
 1

A Flow-based Method for Abnormal
Network Traffic Detection

Myung-Sup Kim, Hun-Jeong Kang, Seong-Cheol Hong, Seung-Hwa Chung, and
James W. Hong
Dept. of Computer Science and Engineering
POSTECH
{mount, bluewind, pluto80, mannam, jwkhong}@postech.ac.kr

Abstract

One recent trend in network security attacks is an increasing number of indirect
attacks which influence network traffic negatively, instead of directly entering a
system and damaging it. In future, damages from this type of attack are expected to
become more serious. In addition, the bandwidth consumption by these attacks
influences the entire network performance. This paper presents an abnormal
network traffic detecting method and a system prototype. By aggregating packets
that belong to the identical flow, we can reduce processing overhead in the system.
We suggest a detecting algorithm using changes in traffic patterns that appear
during attacks. This algorithm can detect even mutant attacks that use a new port
number or changed payload, while signature-based systems are not capable of
detecting these types of attacks. Furthermore, the proposed algorithm can identify
attacks that cannot be detected by examining only single packet information.

Keywords

Network Security Attack, Abnormal Network Traffic Detection, Traffic
Monitoring and Analysis.

1. Introduction
Today, the number of Internet users is continuously increasing, along with

new network services. As the internet grows, network security attack threats have
become more serious. Many security vulnerabilities are exposed and exploited by
attacks. Recent reports on Internet security breaches indicate that the frequency and
the damage costs are continuously rising.

One recent network attack trend is the use of network traffic. An attacker
places networks or hosts in jeopardy, without intruding into the hosts. The attacks
on a famous website, such as Yahoo, E-bay, and E*trade, are good examples [1, 2].
This type of Denial of Service (DoS) and Distributed Denial of Service (DDoS)
attacks [3, 4, 5] will cause more damage for the following reasons. There are so
many DoS/DDoS tools that even unskilled users can use easily. A successful
DoS/DDoS attack shows its impact quickly and makes it difficult to trace back to

 2

the intruder. Moreover, the bandwidth consumption by the attacks influences
network performance. Even on highly over-provisioned links, malicious traffic
causes an increase in the average DNS latency by 230% and an increase in the
average web latency by 30% [6]. From the monitoring result of NG-MON [7], we
can observe a more serious latency deficiency (up to 500%) in enterprise networks
that contains a target or bypassing machine of the attacks. These menaces require
us to make provisions against DoS/DDoS attacks.

This paper focuses on detecting abnormal network traffic which includes those
generated by internet worms[6], DoS/DDoS and scanning[24], scanning which
include both port and network scanning. We present a detecting method and a
system prototype. We analyze network traffic based on flows, which is defined as
collections of packets that travel between the same end points [8]. By aggregating
packets that belong to the identical flow, we can reduce processing overhead in the
system. In addition, we can easily find flow generating system or routers, such as
NetFlow [9]. We characterize traffic patterns that appear during attacks. By using
these traffic patterns, the proposed method can detect even mutant attacks that use
a new port number or forged payload. Additionally, the method will identify
attacks that cannot be detected by examining only packet information, by using
complete traffic information.

The organization of this paper is as follows. The related work is described in
Section 2. Section 3 describes our proposed abnormal traffic detection algorithm.
The analysis result of our proposed algorithm is presented in Section 4. In Section
5, we describe a system prototype that implemented our detection algorithm.
Finally, concluding remarks are given and possible future work is mentioned in
Section 6.

2. Related Work

In this section, we provide a brief overview of scanning and DoS/DDoS

attacks. Also, previous approaches to detect these types of attacks are discussed.
Through scanning, an attacker obtains information on a target system. By

sending scanning packets to the target, it discovers which systems are working and
which services are being offered [10]. DoS/DDoS attacks cause a waste of the
resources in the host or networks, and make services work improperly. There are
two principal classes of DoS/DDoS, logic and flooding attacks [11].

Logic attacks exploit existing software flaws to cause a malfunction in the
system. For instance, in a Ping-of-Death attack [12], oversized ICMP ping packets
can result in a denial of service. Also, a Land attack [13] may crash the system by
sending packets with the source host and port the same as the destination host and
port.

Flooding attacks transmit many spurious packets to the target system, and
waste CPU, memory, and network resources. In case of TCP SYN flood [14], the
victim receives packets that exceed buffer of the data structure limit and cripple its

 3

service. Also, ICMP, TCP, and UDP flooding attacks [16] overwhelm bandwidth
by sending useless traffic to the victim. Some attacks, such as Smurf [15] and
Fraggle [17], amplify traffic by using reflecting services of the third party. There
are other examples of a reflecting attack that cause packets to rebound between two
hosts using reflecting ports, such as echo. We defined this kind of attacks as a
Ping-Pong attack in this paper.

To detect the attacks described above, network-based Intrusion Detection
Systems (NIDS), such as snort [19], in a packet header or payload. Signature-based
detecting systems require a huge database that contains information on every attack.
It causes much system overhead to compare every packet with the signatures in the
database. Therefore, these systems are not appropriate in a high-speed network.
Thus, if a new or mutant attack appears, the signature detecting method cannot
catch it. In addition, packet information may be insufficient because some types of
attack can be detected only by using from a series of packets information.

