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Abstract—Data-driven networking in combination with ma-
chine learning is a powerful way to design and manage networked
systems. In this paper, we consider the case of participatory
collection of wireless traffic, which is an inexpensive way to
infer the wireless activity in a locality. Since such a type of
measurement system leans on the goodwill of the end users, it
opens a new venue for malicious actions. Possible consequences of
attacks are changes in the underlying communication substrate or
even the collapse of the network. We assess the influence of these
adversaries by identifying possible hostile actions and propose a
method to detect them based on unsupervised machine learning
models. Through an experimental campaign in various scenarios,
we show that attacks with critical impacts are systematically
detected, while unidentified attacks produce only a negligible
impact in the measurement system.

Index Terms—Network data analytics, data-driven networking,
wireless networks, collaborative measurements, and machine
learning in network measurement.

I. INTRODUCTION

Following the upward trend of wireless network traffic and
the impact of machine learning in the resolution of complex
problems, the data-driven networking (DDN) paradigm will
be a central component in the future of networks [1], [2].
The idea is to improve the design and the management of
networked systems through the analysis of network data and
measurements. In the context of Wi-Fi wireless networks, the
focus of this paper, several monitoring systems exist to record
wireless networking activity [3]–[6]. These systems aim at
capturing packet exchanges between nodes as accurately as
possible. The resulting dataset reflects the network behavior
and may serve multiple purposes, including the analysis of
user mobility or the improvement of the network quality of
service. For instance, an access point can be moved from an
over-provisioned to an under-provisioned area to increase the
overall capacity of the system.

Collecting wireless traffic and monitoring network activity
in small environments is relatively easy: all the information
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collected must first be logged into data traces, which are
merged together to produce a single file containing a coherent
global view of the wireless activity. The problem becomes
tricky in larger scenarios where multiple monitoring devices
operate simultaneously for the sake of completeness. The first
obstacle, in this case, is how to scale the monitoring system.
A promising solution is to rely on a participatory approach
where end-users collectively contribute with individual mea-
surements [7]–[9] in exchange of benefits, such as better
connectivity [10], [11].

One shortcoming of the participatory methodology is the
possibility of malicious actions [12]. Users may feel motivated
to insert fake traces in the monitoring system to maximize
their benefits or to deteriorate the overall system performance.
These results could be achieved by, respectively, attracting
additional infrastructure towards the malicious user (attrac-
tive attack) or purging near infrastructure away (repulsive
attack) [13].

In this paper, we identify attractive and repulsive attacks
from malicious participants as well as two trace-forging
strategies, namely synthetic and camouflage. In the synthetic
strategy, the attacker introduces fake traces containing only
hypothetical source-destination pairs, while in the camouflage
strategy, the attacker also introduces fake traces of wireless
exchanges between real nodes. Our system can identify a sus-
picious trace inserted by a malicious user for any combination
of attack and strategy, relying on wireless trace manipulation,
dimensionality reduction, and unsupervised machine learning
techniques. Concerning supervised approaches, we do not need
a labeled dataset of wireless traces which, in a mobile and
dynamic context, could result biased.

In summary, the main contributions of this paper are:
• We identify possible weaknesses of collaborative mon-

itoring systems for DDN concerning participatory
measurements. We address two possible attacks based on
the insertion of fake traces, i.e., attractive and repulsive
attacks, and two trace-forging strategies: synthetic and
camouflage.

• We propose a procedure to infer the participation of a
malicious user in the monitoring system. We consider
the captured traces as text where words are source-



destination pairs (SD). Like a bag-of-words approach,
each trace is a point in an N -dimensional space, where
N is the SD set cardinality. Upon identifying clusters of
similar traces in such space, we can infer fake traces.

• We conduct in vivo experiments using three differ-
ent scenarios, called collocated, scattered, and outdoor,
having different density of monitoring devices and envi-
ronmental conditions. Results from any combination of
circumstance and attack show that it is possible to detect
a malicious user as soon as it does not inject a paltry
amount of fake flows in the trace.

