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Abstract—This paper explores some of the mechanisms, com-
ponents, and abstractions that can be utilized in order to
encompass network slicing into a bigger picture for NFV delivery.
In particular, we make the case for Data Center (DC) infras-
tructure slicing, as part of the full NFVI foundation, to ensure
that the attributes prescribed to network slices are propagated
into the Data Center. We show how creating a VIM (Virtual
Infrastructure Manager) on-demand and dynamically allocating
a new VIM for each slice, rather than having one for the whole
DC, which can be beneficial for various precision scenarios.

Index Terms—infrastructure slicing, VIM, network slicing

I. INTRODUCTION

In the 5G landscape, different Infrastructure and Service
Providers can explore new business models and federate
their resources and service offerings in order to provide the
customers with the ability of instantiating end-to-end services
across multiple technological domains, which can be either
located in separate geographical location of a Provider, or even
outside of its own administrative borders. In order to facilitate
the allocation of resources for the above end-to-end services,
each 5G Provider / Operator may take advantage from using
complex software systems that take care of the management,
control and orchestration of all the resources to be allocated
for the deployment.

The current resource orchestration model is based on a
monolithic approach where resources available from different
technological domains are orchestrated as a whole, and service
elements allocated for different tenants usually share the same
distributed physical NFVI [1] [2]. Slicing is a move towards
segmentation of resources and deployment of NFV for the
purpose of enhanced services and applications on a global
shared infrastructure. Currently, many network slicing models
are built on top of virtualization technologies [3], and have
techniques that can take a slice of the network, but they do
not slice the Data Center. Rather they have the NFV elements
and the service elements scattered across the DC, under the
control of a remote orchestrator. This placement strategy and
lack of slicing is due to various reasons, but the consequence
is that they do not provide a slice of the DC, in the same way
as the network is sliced.

In this paper we present some of the mechanisms, com-
ponents, and abstractions that can be utilized in order to
encompass network slicing into a bigger picture for NFV
delivery. In particular, we make the case for a new approach
called Data Center (DC) infrastructure slicing, as part of the

full NFVI foundation, to ensure that the attributes prescribed
to network slices are propagated into the Data Center. This
approach is suggested as there are some situations in which it
is important to have a separate Data Center slice within a full
Network Slice, including telecom scenarios with guarantees,
CDN deployments, energy constraints and services with high
levels privacy and isolation requirements. These ideas were
first presented at the IETF 100 to the NFVRG [4].

Slices are expected to considerably transform the network-
ing perspective and enhance software-defined architectures
(e.g., SDN, NFV, etc.) by: (i) Abstracting away the lower
level elements, in various ways; (ii) Isolating connectivity at a
sub-network level; (iii) Separating logical network behaviours
from the underlying physical network resources; (iv) Allowing
dynamic management of network resources by managing
resource-relevant slice configuration; (v) Simplifying and re-
ducing the expenditure of operations; (vi) Support for rapid
service provisioning; and (vii) Support for NFV deployment

The slicing approach being discussed in this paper aims at
bridging the conceptual separation between a pure network
slice and a Data Center slice in order to create an end-to-
end slice that encompasses the different segments of a multi-
provider NFVI. To design this new slicing approach, we make
the case for creating a VIM (Virtual Infrastructure Manager)
on-demand and dynamically allocating a new VIM for each
slice, rather than having one VIM for the whole DC. This
strategy can be beneficial for those special situations.

To manifest this slice approach, we have designed and built
a DC Slice Controller which is able to allocate a slice of a
DC and create a per-slice VIM in an on-demand fashion. The
DC slice and the VIM are provisioned solely for use with the
service. Each slice and its associated VIM are independent
of the other slices and VIMs. In this way, customers will
never share servers, and the worry of having VMs of one
customer interacting or spying on another customer will be
eliminated. Also, the issue of one customer’s VM consuming
all the resources and starving other customer’s VMs is also
ameliorated to some extent.

