signal indicates the availability
of a new valid flit.

126



D. Flit Transmission Process

Fig. 4 graphically depicts the timing diagrams capturing
the flit transmission process specific to our method. When
the link is fault-free, a flit from the crossbar is loaded into
the MSH of link reg TX and then transmitted to the input
buffers of the downstream router directly (see Fig. 4(a)). At
the RX side, the flit deserialization unit is bypassed.

Fig. 4(b) presents the situation when one of the sections
is affected by faults. At TX side, flit 𝑎 floats at the output
port of the crossbar at the rising edge of 𝑐𝑙𝑘1 and is written
into the MSH of link reg TX at the rising edge of 𝑐𝑙𝑘2.
During 𝑐𝑙𝑘2 cycle, the first three sections of the flit 𝑎 (𝑎3,
𝑎2, 𝑎1) are transmitted via the three fault-free sections of
the link. At the rising edge of 𝑐𝑙𝑘3, flit 𝑏 is written into
the LSH of link reg TX. Flit sections 𝑎0, 𝑏3, and 𝑏2 are
transmitted in the same cycle. The signal data acceptable
is set to ’0’ in 𝑐𝑙𝑘3 such that no new flit may appear at the
output port of crossbar in 𝑐𝑙𝑘4. A wait cycle is inserted in
this way to wait for the last three sections of flit 𝑐 to be sent
in 𝑐𝑙𝑘5. The signals high reg state and low reg state are
used to indicate the status of link reg TX MSH and LSH,
respectively. Each signal is asserted once a flit is written into
the corresponding register part, and de-asserted in the clock
cycle when the data are read out.

At the receiver side (see Fig. 4(c)), flit sections are de-
serialized and reassembled into integral flits in link reg RX.
Valid flit sections are selected by input side multiplexers and
be written into the correct positions in link reg RX. Once
the MSH or LSH of the register is full, an integral flit is
recovered. The signals flit 1 recovered and flit 2 recovered
indicate the availability of recovered flits and control the
output side multiplexers to select the corresponding register
sections.

In principle, we can use finer section granularity to
achieve better performance. However this implies that more
and larger multiplexers are required, which may have a
negative impact on area and power consumption overheads.
The number of sections can be determined via a trade-off
process, which takes into consideration the targeted fault-
tolerant capability and the available silicon real estate.

E. Link Latency

The link latency when the proposed method is used to
continuously transmit different number of flits (flit number)
can be expressed as:

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =

⌈
𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑓𝑙𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟

𝑓𝑎𝑢𝑙𝑡 𝑓𝑟𝑒𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

⌉
. (1)

Where section number is the number of sections in the
link. For example, if 10 flits are waiting to be transmitted via
a partially faulty link, which has one defective link section,
the link latency is 14 cycles when the link is divided into
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Figure 4. Timing diagram of proposed mechanism (a) Timing diagram
for a fault-free link; (b) Transmitter side when one section contains faulty
wires; (c) Receiver side when one section contains faulty wires.

four sections, and 12 cycles when the link is divided into
eight sections.

By comparison, the link latencies of PFLRM and SFQS
are expressed as in (2) and (3), respectively.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑝𝑓𝑙𝑟𝑚 = (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒+ 1)× 𝑓𝑙𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟(2)

𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑠𝑓𝑞𝑠 =
𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑓𝑙𝑖𝑡 𝑛𝑢𝑚𝑏𝑒𝑟

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
(3)

Where cluster size in (2) is the fault cluster size in the
link, and available section number in (3) can have value 1,
2, or 4 according to the number of fault-free sections in the
link.

A comparison of link latency overheads when the pro-
posed method, PFLRM, and SFQS are used to continuously
transmit flits via a defective link is presented in Table I.
The link latency overhead is 0% if the link is fault free.
Note that the fault number in the table indicates the fault
cluster size in the PFLRM worst scenario, and the number
of faulty sections for the proposed method and SFQS. In the
best PFLRM scenario, the cluster size is always one. From
the Table we can observe that only when more than half
of the link sections are broken, the link latency overhead
of the proposed method reaches 100%. By comparison, the
overheads are at least 100% for both PFLRM and SFQS
methods.