In the rest of the paper, we refer to any device recording a
wireless trace collected in the collaborative measurement sys-
tem (i.e., infrastructure access points, sniffing devices provided
by collaborative or malicious users, or any other monitoring
device) as monitoring nodes or just monitors, while a wireless
trace is the set of IEEE 802.11 frames made up of source-
destination (SD) flows. A malicious user (or attacker, or
adversary) produces one malicious trace embedding fake SD
flows.

This paper is organized as follows. Section II details the
addressed problem and introduces possible attacks and trace-
forging strategies. The proposed clustering-based procedure to
detect fake traces is presented in Section III. In Section IV, we
describe the three testbeds used to validate our approach, while
in Section V we show the results for each scenario and each
attack. Finally, Section VI qualitatively compares our proposal
to the state-of-the-art, while Section VII concludes this work
and indicates future directions.

II. PROBLEM STATEMENT

In a collaborative measurement system, network users con-
tribute to the monitoring system, acting as additional monitors.
Such a “participatory” behavior is an increasing trend as smart-
phones are expected to measure the performance of mobile
networks to improve users’ experience [14], [15]. Additionally,
since the only requirement is to run a packet sniffer for her
benefit, we assume this should not be cumbersome for most
users.

A. Participatory passive wireless monitoring

In the proposed system, monitoring devices (including
users) produce traces to be analyzed. Figure 1 shows the nor-
mal operation of a collaborative wireless monitoring system.
Supposing that each source-destination flow consists of four
frames, collaborating nodes L1 and L2 can capture each fifty
percent of the total wireless traffic composed of two flows:
A↔ B and C ↔ D. Merging their traces, i.e., TL1

and TL2
,

the wireless traffic captured increases to 75%.

B. Attacks against participatory monitoring

The completeness of the merged trace depends on several
parameters, including geographic dispersion and the number
of monitoring devices covering a given area. The trade-
off of users’ collaboration in wireless measurement systems,
however, is the introduction of vulnerabilities. In this work,
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Fig. 1. The fraction of captured frames increases after merging two individual
traces from different monitoring nodes. Each individual monitoring node, L1

and L2, has captured 50% of the total frames numbered in sequential order
from 1 to 4. After merging, the fraction of captured frames increases to 75%.

we consider two different adversarial actions with opposite
consequences as follows:

• Attractive attack. It consists of generating fake traces
with almost empty sequences of frames, that is, forging
SD flows containing only the first and the last frames
indicated by the sequence number in the frame header.

• Repulsive attack. It consists of inserting fake traces with
complete sequences of frames, that is, forging SD flows
containing all frames.

Depending on the type of incentive, a malicious user could
find benefit on triggering one of the two identified attacks. For
instance, if users receive incentives, e.g., improved wireless
connectivity to indicate under-provisioned areas, they could
adopt the so-called attractive behavior to maximize such
gains. We name it “attractive” because the monitoring system
infers from traces containing an almost empty sequence of
frames that, in the wireless network nearby, the users are
under-provisioned, i.e., frames are lost quite often due to lack
of wireless infrastructure. Therefore, the corresponding area
needs additional resources to operate under normal conditions.
If, on the other hand, users are willing to disrupt the network
operation, they could perform the opposite action, indicating
to the system the existence of over-provisioned areas. Such
an act corresponds to the so-called repulsive behavior, in
which users send traces with complete sequences of frames
to the monitoring system. Without significant frame losses,
the system can infer that the area nearby the monitoring
user is over-provisioned and therefore can share part of its
infrastructure with other areas if needed.

The abovementioned attacks can be triggered in any wireless
network by a malicious user aiming to launch a counterproduc-
tive action. Independently of the attack, the outcome is always
a network where malicious users influence the disposition of
the network infrastructure. Hence, instead of only contributing
to the system in exchange of, for instance, flat performance,
malicious users are willing to either maximize their connec-
tivity in detriment of all the others or even disrupt the network
operation. Moreover, each attack could come with one of the
following trace-forging strategies:

• Synthetic strategy. With this strategy, a malicious user
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Fig. 2. Repulsive attack. a) Malicious node M forges a trace TM containing
a flow with a complete sequence of frames. As a consequence, the fraction of
captured frames increases from 75% to 83% and the wireless infrastructure
is repulsed to other areas. b) Infrastructure nodes in their initial position p0.
c) Network final position.

