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Abstract—Wi-Fi technology is widely used in indoor 

positioning systems due to its ubiquitous presence in almost every 

building and its cost-effectiveness without requiring additional 

hardware. To mitigate the effects experienced by wireless 

networks, dual-band Wi-Fi studies have gained importance. In 

this study, the UTMInDualSymFi dataset is utilized to evaluate the 

performance of single-band and dual-band Wi-Fi localization 

using 2.4 GHz and 5 GHz Wi-Fi data. For localization, KNN (K-

Nearest Neighbor), XGBoost, Decision Tree, and Random Forest 

techniques are used for classification, and a multi-view ensemble 

learning approach is proposed for increasing accuracy. The 

results are evaluated using explainable neural network models: 

SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-Agnostic Explanations), and the effectiveness 

of single-band versus dual-band localization is assessed, along with 

the contribution of each access point to localization accuracy. 

Keywords—indoor localization, Wi-Fi, dual band, explainable 

neural network, multi-view ensemble learning. 

I. INTRODUCTION  

Indoor positioning systems recommended for locating the 
position of objects or people inside buildings, especially smart 
cities, smart buildings, and smart homes, which have attracted 
great interest recently, are becoming an indispensable 
technology. Indoor positioning systems are used in many 
different areas, including hospitals and other healthcare 
environments to track the location of patients, airports to show 
passengers where they are currently and plot the fastest route to 
their destination, and factories to track the location of 
manufactured products. However, indoor localization is 
particularly challenging, unlike the estimation process of 
various outdoor locations [1], since the GPS technology used for 
outdoor location estimation does not work effectively in indoor 
areas.  Therefore, different technologies such as Wi-Fi, RFID, 
Bluetooth, Bluetooth Low Energy, and IrDA are used to provide 
indoor positioning solution [2]. However, it is especially 
important to offer approaches based on technologies that can be 
found in every building in order to find a realistic, feasible, 
universal solution and reduce the hardware cost. Especially 
since Wi-Fi access points are found in almost every building, 
Wi-Fi technology is frequently used for indoor location 
determination.  However, because indoor spaces have high and 
variable dynamics, Wi-Fi signals may fluctuate over time due to 

different conditions. For example, the number of objects and 
people indoors may vary, and this may cause distortion and 
scattering in the signal values used for location detection. Also, 
different influences, such as internal noise of signal collecting 
devices, can adversely affect position detection. In order to deal 
with these effects and to increase the accuracy of indoor location 
estimation, methods with many different preprocessing steps 
such as filtering, normalization, and dimension reduction are 
presented in the literature [3]. 

Indoor positioning generally uses deterministic methods 
such as trilateration based on the use of signal timestamps from 
the three devices and triangulation based on the use of the arrival 
angles of the signal values, and fingerprinting approaches based 
on creating signatures by navigating the space and recording the 
signals step by step. Fingerprinting approaches create indoor 
grids (called as reference points) for a building or floor, and 
generally transforms the indoor localization problem to a 
classification or regression problem. Therefore, many different 
learning architectures such as machine learning and deep 
learning are presented for indoor localization [4]. Recently, in 
order to improve indoor positioning performance, studies have 
been presented based on using different frequencies obtained 
from access points with dual-band property that enable a device 
to operate in two different frequency bands. Wi-Fi 2.4G signals 
are more transparent and less susceptible to obstacles, while Wi-
Fi 5G signals are more stable and have lower jitter [5].  

   In the existing literature, numerous studies have been 
conducted on indoor localization utilizing dual band WiFi 
technology, 2.4GHz and 5GHz as follows. 