If we assume that each wire has the same probability (𝑝𝑒)
to be permanently fault, the probability that the number of
faulty wires (𝑁𝑒) equals 𝑘 in an 𝑛-bit wide link can be
calculated using (4).
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Table I
LINK LATENCY OVERHEADS WHEN FLITS ARE TRANSMITTED CONTINUOUSLY

Fault number
Proposed Proposed PFLRM PFLRM

SFQS
4 sections 8 sections Best situation Worst situation

0 0% 0% 0% 0% 0%

1 33.3% 14.3% 100% 100% 100%

2 100% 33.3% 100% 200% 100%

3 300% 60.0% 100% 300% 300%

4 – 100% 100% 400% –

5 – 167% 100% 500% –

6 – 300% 100% 600% –

7 – 700% 100% 700% –

𝑃𝑁𝑒=𝑘 =

(
𝑛

𝑘

)
𝑝 𝑘
𝑒 (1− 𝑝𝑒)

𝑛−𝑘 (4)

In a 32-bit wide link, if 𝑝𝑒 = 10−5 [9], the probability of
𝑁𝑒 = 2 is 𝑃𝑁𝑒=2 = 4.96 × 10−8, while the probability of
𝑁𝑒 = 4 is 𝑃𝑁𝑒=2 = 3.60×10−16. This means that while it is
possible to have links with high fault degrees in an NoC, the
probability for this to happen in practical implementations
is rather low. Thus, in practice, we can expect that most of
the links are affected by a low number of faults in the same
time, in which case the proposed method is quite effective.

In extreme cases corresponding to large physical defects
multiple adjacent wires may get faulty. In such a case
PFLRM requires as many iterations as faulty wires to
successfully transmit a flit, which results in a large latency
overhead. Alternatively, to be able to face such defects, a
spare wire replacement method has to make use of multiple
spare wires, which results in a large area overhead. In the
case of the proposed method such a large defect will most
likely affect one or two link sections, thus it can better face
such cases at the expense of less area overhead.

IV. ECC INTEGRATION

ECC and retransmission are widely used effective meth-
ods to tolerate transient errors in communication. In a router
which embeds the proposed link fault-tolerant architecture,
ECC and retransmission logic can be used either outside or
inside of the proposed architecture.

If ECC is used outside of the link fault-tolerant archi-
tecture, i.e., the error coding logic is placed before the flit
serialization unit and the error decoding logic is placed after
the flit deserialization unit (see Fig. 5(a)), a powerful ECC is
needed to detect and correct transient errors in, not only the
data link, but also in the transmitter and the receiver. Because
our proposed architecture is transparent to the rest of the
router, ECC logic can be implemented in a conventional
way. The detection of transient errors in a flit that cannot be
corrected by ECC will trigger a request for retransmission
and the link diagnosis process.

Router Router
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coder
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ECC 

coder

...

ECC 

decoder

RX

ECC 

decoder

...

link_section_N
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Figure 5. Proposed architecture collaborate with ECC (a) ECC logic before
TX and after RX; (b) ECC logic after TX and before RX.

If ECC is used inside of the proposed architecture, i.e., the
error coding logic is placed after flit serialization unit and the
error decoding logic is placed before the flit deserialization
unit (see Fig. 5(b)), only transient errors that might appear
on the link are covered. Error coding and decoding logics
are added to each link section. If the error in a flit section
cannot be corrected by ECC, the flit section is marked as
invalid. As a consequence the flit it belongs to is invalidated
and the retransmission process is invoked. The drawback of
this approach is that the transmitter and receiver cannot be
protected by ECC.

V. PERFORMANCE EVALUATION

To put the implications of our link fault-tolerant ar-
chitecture in a better practical prospective, we evaluate
and compare it with other three tightly related proposals
presented in [9], [10], and [11], namely spare wire
replacement, PFLRM, and SFQS, respectively. To this end,
we implemented all these four link fault-tolerant methods at
RTL level by using Verilog HDL, and applied them in the
context of the NoC platform developed by Lu et al. [16].
The baseline router has 2 pipeline stages: look-ahead Rout-
ing Computation (RC) and combined VC/Switch Allocation
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Table II
POWER AND AREA OVERHEAD OF DIFFERENT LINK FAULT-TOLERANT METHODS

Link fault-tolerant methods Dynamic Power (𝑚𝑊 ) Leakage Power (𝑚𝑊 ) Area (𝜇𝑚2)