forges a wireless trace containing only fake SD pairs.
• Camouflage strategy. Attackers forge traces mixing fake

and real SD pairs.
Figures 2 and 3 illustrate the repulsive and the attractive at-

tack, respectively. We have a malicious node M , under control
of a malicious user, inserting a fake trace TM into the system.
In a repulsive attack, as illustrated in Figure 2(a), the malicious
node M forges a trace containing a flow with all four frames
from a given SD pair. Note that if SD is fake (i.e., M creates
from scratch a pair of communicating nodes), we say that the
synthetic trace-forging strategy is applied. Otherwise, if SD
is an existing pair, the strategy is the camouflage. Anyway,
after merging, the fraction of captured frames over the total
is approximately 83% (3/4 from A↔ B, 3/4 from C ↔ D,
and 4/4 from TM ), which is higher than the 75% captured
in normal operation (Figure 1). As a possible attack outcome,
the available infrastructure (nodes A and C) can be moved to
an under-provisioned area as seen in Figures 2(b) and 2(c).
On the other hand, in the attractive attack (Figure 3(a)), after
the merge, 66% of the frames are considered captured (3/4
from A ↔ B, 3/4 from C ↔ D, and 2/4 from TM ). Thus,
the fraction of the total frames becomes lower than the one
obtained in the normal operation. The consequence could be
the attraction of more infrastructure resources (nodes A and C)
towards the malicious node (Figures 3(b) and 3(c)). Repulsive
and attractive attacks are consequences of inserting fake traces
into the system, considering infrastructure reallocation as user
incentive. If other incentives were envisioned, new types of
attacks could be possible as a consequence of the same
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Fig. 3. Attractive attack. a) Malicious node M forges a trace TM containing
a flow with an empty sequence of frames. As a consequence, the fraction
of captured frames reduces from 75% to 66% and the wireless infrastructure
is attracted toward M . b) Infrastructure nodes in their initial position p0. c)
Network final position.

malicious action.

C. Assumptions

In this paper, we assume that the monitoring system accepts
only one trace from each user (could be a single trace or a
merged one). This is an important assumption because the
impact of a malicious user can be accentuated by the number
of traces it adds to the system. In addition, monitoring nodes,
legitimate or malicious, do only perform passive measure-
ments. Hence, they do not add packets to the wireless network.
At last, each trace has the same format, is obtained or forged
during the same time frame, and contains a coherent amount of
data. We consider that the merging procedure discards traces
not matching these assumptions.

III. PROPOSED CLUSTERING-BASED PROCEDURE

The goal of the proposed system is to distinguish fake
wireless traces produced by malicious users from legitimate
ones.

The procedure, depicted in Figure 4, takes as input the
recorded wireless traces from all monitoring nodes, including
those produced by adversaries. Each trace is considered as a
text composed of SD words, where the set of all unique SD
pairs in the corpus of traces has cardinality N . Each trace is
then described by a vector of size N , where each element is
the completeness of frames recorded in that trace for one of
the N SD pairs.