The paper shows the architectural elements, designed using
the aspects presented in [5], that are required to support
such a model, as well as a set of layered abstractions using
slicing elements, showing how they all fit together for service
provisioning and integrate with an orchestrator.



II. BACKGROUND

The desire to provide services on top of slices, by logically
partitioning resources of a multi-domain software-defined in-
frastructure can be obtained through different slicing strategies
depending on which system elements provide the slicing and
at what layer the slicing is introduced.

Slicing at lower layers, namely the infrastructure, means that
upper layers, such as VIMs and Orchestrators do not need
to know about slicing. If a slice is presented to them, they
can carry on working with no change or minimal change. If
slicing is done in the Orchestrator, which uses an inter-domain
orchestrator API interaction and /or a peer to peer approach,
a slice is closer to a set of data structures in the Orchestrator
rather than a partition.

Consequently, there are inherent trade-offs when selecting
one or the other slicing approach. The actual decision on
which slicing approach will depend on various key aspects
of the service requirements under consideration, and can be
focussed on the technical desires of the provider, together with
the technical abilities and technological choices of the tenants.

The work presented here in this paper relies on slicing at
the infrastructure level. However, there are various projects and
initiatives that are doing slicing at the Orchestrator level. These
include SONATA [1], 5GEx [2] and 5G-Transformer [6], 5G
PAGODA [7], SLICENET [8]. This approach has the easiest
entry position, but is far more difficult conceptually as well as
to actually implement, as all the main software elements need
to be updated and adjusted to know about slices; and all of the
APIs, the modules, and internal function paths, and the data
structures need to be adjusted and adapted to factor in slices.

Slicing has been addressed in the past in Active / Pro-
grammable Networks research: where node operating sys-
tems and resource control frameworks produced the text
Programmable Networks for IP Service Deployment [9] during
the period (1995-2005). The MANA work [10] had 3 Slices
Capabilities: (i) Resource allocation to virtual infrastructures
or slices of virtual infrastructure; (ii) Dynamic creation and
management of virtual infrastructures / slices of virtual infras-
tructure across diverse resources; and (iii) Dynamic mapping
and deployment of a service on a virtual infrastructure / slices
of virtual infrastructure.

There are various standards organisations that have been
addressing slicing and creating various definitions. The ITU-
T Slicing model is defined in [11], and is the basic concept
of the Network Softwarization. Slicing allows logically iso-
lated network partitions (LINP), with a slice being consid-
ered as a unit of programmable resources such as network,
computation and storage. Slicing has also been addressed
in ITU-T IMT2010/SG13 [12]. There is the ETSI Report
on Net Slicing Support within the ETSI NFV Architecture
Framework [13], the 3GPP TR23.799 Study Item on “Study
on Architecture for Next Generation System” [14] which
addresses Network Slicing, and the ONF Recommendation
TR-526 “Applying SDN architecture to Network Slicing”. The
IETF Network Slicing - Revised Problem Statement [15] has

various documents on Architecture, Management, Use-Cases,
the Information Model, Autonomics, Gateway functions, and a
Framework for Abstraction and Control of Traffic Engineered
Networks (ACTN). There are the EU 5GPPP White Papers on
5G Architecture centred on network slicing (mark 1 - (2016))
[16]) (mark 2 - (2018)) [17].

The NGMN Slice capabilities [3] consist of 3 layers: 1)
Service Instance Layer, 2) Network Slice Instance Layer, and
3) Resource layer. The Service Instance Layer represents the
services (end-user service or business services) which are
to be supported. Each service is represented by a Service
Instance. Typically, services can be provided by the network
operator or by third parties. A Network Slice Instance provides
the network characteristics which are required by a Service
Instance. A Network Slice Instance may also be shared across
multiple Service Instances provided by the network operator.
The Network Slice Instance may be composed by none, one or
more Sub-network Instances, which may be shared by another
Network Slice Instance.

At a testbed level, GENI [18] is a shared network testbed,
i.e., multiple experimenters may be running multiple ex-
periments at the same time. A GENI slice is: the unit of
isolation for experiments; a container for resources used in an
experiment; and a unit of access control. GENI experimenters
add GENI resources (compute resources, network links, etc.)
to slices and run experiments that use these resources. The
experimenter that creates a slice can determine which project
members have access to the slice (i.e., the members of the
slice).