Yang et al. [6] introduced a new approach called 
"Fingerprinting Pyramid Maps" (FPM) that offers users the 
flexibility to choose a combination of localization area and time 
preference. AP Pairing Algorithm (AP_PA), takes advantage of 
the crossover frequency RSS difference (RSSD_CF) between 
each pair of AP sensors, effectively mitigating the limitations 
imposed by device heterogeneity.   Zhao et al. [7] introduced an 
algorithm that effectively captures a robust positioning feature 
from Wi-Fi signals, employing kernel principal component 
analysis (KPCA). To improve localization accuracy and 
alleviate computational complexity, they incorporate a Wi-Fi 
signal choosing algorithm and a coarse localization scheme. The 
estimated location is then obtained using the weighted k-nearest 



neighbor method (WKNN).  Junhua Yang [8]  presented a novel 
localization system called the dual-frequency difference and 
cubic spline interpolation (DFD-CSI) in their work. A 
fingerprinting database includes data from both frequency bands 
as well as the difference between them. Additionally, cubic 
spline interpolation is employed to refine the coarse fingerprint 
database, thereby reducing the time required for site exploration 
while maintaining localization accuracy. Own et al. [5] 
conducted a study where they utilized an SVM  (Support Vector 
Machine) model to differentiate between Non-Line-of-Sight 
(NLoS) and Line-of-Sight (LoS) environments. In addition, they 
employed a capsule network to estimate user position. Authors 
conducted a comparative analysis with traditional indoor 
positioning methods and performed robustness tests using 
simulation data. Karlsson et al. [9] employed particle filter along 
with the known signal strengths from Wi-Fi access points to 
facilitate indoor navigation. By utilizing dual band frequencies, 
they obtained more comprehensive information, leading to 
enhanced accuracy in positioning. Tahat et al.  [10] conducted a 
study to increase the accuracy and robustness of Wi-Fi 
fingerprinting-based Indoor Positioning Systems (IPS) by using 
machine learning classification algorithms. The numerical 
results demonstrate that the proposed IPS effectively predicts 
device location by employing a subset of the considered ML 
classification algorithms. Incorporating dual-frequency 
information in the location process enhances its efficiency and 
robustness. Zhang et al. [11] carried out a study using empirical 
simultaneous measurements to examine the performance of 
different machine learning (ML) classification algorithms for 
defining the location of Wi-Fi receiving devices in both single-
band and dual-band operation. The integration of dual-
frequency information in the IPS improved the efficiency and 
robustness of the location process. Lee et al. [12] developed a 
hybrid localization algorithm to enhance the accuracy of 
distance measurement in indoor non-line-of-sight (NLOS) 
conditions. To achieve this, they replaced the ranging 
component of a rule-based localization technique with a deep 
regression model that leverages data-driven learning based on 
dual-band received signal strength (RSS).  

This study presents an investigation on indoor positioning 
utilizing dual band Wi-Fi technology. The UTMInDualSymFi 
dataset [13], which incorporates Wi-Fi data from both the dual 
band and the 2.4GHz and 5GHz single bands, was created using 
the fingerprinting technique and employed for this purpose. 
Various machine learning techniques including KNN (K- 
Nearest Neighbor), Decision Trees, Random Forest, and 
XGBoost were utilized to determine the location. It was 
observed that the Random Forest classifier provided the highest 
accuracy when utilizing the dual band data. To further enhance 
the accuracy, we propose an indoor localization system that 
applies Random Forest in parallel on three different feature 
areas, which we consider as views coming from different angles, 
and estimates the location by averaging over the results. Signal 
features obtained from 2.4 GHz frequency band, 5 GHz 

frequency band and dual band were evaluated as separate views. 
To interpret and explain the predictions of the proposed system, 
two different explainable artificial intelligence models (XAI) 
approaches: SHAP (SHapley Additive exPlanations) and LIME 
(Local Interpretable Model-Agnostic Explanations). LIME 
model is used to explain each individual indoor prediction. It 
generates local information about the distribution of the 
localization prediction probabilities of the proposed system. The 
SHAP model provides global interpretations about the Wi-Fi 
access points, which is discriminative that the proposed system 
mainly uses in determining reference points. The XAI models 
are integrated into the proposed learning phase so that the 
system's prediction results can be validated and analyzed. Since 
the indoor localization problem has a high and variable 
dynamics, in case the proposed system produces unexpected 
results, analysis of possible variable states of the environment, 
object, and signal generating devices can also be provided. The 
experimental results demonstrate that the proposed model 
increases the indoor localization performance for 
UTMInDualSymFi dataset. 