Basic router 18.20 / 0% 0.5269 / 0% 69560 / 0%

Proposed
4 sections 20.81 / 14.3% 0.7994 / 51.7% 89567 / 28.8%

8 sections 21.18 / 16.4% 0.9294 / 76.4% 96538 / 38.8%

Spare wires
4 26.71 / 46.8% 0.9959 / 89% 102383 / 47.2%

8 29.03 / 59.5% 1.0442 / 98.2% 116789 / 67.9%

PFLRM 19.30 / 6.0% 0.5789 / 9.9% 83326 / 19.8%

SFQS 20.27 / 11.4% 0.6807 / 29.1% 81288 / 16.9%

(VA/SA) in the first stage, and Switch Traversal (ST) in
the second stage. Link Traversal (LT), where the proposed
fault-tolerant architecture is applied, is implemented as a
separated pipeline stage. Each baseline router has 5 Physical
Channels (PC), and each PC is facilitated with 5 Virtual
Channels (VC), and a 4-flit deep, 32-bit wide buffer is
applied in each VC. Both the width of flit and link are 32,
which is most widely used in NoC proposals [17]. The router
and the link fault-tolerant modules are synthesized using the
Synopsys Design Compiler with TSMC 65-nm standard cell
as target technology. The target frequency is 500MHz.

A. Area and Power Overhead

The power consumptions and area overheads of all these
four different link fault-tolerant methods are presented in
Table. II. The proposed method is evaluated with two
versions containing 4 and 8 link sections, and the spare wire
is evaluated with two versions containing 4, and 8 spare
wires. From the Table we can observe that, the area and
power overheads of the proposed architecture are lower than
the ones of spare wire replacement, but higher than the ones
of PFLRM and SFQS. For example, with 8 link sections, the
area overhead of our method is 38.8%, which is 29% less
than the one of the spare wire replacement method (8 wires),
but 19% higher than PFLRM and 21.9% higher than SFQS.
The dynamic power overhead of the proposed architecture
with 8-section version is 16.4%, which is 43.1% lower than
of using 8 spare wires (59.5%), but 5% higher than SFQS
(11.4%) and 10.4% higher than PFLRM (6.0%). The leakage
power consumption of proposed method also falls between
spare wire replacement and other two partially faulty link
usage methods.

For all the fault-tolerant methods we have evaluated, the
main parts of the power and area overheads are caused by
multiplexers and registers. When compared with SFQS, the
proposed method with four link sections use twice more
multiplexers and registers in the transmitter and receiver, and
with eight sections the ratio increases to four. Therefore, the
area and power cost of our proposed method is higher than
SFQS. When the spare wire replacement method is used, an
𝑁 + 1 : 1 multiplexer is used at each end of a link wire
(𝑁 is the number of faulty wires can be tolerated) , leading

to higher area and power consumptions than all the other
methods.

B. System performance

To evaluate the performance of our proposed architecture,
we applied different fault patterns of the links with a range
of permanent wire fault rates (0.001, 0.01, 0.05, and 0.1)
to an 8 × 8 2D mesh NoC system. We assume that each
wire has the same fault rate 𝑝𝑒 and faults are uniformly
distributed across the links. For comparison and illustration
purpose, the fault rate 𝑝𝑒 is set higher than its typical
value [9]. The three partially faulty link usage strategies,
i.e., the proposed method with four (proposed s4) and eight
(proposed s8) link sections, PFLRM, and SFQS, are applied
to the NoC system and simulated with each fault pattern.
Synthetic uniform random traffic pattern and XY routing
protocol are used in the simulation.

Fig. 6(a), (c), (e), and (g) present the fault distribution
in each fault pattern and Fig. 6(b), (d), (f), and (h) plot
the corresponding performance curves of the NoC system
in terms of average latency when different strategies are
utilized. In the fault distribution figures, the height of each
column represents the proportion of defective links in the
NoC. In each column, different colors represent the pro-
portions of defective links with different fault degrees. For
example, the red parts of the columns denote the proportions
of links with two faulty wires (fault num), or links with two
unusable link sections in proposed s4, proposed s8, and
SFQS, or links with a fault cluster size of two in PFLRM.