Additional characteristics, standard and research activities
on Infrastructure slicing and references can be found in [19],
also the 5G slicing survey [20]) have or are looking at recent
approaches to slicing.

III. DATA CENTER SLICING

In this section we discuss the concept of Data Center
Slicing and present an overview of some of the concepts,
mechanisms, components, that can be utilized in order to
encompass network slicing into a bigger picture for NFV
delivery.

We observe that slices can be requested from networks.
These combined with various service elements plus NFV are
presented in the form of a Network Slice. This is currently an
on-going work in many organisations such as ITU, IETF and
the IEEE. However, although Data Centers and the networks
are physically connected, there is an anomaly in that it is
not possible to request a slice from a Data Center to build a
distributed end-to-end slice that includes an ad-hoc partitioned
set of computation, storage and network resources. This work
is predicated on the idea that slices should also be a feature
that can be requested from Data Centers.

1) Data Center Slice: A Data Center (DC) slice is an
abstraction over the resources of a DC, and provides a mech-
anism to manifest infrastructure slicing, such that:

• a DC slice presents a collection of resources that look
like a DC, only smaller, and



• a DC slice can be controlled and managed independently
from any other DC slices.

Moreover, a DC slice can be allocated at any Data Center:
large centralised DCs, medium DCs, and mobile edge DCs.
Given the ability to use a DC slice, it becomes the basis for
control in virtualized environments. For most effective use in
full NFVI setups and for service deployment, the following
attributes of a DC slice are important:

• a DC slice needs to be as elastic as other elements in the
NFVI chain, and

• a DC slice should grow or shrink dynamically at run-time
under software control

For each DC Slice requested, there will be a VIM allocated
on-demand to service that DC Slice. This VIM will be only for
that one slice, and will be independent of the VIM managing
the rest of the Data Center.

Given that these on-demand VIMs for DC Slices are not
pre-existent, they can be allocated for any kind of lower level
virtualization, including Xen and KVM; or for containers such
as Docker and Kubernetes. As a consequence, this choice and
flexibility is not a feature pre-determined once by the DC
or the provider, but can now be an option for the customer.
Furthermore, as the VIM is allocated for the slice and is
independent from other VIMs, the customer can have a lot
more ability to adjust the configuration options for their VIM.
It also means that the customer could also be billed for their
VIM, as opposed to it being part of the shared infrastructure.

2) Slice Control: In order to create these DC Slices, as well
as affect their elasticity, and shutdown a DC Slice, we need
a control point. This is a management component deployed
in each domain which can allocate a slice. We call this the
Slice Controller. As stated, a VIM needs to be allocated for
each DC Slice, and using this VIM on-demand deployment
method, and its independence from other VIMs, a DC Slice
owner can manage, configure, and control their own VIM.

The VIM that is deployed does not even need to be the
same one that the DC owner uses for their own infrastruc-
ture. It could be one of many: e.g. OpenStack, OpenNebula,
OpenVIM and can be chosen by the customer from a pre-
determined catalogue of VIMs that the DC owner has. This
approach is possible as a VIM is just a piece of software; we
can allocate a new one any time; there is no restriction that
says there can only be one VIM in a Data Center.

As the chosen VIM can be a small lightweight one, or a
large one which is its own distributed system, the DC owner
need to decide how and where to deploy the VIM components.

A. Structural View

In the following discussion we present figures that show
the structural view of how a DC can be sliced. We see it
from the viewpoint of a single Data Center. These DC slices
are then composed, with network slices, into a single multi-
domain topology to form a full end-to-end slice.

1) One VIM Per DC: This approach of having one VIM
per Data Center, has just a single VIM for all of the resources
of the DC. This is the current and common situation in Data

Centers. With the one VIM per Data Center, the VMs for
the NFV and other generic service elements are scattered
across the infrastructure, and each slice is inter-mingled with
the others. The slice customers have very little control and
specification opportunities to do otherwise.