II. METHODOLOGY 

This study employs a fingerprinting based approach for 
indoor localization. UTMInDualSymFi dataset [13], which was 
generated using the fingerprinting technique, is utilized for this 
purpose. The positioning is performed using the 2.4GHz Wi-Fi, 
5GHz Wi-Fi, and dual band Wi-Fi data included in the related 
dataset. To achieve this, machine learning techniques including 
KNN, Decision Tree, XGBoost, and Random Forest are 
employed. Furthermore, a multi-view ensemble learning model 
is proposed to enhance the results obtained from the dual band 
dataset. The outcomes of the proposed approach are analyzed 
and interpreted using explainable artificial intelligence models, 
SHAP and LIME. 

A. Fingerprinting 

The fingerprint method, an analysis technique commonly 
employed for indoor positioning, was utilized to perform indoor 
location determination. This technique comprises two distinct 
stages: offline and online [4].  

In the offline phase, the fingerprint method involves 
mapping the signal characteristics of the target area where 
location detection is desired. In the online phase, the signals 
received from the user are compared to the signal information 
stored in the previously created signal map, enabling precise 
positioning. Various devices capable of signal scanning, such as 
mobile phones, tablets, wearable technologies, and laptops, can 
be utilized to collect the relevant signals in both phases. The 
signal values used for fingerprint map creation typically include 
received signal strength indicators, which serve as 
differentiators in the environment. Fig. 1 represents the phases 
of the fingerprinting method. 



 
Fig.1. Fingerprinting method 

• Offline phase: This phase involves extracting the signal 
map of the target positioning area. During this phase, 
the zones where the mobile user may be located are 
divided into grid-based reference point areas. The 
width of each grid's reference point area directly affects 
the accuracy of positioning. In creating the signal map, 
a sampling approach is employed to gather signal 
samples from the grids. These samples can be obtained 
either from the midpoints of the grids or by walking 
along random routes within the grids, collecting 
samples from both the edges and midpoints. It is crucial 
to select various time periods and scenarios that exhibit 
different characteristics of the indoor space during the 
collection of signal samples. This ensures the creation 
of a signal sample set that reflects all possible situations 
within the targeted indoor environment. Similarly, 
using multiple devices during the signal sample 
collection process is important to capture the 
measurement variations that may arise due to device 
differences in the signal maps. 

• Online phase: In this stage, the signal values received 
from the mobile user are compared with the values 
stored in the signal map created during the offline 
phase. Various techniques, such as statistical methods, 
machine learning, and deep learning, can be employed 
for these comparisons. The goal is to find a match 
between the signal information obtained from the 
mobile user's current location and the signal map stored 
in the database that represents the known locations. 
This comparison process helps determine the class or 
location that best corresponds to the received signal 
information, enabling accurate indoor positioning. 

B. Dataset 

In this work, the authors utilized the UTMInDualSymFi 
dataset [13], which contains dual band 2.4 GHz and 5 GHz Wi-
Fi signal information, to propose a dual band Wi-Fi-based 
approach [9]. The dataset consists of data collected from four 
different buildings. The authors focused on location 
determination based on floor and building wing in their work. 
Our study aims to achieve higher positioning precision by 
considering reference points assigned at 1-meter intervals in the 
F04 and CX1 buildings within the dataset. This approach 
enables more accurate positioning. 
 
    The F04 building dataset includes raw Wi-Fi dual band data 
from 64 access points, covering 2 floors and 3 wings on each 

floor. A total of 120 reference points were assigned, with 20 on 
each relevant wing. The CX1 building dataset includes raw data 
from 71 access points and 130 reference points. The CX1 
building comprises 2 floors and 2 wings, with a total of 130 
reference point assignments. Training and test data for both 
buildings were collected at different times using two different 
devices. 
 
     To ensure a hardware-independent approach, two different 
devices were used to collect Wi-Fi signal values in the datasets. 
In this study, the data collected from both devices were 
combined and utilized together. 

C. Indoor Localization 

 
In this research, KNN, Decision Trees, XGBoost, and 

Random Forest techniques are utilized to match the signals 
present in the fingerprint map, enabling indoor positioning. 
Moreover, a multi-view ensemble learning approach is 
introduced in the study. 
 