As we can observe in Fig. 6(a), when the permanent wire
fault rate is low (𝑝𝑒 = 0.001), the percentage of defective
links in the NoC is 2.7%, out of each 91% contain one
faulty wire while the rest of them have two. For the proposed
method, this means that 94% of the defective links contain
one unusable section and 6% contain two. As it is indicated
in Table I, the link latency overheads on this defective
links are very low in proposed s8. Therefore, proposed s8
achieves the best performance as its average latency is very
close to the fault-free case. The performance of proposed s4
is lower than proposed s8 but still better than PFLRM and
SFQS. This can be explained by the fact that in links with
one defective section, both PFLRM and SFQS will double
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(d) performance when 𝑝𝑒 = 0.01;
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(e) fault pattern when 𝑝𝑒 = 0.05
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(f) performance when 𝑝𝑒 = 0.05;
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(g) fault pattern when 𝑝 𝑒= 0 .1
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Figure 6. Fault Patterns and Corresponding Performance of the NoC.

the link latency at least, while proposed s4 can keep the
latency overheads as low as 33.3%.

With the increase of 𝑝𝑒, more links contain faults and the
average faulty wire number becomes larger, leading to more
unusable sections and bigger fault cluster size in a link (see
Fig. 6(c), (e), and (g)). The average latencies increase for
all partially faulty link usage strategies. But the proposed

method still outperforms PFLRM and SFQS (see Fig. 6(d))
when the fault rate is not very high (𝑝𝑒 = 0.01).

When 𝑝𝑒 further increases to 0.05 (see Fig. 6(e) and
Fig. 6(f)), proposed s8 still has the best performance be-
cause the link latency overhead on more than 99% of
the defective links is less than 100%. As the number of
links which have 200% plus link latency in proposed s4
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and SFQS (more than two sections are broken) surpasses
PFLRM (cluster size larger than one), PFLRM achieves a
better performance than proposed s4 and SFQS but still
worse than proposed s8. We note that at such 𝑝𝑒 value,
totally broken links exist in proposed s4 and SFQS (all link
sections are broken). Because fault-tolerant routing is not
considered in this paper, the totally broken links are still
given one available section to maintain the simulation in-
tegrity. This cannot fundamentally affect the results because
only 1 or 2 such links may exist in the NoC at this fault
rate.

When the permanent wire fault rate is as high as 0.1,
97% of the links are defective and the average fault degree
is very high, as dipected in Fig. 6(g). Under this extreme
condition, proposed s8 exhibits equivalent performance as
PFLRM (see Fig. 6(h)). Proposed s4 and SFQS have so
many totally broken links that they are not considered. If
the fault rate keeps on increasing, totally broken links appear
in proposed s8 and as a consequence its performance gets
worse than the PFLRM one.

The number of faulty wires in a link equals the number
of spare wires required in spare wire replacement method.
From Fig. 6(g) we can observe that when the permanent wire
fault rate is 0.1, spare wire replacement method can maintain
98% of links available with 8 spare wires, while proposed s8
can achieve the same fault-tolerant capability with reduced
performance. As the fault degrees of links increase to the
fault pattern presented in Fig. 6(g), the performance of
proposed s8 degrades gracefully.

VI. CONCLUSIONS

A novel structure which can utilize partially faulty links
with graceful performance degradation has been presented.
The flits and links are divided into several sections according
to the required fault-tolerant capability and silicon budget.
When faulty wires exist in some of the link sections, flit
sections of adjacent flits are serialized at the transmitter
side, transmitted via the remaining fault-free link sections,
and recovered at the receiver side before they are written
into the input buffers. The proposed transmitter and receiver
are transparent to other parts of the routers thus other
function units, e.g., the ECC logic, can be implemented
conventionally. Experimental results demonstrate that the la-
tency overhead is significantly reduced by our method when
compared with related partially faulty link usage methods,
i.e., PFLRM and SFQS, while the area and power overheads
can be diminished by up to 29% and 43.1%, respectively,
when compared with the spare wire replacement method
with similar fault-tolerant capability. Our experiments also
suggest that for links which are too much affected by
faults, it might be a better choice to deem them as totally
broken and to route packets on alternative low latency links.
The combination of fault-tolerant routing and our proposed

partially faulty link usage method to achieve an intelligent
path selection constitute a future work subject.
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