In our approach, completeness is important for the sake of
accurate monitoring. It is defined as the percentage of frames
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SD1<latexit sha1_base64="UTE8iWroSEak9ExbKDZhzay/6BM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtBcVTQQ8eK9oPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxkfueJKs0i+WimMfUFHkkWMoJNJj3cDrxBueJW3TnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP57fO0JlVhiiMlC1p0Fz9PZFiofVUBLZTYDPWy14m/uf1EhNe+SmTcWKoJItFYcKRiVD2OBoyRYnhU0swUczeisgYK0yMjadkQ/CWX14l7VrVu6jW7uuVxnUeRxFO4BTOwYNLaMAdNKEFBMbwDK/w5gjnxXl3PhatBSefOYY/cD5/AF8LjcU=</latexit>
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SDN
<latexit sha1_base64="M3eyKMwnicnydNwl8Yz6bJIrkRA=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiRVUFwVdOFKKtoHtLFMppN26GQSZiZKCfkPNy4Uceu/uPNvnLRZaOuBgcM593LPHC/iTGnb/rYKS8srq2vF9dLG5tb2Tnl3r6XCWBLaJCEPZcfDinImaFMzzWknkhQHHqdtb3yZ+e1HKhULxb2eRNQN8FAwnxGsjfRwd9XvBViPCObJTdovV+yqPQVaJE5OKpCj0S9/9QYhiQMqNOFYqa5jR9pNsNSMcJqWerGiESZjPKRdQwUOqHKTaeoUHRllgPxQmic0mqq/NxIcKDUJPDOZRVTzXib+53Vj7Z+7CRNRrKkgs0N+zJEOUVYBGjBJieYTQzCRzGRFZIQlJtoUVTIlOPNfXiStWtU5qdZuTyv1i7yOIhzAIRyDA2dQh2toQBMISHiGV3iznqwX6936mI0WrHxnH/7A+vwBclWSdA==</latexit>

SD2<latexit sha1_base64="rMQIda+9GBoddCRRvm2odeVwhEc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtBcVTQQ8eK9oPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxkfueJKs0i+WimMfUFHkkWMoJNJj3cDmqDcsWtunOgVeLlpAI5moPyV38YkURQaQjHWvc8NzZ+ipVhhNNZqZ9oGmMywSPas1RiQbWfzm+doTOrDFEYKVvSoLn6eyLFQuupCGynwGasl71M/M/rJSa88lMm48RQSRaLwoQjE6HscTRkihLDp5Zgopi9FZExVpgYG0/JhuAtv7xK2rWqd1Gt3dcrjes8jiKcwCmcgweX0IA7aEILCIzhGV7hzRHOi/PufCxaC04+cwx/4Hz+AGCPjcY=</latexit>

SD1<latexit sha1_base64="UTE8iWroSEak9ExbKDZhzay/6BM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtBcVTQQ8eK9oPaJeSTbNtaJJdkqxQlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxkfueJKs0i+WimMfUFHkkWMoJNJj3cDrxBueJW3TnQKvFyUoEczUH5qz+MSCKoNIRjrXueGxs/xcowwums1E80jTGZ4BHtWSqxoNpP57fO0JlVhiiMlC1p0Fz9PZFiofVUBLZTYDPWy14m/uf1EhNe+SmTcWKoJItFYcKRiVD2OBoyRYnhU0swUczeisgYK0yMjadkQ/CWX14l7VrVu6jW7uuVxnUeRxFO4BTOwYNLaMAdNKEFBMbwDK/w5gjnxXl3PhatBSefOYY/cD5/AF8LjcU=</latexit>
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Fig. 4. Proposed clustering-based procedure.

captured by a monitor for each SD pair, checking the sequence
number embedded in each frame header. Note, however, that
for each SD frame exchange, the first and the last frame
captured do not necessarily match the first and the last frame
sent due to path loss and signal fading. Instead, they are the
first and the last frame from SD communication that were
captured and logged into a given trace. If the sequence of
frames exchanged between SD is 〈f1, f2, . . . , fn−1, fn〉, the
completeness is then computed taking into account the first
and the last frame captured, which could be f2 and fn−1, for
instance. Hence, the completeness, computed in this example
as 100 · # frames captured

# frames in the sequence would account for frames
from f2 to fn−1. Independent of the first and the last frame
considered, the completeness always spans from 0 to 100.
Also the sequence is obtained using the sequence number field
in which the counter is zeroed after 212 sequence numbers.
Thus, we consider each trace as a point in a N -dimension
space described by the completeness vector. Real traces share
some SD and have some similarities in the distribution of
completeness values, while malicious users are forced to forge
novel SD and more extreme completeness values in order to
get the desired effect.

Clustering points in the space puts together real traces and
sets aside malicious ones. This approach, however, raises two
problems:

1) Distribution of completeness values is skewed. Most
of the values are equal to zero as many SD are unique
to a single trace, especially when covering a wide area
and when collaborating people are sparse. Some values
are just above zero, nonetheless monitors which did not
overhear anything from a SD can be far away from the
source, whereas monitors which overhear just a little
are still in proximity. Traces also present a considerable
amount of SD exchanges complete at 100%, which
usually correspond to control frames. Then, very few
completeness values come from the interval [0+ε, 100−
ε].