The attributes of the network part of the slice, such as
isolation, reserved resources, or service guarantees, do not
apply in the Data Center with the one VIM approach.

In figure 1 the different service VMs of different slices
being deployed across various hosts is presented. As the
picture shows, different service elements from different service
instances can coexist on the same physical hosts as there is
no concept of resource partitioning.

Fig. 1. Different service VMs of different slices across hosts

2) One VIM for multiple slices: The approach of one VIM
for all of the resources of the DC has many issues when we
introduce slices. In order to do more tasks or to do different
tasks, then the VIM gets more and more functionality, more
components, adapted elements, expanded APIs, and more. The
VIM becomes more complex and heavyweight. Such changes
would be required to add the concept of slicing to any VIM
that does not support such functionality. Even if the VIM were
able to deal with different slices at the VIM level, it still needs
to be even more complex to deal with this.

In figure 2 one VIM for different slices is presented.
However good this seems, this approach implies not only
adding more complexity inside the VIM itself (as pointed
out above), but it also forces all of the slices to have the
same strategies and policies, as there is only one VIM for
the whole DC. The owner of each slice does not have the
flexibility to control the slice how they wish, for example,
with different placement strategies or different approaches to
energy management.

3) One VIM per Slice: In our work, we have devised an
approach that overcomes these complexities, and allows us to
build modular and scalable slices. This approach has many
VIMs in a Data Center – one per slice. Each VIM can have
its own independent strategies and can be managed differently
from the other slices. The slice owner can configure their own
VIM as needed for their use, for example by setting their own
placement strategy [21].



Fig. 2. One VIM for multiple slices

Having multiple VIMs running in a Data Center brings some
new challenges and security issues, but these can mostly be
addressed in configuration and a careful security setup. It does
not require major rewrites to add slices to an existing VIM.
There is a need to ensure that each slice is isolated from the
others, and that a VIM of one slice cannot manage the wrong
resources – namely resources in another slice.

This one VIM per slice is a basic premise of our approach.
As a VIM is not special, and there is no requirement to have
only one of them per DC, it is just another piece of software
and can be started and stopped at any time. In figure 3 this
setup is presented, showing each VIM having been allocated
on-demand for each slice.

In the following section we present an architecture and
design of a system that manifests VIM on-demand operation.

IV. DESIGN FOR VIM ON-DEMAND

To facilitate the VIM on-demand approach we created
a design for a system that accepts requests for slices and
allocates a VIM on-demand which has been configured for the
specific resource requirements, as specified by the request.

As stated, in order to create DC Slices, and update their
elasticity, and shutdown a Slice, there needs to be a control

Fig. 3. One VIM per Slice, each allocated on-demand

point. This is a management component and we call this the
Slice Controller. It utilizes other support components for the
full functionality.

The following components have been designed:

• a Slice Controller — which is the main management
component that accepts requests for new slices, for
slice elasticity, and slice shutdown. It is composed of
a Resource Manager and a User Manager. All request
commands for the Slice Controller are passed through a
management interface, via a REST handler, that deter-
mines the function to be undertaken.

• a Resource Manager — which manages all of the re-
sources in the Data Center that are allocated to the Slice
Controller, and keeps track of which resources are free for
use in a slice, which ones have been allocated to slices,
and which hosts can be used for allocating new VIMs.

• a User Manager — that manages all of the users that
can access the Slice Controller. Only validated users can
request and allocate slices.

• a Slice Information Store — which is a database that
lists all of the slices and all of the resources in the slice,
together with meta-data such as the VIM REST entry
point, and the keys used for access to all the resources.

• a Slice Creator — which is directly responsible for
handling requests for slices and interacting with the
Resource Manager and the User Manager to determine if
it is possible to create a new slice. It asks the Resource
Manager if it is possible to allocate enough hosts for the
requested slice, and also if there is a host available to run
the on-demand VIM, for when it is needed. If the slice
creation is possible, as the resources are available, the
Slice Creator interacts with the VIM Factory to instantiate
the slice. If the VIM Factory succeeds then the Slice
Information Store is informed to keep those details and
resources for the slice, if there is a failure, the resources
are released, ready for more slice requests.