• K-Nearest Neighbor: The K-nearest neighbor 
classifier (KNN) is a machine learning methodology 
grounded in the principles of Bayes' theorem [14]. 
This classification process entails considering the k 
value that is in closest proximity and employing the 
majority rule for decision-making [14]. 

• Decision Tree: Nodes within decision trees possess the 
capability to evaluate a dataset based on any attribute 
[15]. Depending on the attribute value received, nodes 
branch out into two or more sub-trees. The process of 
constructing and splitting a decision tree is determined 
by calculating impurity measures [15]. When all 
values directed to a particular node exhibit identical 
characteristics, that node is deemed pure and assigned 
an impurity value of 0. In situations where the 
impurity value is 0, there is no necessity to partition 
the node further into sub-nodes. 

• XGBoost: The machine learning technique that 
utilizes tree-based models. The construction of each 
tree is guided by the maximum depth value. In cases 
where excessive downward growth is observed during 
tree formation, pruning techniques are employed to 
mitigate the risk of overfitting [16]. While the 
Gradient Boosting algorithm employs a first-order 
function to compute the loss function, XGBoost 



employs second-order functions for this purpose. 
Additionally, XGBoost's parallel operation capability 
enhances its efficiency, enabling faster results 
compared to similar algorithms [16]. 

• Random Forest: Random forests are a type of 
ensemble model that combines multiple individual 
tree predictors [17]. In a random forest, each tree's 
construction is influenced by a randomly chosen 
vector, sampled independently from the same 
distribution across all trees. With an increasing 
number of trees in the forest, there is a high probability 
that the forest's generalization error will approach a 
certain limit. The generalization error of a random 
forest is determined by two factors: the individual 
strength of each tree in the forest and the level of 
correlation among the predictions made by different 
trees [17]. Stronger and less correlated trees tend to 
result in lower generalization errors for the forest. 

• Multi-View Ensemble Learning:  In this article, first, 
we aimed to analyze how the accuracy performance in 
indoor location prediction changes according to 
different Wi-Fi data such as 2.5G, 5G and Dual-band 
Wi-Fi. After this analysis, to increase the accuracy 
performance, we propose a multi-view based indoor 
position prediction model. We chose the Random 
Forest algorithm that is an ensemble learning 
algorithm due to its advantages such as easy 
implementation, simplicity, and effectiveness. The 

random forest algorithm creates multiple single trees 
based on random samples of the training data. We use 
averaging strategy to obtain final prediction 
probabilities from the prediction results belonging to 
the decision trees. Multi-view classification focuses 
on increasing classification accuracy by revealing 
distinctive patterns from different angles on the data 
obtained from different views. Generally, mapping the 
resulting multiple views into a single space, that is, 
combining spaces, is the first approach. The obvious 
disadvantage of this situation is that the vector or 
matrix size increases due to the direct combining of 
the feature spaces. On the other hand, in a feature 
space where multiple views are learned together, 
learning can be adversely affected if information about 
a view cannot be obtained. We use each Wi-Fi data as 
a separate view. In this case, each of the 2.54GHz, 
5GHzand dual-band data is defined as a view. Using 
an ensemble model, we perform a separate learning for 
each view. For each view, we obtain a final probability 
of assignment by averaging the results from the trained 
models, that is, the probabilities of assigning a sample 
to reference points. The reference point with the 
highest probability for a newly arrived sample is 
estimated as the location of the sample. The proposed 
multi-view ensemble learning framework is given in 
Fig. 2. 

 
 

 
 

Fig.2. Multi-view ensemble learning

 

D. Explainable Artificial Intelligence Models 

 
   Explainable Artificial Intelligence (XAI) models have been 
developed to provide transparency and interpretability to 
learning models by revealing their decision-making processes 
[44]. Understanding the decision stages of artificial intelligence 
models has become challenging for both users and experts. 
Likewise, in the domain of indoor  
 
 
 

 
localization, it is essential to comprehend and interpret the 
impact of specific access points on the accurate or inaccurate 
prediction of locations, as well as the extent to which the Wi-Fi 
signal values received from these access points contribute to the 
prediction outcome. 
 