2) The number of SD pairs is usually very large. N
is usually a large number and, consequently, clustering
becomes very hard to obtain. This problem, so-called
“curse of dimensionality”, is already well-known [16].

To tackle the first problem, we remap all completeness val-
ues from the continuous interval [0, 100] to the discrete interval
[0, 1, 2, 3, 4, 5] in order to have a more uniform distribution of
values. The second problem, on the other hand, is overcome
through a non-linear Principal Component Analysis using a

radial basis function kernel. In our scenarios, six principal
components were enough to obtain 80% of variance.

Finally, a hierarchical agglomerative clustering is applied
using Euclidean distance and with a merging strategy targeting
the maximum distance between observations from pairs of
clusters. The clustering algorithm is forced to find out two
clusters which will take apart real traces from those forged
by adversaries. With respect to density or centroid-based clus-
tering, hierarchical algorithms produce a dendrogram which
results helpful for further analysis and resource management.

In our implementation, we took advantage of KernelPCA
and AggloerativeClustering functions from Python
Scikit-Learn framework. We used, instead, WiPal as IEEE
802.11 traces manipulation software for fast frame decoding,
trace merging, and wireless traffic sniffing [4].

IV. TESTBED AND DATASET

We have captured wireless traffic for 100 minutes in three
scenarios, named collocated, scattered, and outdoor, to create
a dataset of traces as much as close to reality.

In any scenario, we positioned eight Asus EEEPC-4G
netbooks equipped with 3 USB Wi-Fi Netgear WG111v3 cards
and running Xandros OS with a custom kernel and WiPal
sniffing software. These laptops played the role of monitoring
nodes and, as a consequence, they were just in charge of
recording traces from the wireless activity. We underline
that, in such experiments, the monitoring nodes capture any
transmitted frames they overhear in the area (WiFi cards are
in monitor mode). This means that the captured traffic can be
from an access point within the scenario, but it can also be
from a pedestrian with a WiFi mobile phone passing nearby.
We assume that any incoming traffic must be captured by the
measuring system, no matter how long it lasts or what kind
of activity it is concerned with.

The collocated scenario was built inside a room within LIP6
computer science laboratory from UPMC Sorbonne Univer-
sités in Paris, France. All monitoring nodes were positioned
side-by-side on the same table as illustrated in Figure 5(a).
Individual traces have an average size of 253 MBytes, whereas
the merged trace has a size of 450 MBytes. This scenario is
our benchmark as the merged trace will have a very complete
vision of the wireless activity in that room and individual
traces will share large part of flows. The scattered scenario was
built in the second floor of the IRCICA/LIFL computer science
laboratory in Lille, France. In this case, monitoring nodes were
positioned according to the availability of electrical outlets
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Fig. 5. Experimental scenarios and monitor deployment: (a) collocated, (b) scattered, and (c) outdoor.

along the corridor as illustrated in Figure 5(b). Individual
traces have an average size of 205 MBytes, whereas the
merged trace has a size of 1.2 GBytes. The larger size
of the merged trace compared with the collocated scenario
indicates that traces from more distant monitors are likely
more complementary. For the outdoor scenario, monitors were
placed outdoor in the Fort d’Issy of Issy Les Moulineaux,
France, a 12 ha residential area and deployed as shown in
Figure 5(c). It differs from the first two by the density of
monitors in the area and mobility.

V. EXPERIMENTAL RESULTS

This Section is divided in four experiment sets. First, we
prove our claim regarding the advantages of collaborative
measurements. Then, we show that it is possible to detect
an adversary contributing with a fake trace using different
strategies. Moreover, we apply the same procedure for an
online detection and for multiple attackers. Since we are
interested in finding malicious traces and, at the same time,
restricting further investigations on just the selected ones, we
mainly rely on the F1-score metric to evaluate the procedure.