• the VIM Factory — which is able to allocate a VIM of
a particular type, and configure it to use the resources
which have been picked by the Slice Creator. There is a
plugin system that allows different VIM Factory objects
to be used for new kinds of VIM. Each VIM Factory
is responsible for creating the relevant configuration files
for the specific VIM, using the list of allocated hosts,
before starting the new VIM, and pointing that VIM to
that new configuration. The new VIM is placed on a host
under the control of the VIM Placement Manager. Once
the VIM is up and running and deployed, the REST entry
point can be returned to the customer.

• the VIM Placement Manager — which is responsible
for determining which host should be used to execute
a newly created VIM. Within our design, there are two
main choices: (i) the VIM is allocated to run is a special
space reserved for customer VIMs, or (ii) the VIM is
allocated to run inside the slice that the customer has
asked for. Technically there is no difference, however



there may be some differences for the customer with
respect to the amount of available resource in a slice,
and also the billing for the resources.

1) Run-time Setup: With a Data Center that has deployed a
Slice Controller, we will observe that there are multiple VIMs
each controlling their own slice. Each slice will have their
own allocated hosts, each running services from different cus-
tomers. No slice will be shared amongst the various customers.
In figure 4, we see the different slices and the services in them,
showing services in different colours.

For integration with other systems, there is a need for a
high level Orchestration Platform to deal with these requests
and the responses of the Slice Controller. We consider, for
future operations, there to be a new component which we call
a Slice Orchestrator to deal with these kinds of requests from
within the Orchestration Platform. In this way, DC slices can
be combined with other slices to form an end-to-end slice.

Fig. 4. Instantiation of services on different Slices

2) Allocation of new Slice: Here we show an overview of
the flow for the allocation of a new slice. For the allocation
a new slice, a REST call to the management interface of the
Slice Controller is made. To request a new slice, the customer
has to pass in attributes such as: size info, kind of low-level
VIM, e.g. Openstack, Kubernetes, to the Slice Orchestrator,
which will interact with the Slice Controller to actually request
the slice. If successful, the resources for the slice are allocated,
labelled with the Slice ID, and the Slice monitoring configured.
The VIM, plus any support components, are allocated for the
new slice. This could be one of OpenStack Vim + Heat or
Open Mano VIM + VNFM + NFVO. A handle to the new
VIM is passed back to the Slice Orchestrator, and from there
the High Level Orchestration Platform binds to the newly
allocated Slice and VIM. After this the Orchestration Platform
can start deploying NFVs and service elements into the slice.

3) Deallocation of a Slice: The Slice Controller within
the High Level Orchestration Platform is used to deal with
requests and the responses to the Slice Controller in order to
deallocate the slice. By deallocating a slice all of the VMs
running either NFVs or service elements will be stopped, and
the resources of the slice will be returned to the Data Center
for use in other slices.

4) Resource Control: To ensure the smooth operation and
maintain the isolation between the slices, the Slice Controller
needs to inform each VIM which resources are part of the slice
that is created. It uses the VIM Factory, which is responsible
for creating the relevant configuration files for the specific
VIM. In general, it uses a set of templates plus a list of
the allocated hosts to create these configuration files. It is
important that a VIM cannot manage resources that are part of
another slice. This is part of the isolation principle. For slice
Access Control, which has to be part of the slice management
functionality, we can allocate different keys for each slice, and
then use these keys to access the per-host virtualization engine.

The Slice Controller is also responsible for elasticity, and
so new hosts can be allocated to a slice, or removed from a
slice, at run-time under software control. The Slice Controller
makes these access control updates on-the-fly as a slice can
grow or shrink at runtime.