• LIME (Local Interpretable Model-Agnostic 
Explanations): LIME operates on a local level, 
meaning that its explanations are specific to individual 
observations [18]. LIME provides explanations for 
predictions based on each specific observation. LIME 
accomplishes this by constructing a local model 



utilizing sample data points that closely resemble the 
observation under scrutiny. For each observation  
 
x, the explanations generated by LIME are obtained 
through equation (1)  [18]. 

 

( ) ( ) ( )arg min , ,g G xx L f g gπ∈Φ = + Ω            (1) 

 
Here, G represents the set of potentially interpretable 
models, for instance, linear models and decision trees,  
g G∈ : The concept of an explanation is regarded as a 

distinct model, �:ℝ� → ℝ  and ( )x zπ  indicates the 

proximity measure of an instance z from x, ( )gΩ : A 

metric to quantify the complexity of the explanation,
g G∈ . 

 
  The objective is the minimization of the locality 
aware loss L without taking any assumptions into 
consideration related to the underlying function f, as 
LIME is designed to be model agnostic. L represents 
the measure of the discrepancy between the 
approximation g and the actual function f within the 
locality stated by π(x). 

 
• SHAP (SHapley Additive exPlanations): In the SHAP 

framework, the predictions' uncertainty is distributed 
among the covariates, facilitating an evaluation of the 
contribution of each explanatory variable to individual 
predictions [18]. This evaluation is conducted without 
dependence on the underlying model. SHAP, which 
stands for SHapley Additive exPlanation, employs 
Shapley values to represent model predictions as 
linear combinations of binary variables. These binary 
variables indicate whether each covariate is included 
or excluded in the model. By employing this approach, 
the influence of each explanatory variable on the 
model's predictions can be quantified. 

 
   The SHAP algorithm represents model predictions 
as linear combinations of binary variables, indicating 
the presence or absence of each covariate in the model. 
More formally, it approximates each prediction f(x) 
with g(x'), which is a linear function of the binary 

variables  { }0,1
M

z′∈ and the quantities ∅� ∈ ℝ ,. 

These quantities are stated as in the equation (2) [18]. 

 

( ) 0

1

M

i i

i

g z zφ φ
=

′ ′= +                                                (2) 

 
   Here, in the model, the number of explanatory 
variables is represented with M. Only additive method 
that fulfills the properties of local accuracy, 
missingness, and consistency is achieved by assigning 
to each variable ix′  an effect iφ  (the Shapley value), 

which is given in equation (3) [19]. 
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      In equation (3), f represents the model, x and x' 
represent the available variables and the selected 

variables, respectively. The term ( ) ( )\x xf z f z i′ ′−

quantifies, for each individual prediction, the 
deviation of Shapley values from their mean, 
representing the contribution of the i-th variable. 

III. RESULTS AND DISCUSSION 

A. Classification Results 

   Table 1 presents the classification results performed using 
different Wi-Fi bands in the F04 and CX1 buildings. In the F04 
building, the highest accuracy achieved using the 2.4GHz Wi-
Fi band is 85.86% with the Random Forest classifier. Similarly, 
in the CX1 building, the Random Forest classifier achieves the 
highest accuracy of 87.71% using the 2.4GHz Wi-Fi band. 
Although the accuracy decreases when using the 5GHz band in 
both buildings, the Random Forest classifier still exhibits the 
highest accuracy. The accuracy rates obtained are 83.23% in the 
F04 building and 87.71% in the CX1 building. 
 
    When considering the results obtained using the dual bands, 
it is observed that the accuracy rates increase, surpassing the 
accuracy achieved when using the individual 2.4GHz and 
5GHz bands. In the F04 building, the accuracy rate reaches 
91.21% with the Random Forest classifier, and in the CX1 
building, it reaches 89.37%. These results indicate that the 
combined use of the 2.4GHz and 5GHz bands yields more 
accurate positioning. 
 