A. Collaborative measurements
The scenarios collocated, scattered, and outdoor globally

present 508, 612, and 580 unique SD, respectively. If we take
single traces, we note that, on average, they include 401, 224,
and 102 unique SD for the collocated, scattered, and outdoor,
respectively. This result shows that merged traces bring more
information from the target area than individual ones. The
idea of collaborative monitoring is then important even in the
collocated scenario where monitoring nodes are close. We can
also presume that an attack must inject a number of SD pairs
at the same scale to produce an effect.

Figure 6 shows the SD flow completeness for single traces
and for the trace merging all of them, for all scenarios. In
this figure, the X-axis represents all SD pairs in the network
while the Y-axis represents the completeness level of each
individual flow. The dots are the completeness level achieved
by individual traces, whereas the red line is the completeness
level achieve by the merged trace. Note that the merged trace
shows always an upper-bound result, since it puts together all
the individual traces collected.

B. Potential attackers detection
Last subsection validated the advantages of having collab-

orative measurements. This subsection shows how we could

identify a malicious user infiltrated into the monitoring system.
Before we start, it is important to give more details concerning
the trace-forging strategies used in both attacks.

• Synthetic strategy. Wireless traces forged by malicious
users contain only fake SD pairs, where the completeness
of each communication pair is given by the attack type
(100% and 0.05% for repulsive and attractive attacks,
respectively).

• Camouflage strategy. Malicious users forge traces mix-
ing together fake and really captured SD pairs com-
munications. Completeness values for these latter are
pulled from the same distributions as the legitimate traces.
Such strategy better masks the attack, but can reveal the
position of the attacker as real SD pairs come from
monitors and access points in the same area.

Figure 7(a) shows clustering results for attractive and re-
pulsive attacks in each scenario for the synthetic strategy.
Clustering is considered to be correct if the malicious trace
is circumscribed alone in a cluster while all the other traces
compose a second cluster. For this experiment, we vary the
number of fake SD embedded in a trace from 5 to 100. For
the collocated scenario, real traces have so much in common
that the clustering algorithm is immediately able to pick out
the attacking trace. Nevertheless, in the scattered and outdoor
scenarios, below 14 and 45 fake SD respectively, clustering
is incorrect. Such amounts of flow correspond to just 2.3%
and 7.7% w.r.t. N as reported in Table I. These low values
will unlikely affect the network. Above these values, instead,
fake traces become more and more distinguishable from the
legitimate traces. This means that the more fake information
an adversary adds, farther the forged trace becomes from all
legitimate ones. In fact, they will introduce unique dimensions
in the clustering space where they are placed. These considera-
tions are valid for both attractive and repulsive attacks. Table I
also shows the F1-score which, in the outdoor scenario, is
just limited by the amount of fake flows injected during the
experiment. Finally, with a synthetic strategy in action, the
attacker should forge a trace with very few SD (maximum
7.7% of N in our testbeds) to circumvent the defense, but too
few to generate an impact and to be taken into account.

Figure 7(b) shows the clustering results in all the scenario
combinations for the camouflage strategy. In these experi-
ments, malicious traces are always made up of 200 SD pairs.
We, however, tune the amount of real SD pairs in the interval
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Fig. 6. SD flows completeness recorded in single traces and merged trace for experimental scenarios (a) collocated, (b) scattered, and (c) outdoor.

(a) (b)

Fig. 7. Clustering correctness results for repulsive and attractive attack, synthetic and camouflage trace-forging strategies and for collocated, scattered, and
outdoor scenarios. (a) Synthetic attacking strategy. (b) Camouflage attacking strategy.

TABLE I
F1-SCORE AND MAXIMUM PERCENTAGE OF FAKE SD FLOWS TO INJECT

IN MALICIOUS TRACES W.R.T. N TO AVOID CORRECT CLUSTERING.