V. RESULTS

A. Proof of Concept

To demonstrate that the concept of VIM on-demand op-
erates as described and as expected, we devised a proof of
concept implementation showing that service provisioning can
be undertaken on top of a DC Slice. We have built a working
implementation of the Slice Controller to support the slicing
of the DC resources. To manifest this slice approach, we were
able to allocate a slice of a Data Center and create a per-slice
VIM in an on-demand fashion. The DC slice and the VIM
were provisioned solely for use with the service, as desired.
Each slice and its associated VIM are independent of the other
slices and other VIMs.

For the virtualization platform we used the UCL VLSP
system [22], which provides a lightweight virtual entity system
that allows for the evaluation of diverse situations, including
the testing of various management scenarios. The benefits of
VLSP over using a full hypervisor with VMs and a full OS are:
(i) better scalability, thus providing lower resource utilization
and better resource allocation; and (ii) quicker startup speed
and reduced heaviness, thus eliminating the issue where most
of the functionality is not needed.

VLSP provides a complete environment, including its own
VIM, for experimenting with scalable high-level management
techniques. It has features from the service management level
down to protocol stack, including a dynamic monitoring facil-
ity. VLSP allows us to experiment with a new and complete
management and control facilities over virtual infrastructures
using a virtual element that can be deployed as either servers
and routers.



We built a Java implementation of each of the components
specified in the Design section, plus the relevant supporting
components. It was not a major development undertaking, as
we had a clear design to work from, and the current proof of
concept implementation is 26 classes and 2900 lines of code.
For the VIMFactory, we built a mechanism to start the VLSP
VIM which is small and lightweight, although plugins can be
written for any VIM.

Some timing measures are shown, which highlight the speed
of this system. For Start Slice Controller, this is the time from
starting, for it to be ready to accept REST calls. For Start
Slice, this is the time from the start of the REST call, doing
the allocation of the slice, starting the VIM, and then returning
the handle to the VIM to the caller. For Stop Slice, this is the
time taken to stop the VIM, to release all the resources back to
the Slice Controller, and respond to the caller. All operations
were evaluated on a 4-core 2.6GHz Intel Core i7, with 16GB
memory, running MacOS. They are:

• Start Slice Controller – 1.2 secs
• Start slice – 6.5 secs
• Stop slice – 5 secs

Finally, we show the REST calls used to activate the main
functionality, together with the responses.

1) Create a slice: We POST in the slice request, which has
the size of the slice, in this case 2 hosts, and the type of the
VIM, namely VLSP.

curl -X POST -d ’{"size":"2","type":"vlsp"}’
http://localhost:7080/slice/

and here is the response, with the slice ID and the VIM details:

{"message":"create-slice","payload": {
"id":1753119492, "size":2, "type":"vlsp",
"vim": {"hostname":"washington","port":8888}
}, "timestamp":1536257419329}

2) Delete a slice: We request a DELETE, passign in the
slice ID, which was returned on the Slice Create call.

curl -X DELETE
http://localhost:7080/slice/1753119492

and here is the response, with the slice ID:

{"message":"delete-slice","payload {
"id":1753119492
},"timestamp":1536257800337}

This is a lightweight implementation of the Slice Controller
which can be used at micro DC edge cloud up to big DC. It
shows that the underlying concepts work as devised, and in
the following section we show how DC Slices and the Slice
Controller implementation has been used in the context of
large multi-domain orchestration scenarios.

B. Service Instantiation on a Multi-MANO sliced NFVI

This experiment was designed to demonstrate how network
services can be deployed on end-to-end slices that include
heterogeneous resources coming from different geographical
locations. More specifically, the experiment rational stems
in the concept of Hierarchically structured Service Provider

(HSP), e.g., a scenario where a company composed of two
geographically separate local offices, or divided into different
business units wants to deploy network services composed of
particular types of VNFs.

We suppose that the structure of the above network services
is complex and their deployment needs either to leverage
on resources or include specific requirements that a local
office cannot offer on its own dedicated NFVI. Assuming that
each local office already provides a MANO (Management and
Orchestration) system to its users, the fulfilment of end-to-
end services instantiation can be achieved via an inter-MANO
interaction, considering a north-south interface between them,
where each north-bound MANO interacts with its south-bound
counterpart, as it would do with a VIM.