 
TABLE 1 CLASSIFICATION RESULTS 

 
Building Data KNN DT XGBoost RF 

 
F04 

2.4GHz 0.5182 0.7020 0.7859 0.8586 
5GHz 0.6919 0.7051 0.7869 0.8323 
Dual 0.6556 0.7333 0.8162 0.9121 

 
CX1 

2.4GHz 0.4700 0.6404 0.7907 0.8771 
5GHz 0.6512 0.6913 0.7439 0.8188 
Dual 0.5832 0.7221 0.7822 0.8937 



   Table 2 presents the results obtained using the proposed 
multi-view ensemble learning approach in the F04 and CX1 
buildings. In the F04 building, the highest accuracy rate 
achieved was 91.21%. However, by applying the proposed 
multi-view ensemble learning approach, the accuracy rate 
further improved to 92.53%. Similarly, in the CX1 building, the 
initial accuracy of 89.37% increased to 91.48% when using the 
proposed method. The proposed approach handles the 2.4GHz 

and 5GHz Wi-Fi signals separately and evaluates them using 
distinct learning models. This strategy leads to more robust 
results in indoor location detection, as evidenced by the higher 
accuracy rates obtained. By utilizing a multi-view ensemble 
learning approach, the method effectively leverages the 
strengths of both bands, resulting in improved accuracy and 
enhanced robustness in the positioning process. 

 
TABLE 2 RESULTS OF PROPOSED METHOD 

 
RF Proposed Method 

Building Data Accuracy Precision Recall Accuracy Precision Recall 

 
 

F04 

2.5G 0.8586 0.8738 0.8763  

0.9253 
 

0.9301 
 

0.9387 5G 0.8323 0.8680 0.8476 
Dual 0.9121 0.9293 0.9263 

 
 

CX1 

2.5G 0.8771 0.8936 0.8867  

0.9148 
 

0.9308 
 

0.9233 5G 0.8188 0.8622 0.8325 
Dual 0.8937 0.9173 0.9024 

 

B. XAI Results 

 
The results obtained with Random Forest model were 

analyzed using LIME model for three different views  (2.4 GHz, 
5 GHz, dual-band) . A sample was selected to analyze LIME's 
explanation of indoor localization estimates. The prediction 
probabilities of the reference points calculated by the learning 
algorithm for the selected sample are presented by LIME. 
Access points that are effective in allocating the sample selected 
as a test to the current reference point and the attribute 
distribution of these points are produced by LIME. 

Fig. 3 shows the estimation results obtained by the learning 
model using the LIME model of the selected test sample, 
according to the 2.4GHz Wi-Fi values. The property values 
represent the signal strengths received from the corresponding 
access point. The selected test sample is correctly assigned to 
reference point (Grid) 119 by the learning algorithm. It is 
observed that the attributes that are more responsible for 
assigning the test sample to reference point 119, in other words  
 

 
the distinctive access points, are access points 24, 28, 7, 29, 11, 
34 and 27. For this example, it is observed that the signal 
strength of access points 24, 7, 11, 27 is taken as 100. It is 
concluded, based on this example, that signals from these 
access points are generally not received on Grid 119. It is seen 
that the signal strength of access point 28 is taken as -100. In 
this case, it is concluded that access point 28 is located quite 
close to Grid 119. It is seen that -62 and -59 signal values are 
obtained from access points 29 and 34, respectively. These 
access points may be more distant from Grid 119 than access 
point 28, or there may have been a decrease in signal strength 
due to exposure to an external factor. It is seen in Fig. 3 that the 
selected test sample is assigned to Grid 119 with a probability 
of 44 percent and to Grid 118 with a probability of 29 percent. 
It is noteworthy that grid 118, which is the neighboring grid, 
possesses the second highest probability. The LIME model 
shows that access points 13 and 6 for the selected test sample 
have signal values compatible with the feature distribution of 
Grid 118.  
 