Synthetic strategy Camouflage strategy
Scenario N Repulsive Attractive Repulsive Attractive
Collocated 508 1/— 1/— 1/— 1/—
Scattered 612 0.85/2.3% 0.85/2.3% 0.94/8.2% 0.95/8.5%
Outdoor 580 0.52/7.7% 0.52/7.7% 0.72/6.2% 0.70/6.7%

[5, 200] and complement the malicious trace with fake SD
pairs. The completeness of the fake SD pairs is according to
the kind of attack. The collocated scenario remains difficult
to hack, whereas in the scattered and outdoor scenarios,
clustering is correct until real SD overcome 150 units (and
fake SD flows become less than 50). In particular, regarding
the scattered scenario, clustering is wrong when 52 and 50
fake flows remain in the trace for repulsive and attractive
attack respectively, which, as shown in Table I, correspond to
8.2% and 8.5% w.r.t. N . This means that, an attacker must
create a trace with less than 8.5% fake flows mixed with
real SD flows to avoid further investigations. Regarding the
outdoor scenario instead, the clustering becomes incorrect for
repulsive and attractive attack with remaining 36 and 39 fake
flows respectively, which correspond to 6.2% and 6.7% of N .
Also in these conditions, attractive and repulsive attacks are
detected almost at the same thresholds which are enough low
to not negatively impact the network and the F1-score remains
above 0.7.

Fig. 8. Percentage of clustering correctness for online detection.

C. Online attackers detection

In order to be more proactive in attacking detection, we
repeat the same workflow, clustering traces every five min-
utes instead of waiting for the entire traffic capture. We
repeat experiments in scattered and outdoor scenarios, with
all attack types and strategies, and with a malicious trace
including at each repetition a raising number of SD flows
from 5 up to the average recorded by legitimate traces in that
time window. We compute the percentage of correctness as
100× # correct clustering

# repetitions . As shown in Figure 8, clustering
is 100% correct most of the time and always more than 76%,
apart from minutes 40 to 45 in the scattered scenario. This
happened because there was a legitimate monitor placed at
the far end recording traffic from the outside. We conclude
that online detection can be conducted considering periodical



Fig. 9. F1-score for clustering with multiple adversaries.

interval of times in the order of a few minutes.

D. Collusion attack

Finally, we consider the case of more adversaries in col-
lusion acting a repulsive, camouflage attack in the outdoor
scenario as this is the most complex combination. In particular,
up to 8 adversaries create traces embedding from 50 to 550
SD flows. To keep our initial assumption that malicious users
are a minority, from every single original legitimate trace,
we create nine extra traces, achieving 80 legitimate traces in
total. These new traces have a random subset of the original
trace SD set and completeness values picked from the same
distribution of values as the original trace. Figure V-D shows
the F1-score for every single clustering. We can notice that the
score decays adding more and more adversaries, but remaining
above 0.8 and it is just slightly dependent on the amount of
flows N .

VI. RELATED WORK

In this work, we are concerned with improving wire-
less networking measurements by increasing the number of
monitoring nodes and measured traces in the same area of
interest. There are solutions that advocate the use of radio
monitors uniformly distributed over the target area, leading to
higher complexity even in small scenarios [3], [17]. The main
limitation of such approach is the lack of scalability since
multiple monitoring devices have to be deployed. Another
approach consists to optimize the number of monitors and
their geographical position through trace similarity [5], [6].

Monitoring systems are also improved by relying on a
combined approach, theoretical model plus experimental data.
Finding a propagation model in an urban area is challenging
because it has to deal with all sorts of obstacles such as streets,
buildings, monuments, and so on. The trivial choice would
be making an uncountable number of measurements until all
possible regions are covered. This solution besides costly, can
be unpractical depending on the area size. Hence, Robinson
et al. proposed using digital maps to estimate the coverage
of a certain number of access points based on theoretical
models [18]. The goal is to characterize urban scenarios with
only minimal measurements. First, they calculate the coverage
borders of every access point on all directions, considering

the attenuation introduced by the physical obstacles. Such
coverage borders are found when a given evaluated metric
reached its minimal value, e.g. SNR. After this first step, some
measurements are conducted to refine the values found for the
coverage borders. In opposition to our work, Chhetri et al.
conducted a theoretical evaluation to compute the Quality of
Monitoring (QoM), i.e., the amount of traffic collected by the
monitoring system [19]. By using such a study, it is possible
to improve the position of monitoring nodes.