To further demonstrate the feasibility of the VIM on-demand
approach discussed in this paper, the above mentioned HSP
scenario was extended to include a sliceable NFVI on which
the existing MANO systems could be utilised to perform the
instantiation of network services. The orchestration functions
already implemented within the utilised MANO systems did
not need any modifications, whereas the adaptation compo-
nents that normally interact with the whole NFVI resource
layer only required minor extensions to properly trigger the
on-demand creation of slices.

Figure 5 depicts a high-level view of the interactions hap-
pening in this scenario. The high level 5GEx Orchestrator
operated over (1) a lightweight domain (using VLSP [22])
with slicing capabilities via a VLSP Domain Adapter and (2)
a SONATA MANO through a dedicated adaptation layer, i.e.,
the SONATA Domain Adapter. The SONATA MANO operated
on top of another partition of the NFVI, again using the slicing
capabilities and on-demand instances of the VLSP VIM.

When the system was brought up, each Infrastructure
Adapter initiated the preparation of the sliced resource layer
in its own domain and in fact acted as the Slice Orchestrator
presented in Figure 4. The Adapter drove the creation of
different slices, so each one had its own on-demand instance

Slice
Controller

5GEx MANO

SONATA MANOVLSP 
Domain Adapter

SONATA 
Domain Adapter

Resource Orchestrator

slice i

VLSP VIMVLSP VIM

Resource Orchestrator

Slice
Controller

slice j

VNF1 VNF2

VNF3

VLSP 
Domain Adapter

Virtual Network

Fig. 5. Multi-MANO setup on a sliceable NVFI



of VLSP, created by interacting with the domain-local Slice
Controller, and offered to the MANO’s orchestration functions
as an abstract interface to interact with the allocated VIM.

In particular, after a successful slice creation, each Domain
Adapter received a handle to the on-demand allocated VIM
and was then able to provide the required information to
each Resource Orchestrator to perform the management of the
service elements running on that Slice, by creating / destroying
the lightweight VNFs implemented as VLSP virtual routers.

Once the different slice parts were properly set up in
separate geographical locations of the NFVI, the upper layer
Resource Orchestrator (i.e., the one in the 5GEx MANO)
was used as the entry point for the submission of the end-
to-end service represented in Figure 5. The three required
service components were instantiated both in the created
slice i (as VNF1) and slice j (as VNF2 and VNF3). The
Resource Orchestrator was also responsible for setting up of
the Virtual Network that interconnected the 3 different VNFs,
to implement a Service Function Chain.

C. Independent Implementation

To further highlight the concepts laid out in this paper,
the architecture and design ideas were also taken by an in-
dependent group at the Universidade Federal de Goias (UFG),
Goiania, Brazil, where they built their own independent im-
plementation of the VIM on-demand approach. In the paper
[23] they reported their results.

In order to verify the time required to instantiate an infras-
tructure with an operational VIM, they created pre-configured
virtual machine (VM) images for three distinct VIMs: VLSP
[22], Kubernetes [24], and OpenStack [25]. For VLSP, they
created a single VM image with all the installed components
in a Debian 9 OS (size: 1.8 GB). For Kubernetes, they created
two separate VM images, one for the Master Node (size: 2.1
GB) and the other for the Worker Node (size: 1.8 GB), both
of these were installed in Ubuntu Server 16.04 OS’s. Lastly,
for OpenStack, they created a VM image for the Controller
Node (size: 2.6 GB), and another VM image for the Compute
Node (size: 2.6 GB), both of these were installed on CentOS
7 Minimal OS.

The UFG team then performed tests with each of the three
VIMs. They collected the results over four iterations, gathering
the following results:

• Load time – the time required to load the VM image on
the nodes;

• Boot time – the time required to start the operating system
after the image has been applied;

• Configuration time – the time in which the necessary
settings for starting the VIM are performed;

• Service startup time – which represents the time for the
VIM to be running after configuration.