 

 
 

Fig.3. LIME results for 2.4GHz Wi-Fi based localization 

 
 



Fig. 4 shows the explainable results obtained with the LIME 
model for the same selected test data, using a 5 GHz Wi-Fi 
dataset. Similarly, this test sample is correctly allocated to Grid 
119. Fig. 4 gives the attribute values of the nine most important 
access points identified by the model as distinctive attributes in 
allocating the test sample to Grid 119. In Grid 119 location, it 
is seen that signals are received from APs 58, 64, and 63 in the 
5GHz band range. When using 5GHz frequency values directly, 
it is seen that the prediction probability belonging to Grid 119 
that the learning model calculates is higher than the probability 

value when using 2.4GHz frequency values. Grid 118, 
representing the neighboring grid has the second highest 
probability and similarly, the prediction probability belonging 
to Grid 118 is calculated higher than the probability given in 
Fig. 3. Unlike 2.4 GHz frequency values, when using 5GHz 
frequency values, it has been observed that the prediction 
probability values of the model belonging to other reference 
points are lower for this sample. 
 
 

 

 
 

Fig.4. LIME results for 5GHz Wi-Fi based localization 

 
    The results of the LIME model analysis for the test sample 
when learning and testing with dual-band Wi-Fi signals are 
presented in Fig. 5. According to the results, the probability of 
being within grid 119 for the test sample has decreased 
compared to the results of single-band analysis. In the 
classification performed using 2.4GHz, the probability value 
was 0.44, while in the classification using 5GHz, it was 0.48. 
However, when dual-band Wi-Fi data was used, the probability 
value decreased to 0.37. Access points 28, which are effective 
in the 2.4 GHz scenario, and AP 64 and 58, which are effective 
in the 6 and 5 GHz scenarios, are effective together in allocating 
this sample to Grid 119. 

 
To summarize the results obtained from the LIME model, 

using two different bands together in the same feature space may 
reduce the prediction probabilities for some samples. Although 
using two different bands together in the same feature space 
enriches the feature space, combining different frequencies can 
increase the probabilistic complexity of the learning model due 
to the influence of different factors. Therefore, in this study, it 
was aimed to achieve a higher performance in indoor location 
estimation by performing different learning phase for each 
different band space and then averaging the prediction results. 

 

 

 
 

Fig.5. LIME results for dual band Wi-Fi based localization 

 
    Fig. 6 presents the SHAP global analysis results of the 
proposed method. The global analysis results provide a detailed 
analysis of which features are more effective for which classes  

 
during the learning and testing process of the model, 
considering all train samples and test samples. It demonstrates 
the average impact of top eight access points (features) on 



model prediction for reference points between 0 and 9. Top 
features such as 48, 43, 61, or 40 are the most highly ranked 
access points.  
 

 
 

Fig.6. SHAP results for reference points between 0 and 9. 
 
    Similarly, Fig. 7 gives the average impact of top eight access 
on model output for reference points between 110 and 119. For 
these reference points, APs 47, 58, 61, or 43 are highly 
important for indoor localization prediction. 
 

 
 

Fig.7. SHAP results for reference points between 110 and 119. 

IV. CONCLUSION 

     This study focuses on the utilization of Wi-Fi technology in 
the development of indoor localization systems. Specifically, it 
presents an indoor location detection approach using the 
UTMInDualSymFi dataset, which includes datasets for 2.4GHz 
Wi-Fi, 5GHz Wi-Fi, and dual-band Wi-Fi (both bands 
combined). The study employs fingerprinting-based indoor 
positioning techniques utilizing single-band and dual-band data 
with classifiers such as KNN, Decision Tree, XGBoost, and 
Random Forest. The Random Forest classifier achieved the 
highest accuracy, reaching 91.21% for the F04 building and 
89.37% for the CX1 building when using dual-band data. To 
address the potential impact of different bands on positioning 
accuracy, a multi-view ensemble learning approach is 
proposed. With this approach, the accuracy improved to 
92.53% in the F04 building and 92.33% in the CX1 building. 
The obtained results are further analyzed using LIME and 

SHAP XAI models. Specifically, the LIME model examines the 
signal values for the sample 119 grid, revealing higher 
probability values for grid 119 in single-band classifications, 
which decrease in dual-band Wi-Fi classification. This 
highlights the consistency of the multi-view ensemble learning 
model, which combines individual band classifications. 
Additionally, the study discusses the effects of the SHAP model 
on identifying grid areas of access points. For future studies, the 
aim is to develop a classification approach that takes into 
account access points that are distinctive for each grid, utilizing 
XAI methods. 
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