As far as we know, works in the literature usually do
not consider user participation during measurements. When
they do, security issues regarding users’ intervention are left
aside. Ravindranath et al. enlarge the typical set of monitor-
ing devices, normally limited to wireless interface cards, to
encompass also other sensors available in mobile equipments,
such as GPS, accelerometers, magnetic compasses, and gyro-
scopes [20]. By using such additional information, they can
improve the network performance. For instance, a GPS could
be used to obtain information about node mobility and, con-
sequently, to calibrate routing protocol parameters. The work
from Kanuparthy et al. is another which considers trustworthy
user participation. They propose a tool for evaluating physical
media conditions without needing any specific networking
equipment [21]. All the measurements are conducted by users
themselves and require the utilization of a probing tool and a
server running in a PC connected to an access point. Based on
information available in probes (One-Way Delay - OWD), it is
possible to know delay components such as contention time,
backoff, transmission delay, and certain constant interframe
spaces as defined by IEEE 802.11 MAC protocol. Because the
delay does not account for queuing at the sender, it is possible
to estimate link layer properties and physical conditions.

Typically, malicious users are investigated by the measure-
ment system. Paul et al., for instance, collect multiple traces to
analyze interference among wireless nodes and, furthermore,
to detect selfish behavior [22]. Authors claim that from trace
analysis, it is possible to detect users who could maliciously
gain access to the wireless medium by manipulating MAC
protocol parameters, e.g., the backoff window size. Map [23]
and DOMINO [24] are other monitoring systems specialized
on capturing multiple traces from the network, merging them,
and evaluating the presence of possible malicious users. All
these systems have a different approach from ours, since in
their work the malicious actions are external whereas in our
work they can be part of the measurement system itself.

Even though also considering malicious users outside the
monitoring system, Pedro Casas [25] compares some super-
vised machine learning models and techniques to detect attacks
to networks. He observed that, based on his benchmarking,
both neural networks and decision tree-based models provide
the better results. In his work, the scenario is different from our
own, he considered attacks in a wired network and anomalies
in applications. In addition, the algorithms used for attack
and anomaly detection are also different (supervised versus
unsupervised) and the crowd is more related to multiple inputs
than necessarily to the participation of multiple users. Instead



of providing local monitored traces, each crowd member
provides the output of her machine learning technique.

VII. CONCLUSION

In this paper, we experimentally showed the impact of
adversaries in collaborative wireless measurements for DDN.
The geographical distribution as well as the number of col-
lected traces can significantly improve the accuracy of the
merged trace, allowing better informed decisions. To increase
the number of monitoring nodes and traces, we rely on users’
participation. On the flip side, malicious actions are possible.

In this direction, we identified two possible attacks, namely
repulsive and attractive and two trace forging strategies: syn-
thetic and camouflage. In addition, more adversaries might
act in collusion. Thus, we proposed a detecting procedure,
considering wireless traces as a set of SD flows. In according
to the completeness of each SD flow, traces are represented as
a vector indicating a point in a N dimensions space. Finally,
applying an agglomerative clustering algorithm after a space
dimensionality reduction, malicious traces are identified and
separated from legitimate ones in a different cluster.

Results show that collaborative systems can indeed generate
more complete information concerning the wireless monitor-
ing of a target area. Since collaborative systems are worthy,
we tested our attacker detection methodology in three different
scenarios capturing real wireless traces, with two kinds of
attacks and two trace-forging strategies. We show that in order
to succeed, fake traces must include an important amount of
fake flows which will be discovered by the detection system.
Including very few fake flows will fool the detection but does
not have the critical mass to achieve the desired effect. Our
results, based on the F1-score and specific metrics, also show
that the percentage of clustering correctness is maintained even
if the attacking detection is performed online and in presence
of more colluding adversaries.

As a future work, we plan to consider the case of mobile
monitoring nodes, i.e., the effect of mobility on packet sniffing
and trace merging. We also would like to define a trust metric
to enhance the detection system and refine user behavior
evaluation. The idea is to rely on trust to avoid misjudging
monitoring nodes experiencing poor wireless connectivity.
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