For each VIM deployment, they performed a run of 15 separate
tests, varying the number of nodes slightly in which the VIM
should be deployed. The minimum number of nodes being 2,
and the maximum number being 4 nodes. Figure 6 shows the
mean times collected from these runs. We observe that the

time to load the images (in grey) is the largest, and there is a
dependency on the size of the image to be loaded, with 1.8 GB
for VLSP and 2.6 GB for Openstack. However, the increase
in time in relation to the number of nodes is relatively small,
indicating the scalability of the solution. Boot time (in orange)
is also proportional to the loaded image size, but its value is
more or less the same regardless of the number of nodes used
in the tests. The configuration time (in green) and the Service
startup time (in blue) is dependent on the size of the codebase.
We can see that lightweight VIMs such as VLSP or container
managers such as Kubernetes start much quicker than the large
software deployed for Openstack.
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Fig. 6. Times discriminated by VIM, and number of nodes used.

This evaluation starts each of the VIM on-demand in their
own virtual machine. This approach has an overhead as we
see that the startup time is around 40,000 ms, which is around
6.5 minutes. Over the lifetime of a slice, this time is likely to
be negligible.

VI. CONCLUSIONS

Both Data Center Slices and the VIM on-demand concept
are an important contribution as there are some situations in
which it is extremely important having a separate Data Center
slice within a full Network Slice, such as in telecom scenarios
with guarantees, CDN deployments, energy optimisation and
services with high privacy and isolation requirements. Each of
these slices will be allocated and de-allocated in an on-demand
fashion, according to the customers’ requests. A customer
interacts with a Slice Controller and requests a new slice,
which will result in being isolated from the other slices.
Furthermore, as each slice comes with its own dedicated VIM,
the customers have a new level of control and flexibility and
do not have management as part of shared VIM.



In order to support service provisioning over a dynamically
sliceable NFVI, it is necessary to have mechanisms to support
the slicing of the network resources as well as of the Data
Center (DC) compute and storage resources. Such an approach
is highly suitable to the use of distributed clouds in the context
of 5G networks. We see that there is a link between on-
demand VIMs and NFV deployment capabilities. The VIM
on-demand model does not share the hosts between slices, or
allow one slice to allocate VMs to another slice. Since the
slice elements are only used by the customer of the slice,
this ensures isolation. These strategies are all part of a bigger
picture for control and orchestration in slices.

A consequence of this DC slicing approach is that many of
the DC optimization strategies which either assume access to
all hosts in a DC or assume that arbitrary VMs can be packed
into machines, are no longer valid. These optimizations now
work at the DC slice level, not a the whole DC level. On
the other hand, DC slicing allows many new opportunities for
Data Center owners, including:

• the ability to deploy different VIMs for different slices,
giving flexibility to the customer, and meaning the
provider is not tied in to one software solution,

• the ability to request and instantiate Data Center on
demand, as the customer can use an infrastructure slice
as one DC, if needed.

For future work we intend to expand on the conceptual
ideas founded in this paper. The desire for dynamic end-to-end
slices, composed of slice parts, used for service deployment,
all available at run-time under software control allows for a
layered, composable abstraction for slices that is more flexible
and controllable for the customer and also more flexible for
the infrastructure owner. It makes it easier for the providers
to allocate slices to the customer, while still giving out some
level of run-time adaptability and control.

We are currently working on a full architecture for a
radically different approach to the management of network
slices following the layered design strategies highlighted in
[5]. As we have addressed the slicing in Data Centers, we
see that there is much missing in the slicing of networks.
Although the network can support the infrastructure slicing
operations as a native function, the management parts for
dynamic, software controlled run-time operation are missing.
To support the equivalent features to those presented here, we
propose that networks support a WIM Slice controller, which
is a software component to allocate network slices on-the-fly,
and also support WIM on-demand, where a WIM will be a
management entity allocated just for the network part of the
slice. Using these components we will then have a symmetric
architecture, which we can build new functional layers on top.

Finally, there is further work is in the area of standards, for
API specification, for slice models, and for interoperability.
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