Other types of detecting methods have been suggested. These approaches
monitor the volume of traffic which every single host has received [20, 21] or the
number of new source IP addresses [22]. These methods identify attacks by
checking the volume of traffic or the number of new source IP addresses. These
methods may have low overhead, but can result false alarms. To reduce false
alarms, it is necessary to use all the possible traffic parameters.

3. Flow-based Abnormal Traffic Detection Algorithm

In this section, we propose a method to detect abnormal network traffic. In this

paper, we define abnormal network traffic as the traffic cause by malicious purpose
including the traffic by DoS/DDoS, Internet worm and scanning. The detection
module receives flow information from monitoring systems or routers. After
detecting abnormal traffic, an alarm is emitted if an attack is detected. As
illustrated in Figure 1, the overall process consists of two parts: the flow header
detection and the traffic pattern detection.

The flow header detection takes part in checking the fields of the flow headers.
By validating these values, this part mainly detects logic attacks. Also, it can catch
some flooding attacks with specific values. For example, a fraggle attack traffic
can be detected by verifying broadcast destination or specific port numbers.

traffic pattern
data generation

flow header detection

traffic pattern detection

flow

alarm

Figure 1. Overall Detection Process

 4

Some attacks have traffic patterns that cannot be characterized by only one
flow. To detect this type of attack, we need traffic information that can identify
traffic patterns. Aggregating related flows can generate this information, which is
called traffic pattern data. By examining parameters of traffic pattern data we can
discover traffic used in attacks, such as flooding and scanning.

3.1. Detection from Flow Header

The flow header detection part checks the field values of a flow header. The
diagram in Figure 2 classifies attacks by the field values of the flow header. This
part can detect logic attacks or other attacks with a specific header such as
broadcast destination or specific port numbers.
 We define flow as a collection of packets with the same 5-tuple: source IP
address, destination IP address, source port, destination port, and protocol number.
The flow size and packet count, refer to the total bytes and the number of packets
that belongs to the flow, respectively.

transport
protocol

ICMP

TCP

UDP

echo request
destination IP= broadcast

smurf

source IP = destination IP
source port=destination port

land

ping-pong

fraggle

packet count = L, flow size= L

destination port= reflecting port

source port= reflecting port

destination IP=broadcast

ICMP flooding

source IP destination IP packet countflow sizetransport protocoldestination portsource port

Flow Header

flow size/packet count is too high ping-of-death

packet count = L, flow size= L TCP flooding

packet count = L, flow size= L UDP flooding

L : Large S: Small

Figure 2. Flow Header Detection Sequence

 If the transport protocol is ICMP and its type is echo request and destination is
broadcast, then this flow is determined to be a smurf attack. The reason is that the
attack mainly sends spoofed source IP packets to the destinations of broadcast.
Additionally, this phase can detect a Ping-of-Death attack flow by validating
whether the length of the de-fragmented packet is larger than the limited length that
an IP packet can have.

 5

 In the case of a TCP transport protocol; this part certifies if the pair of source
IP, source port is identical with the pair of destination IP, destination port for the
purpose of detecting a Land attack.
 In UDP flows, Fraggle and Ping-Pong attacks use UDP reflecting services,
such as echo (port 7), chargen (port 19), daytime (port13), and qotd (port 17).
Therefore, the port numbers of source and destination port are validated. If both
destination and source ports are reflecting port numbers, then this flow is used for
the Ping-Pong attack. Also, if the destination port is a reflecting port and the
destination IP is a broadcast address, the flow is supposed to be a Fraggle attack,
similar to the Smurf attack.
 In each transport protocol, the flow header detection part searches flows with a
large packet count and flow size in order to identify flooding flows. For example, if
a large number of ICMP packets and its flow size is large, then it is determined to
be an ICMP flooding. To determine whether the flow size and packet count of a
flow are large or not, currently we are using a percentile threshold value to total
flow size and total packet count. This threshold values are differently determined
according to the network and link conditions, such as the number of flows, the
number of distinct IP address appeared in the captured data, and so forth.

3.2. Detection from Traffic Patterns

Some peculiar traffic patterns are generated during attacks. For detecting this

type of attack, we characterize these patterns by parameters of traffic based on flow
as shown in Table 1.

floodingscanning
Attacks

Property

reflecting
port

UDP
broadcast

ICMP
broadcast

1 port
1

destination
property

LLLLL or SL or SL or S
total packet

count

LLLLL or SL or SL or S
total

bandwidth

L or SL or SL or SL or SSSSpacket size

L or SLL or SL or SSSS
packet

count/flow

L or SLL or SL or SSSS
flow

size/flow

L or SSLLLLLflow count

general
(ICMP,UDP,TCP)

flooding
ping-pongfragglesmurfTCP SYNnetworkhost

L : Large S : Small

Table 1. Characterization of Attack Traffic Patterns

During scanning, the attacker makes many connection attempts. Consequently,
many flows are generated and the packet count in each flow is small, when a
scanning occurs. In addition, the packet size is mostly small (about 40 bytes),
because the attacker sends small packets and observes responses from these
packets. If an attacker attempts to check open ports in a host, then this host

 6

scanning causes traffic which has a specific destination IP address. On the other
hand, a network scanning makes many destination IP addresses when searching for
service availability in many hosts of the network. However, the total packet count
and total bandwidth can be large or small according to the number of connected
hosts and ports. These fields cannot be used to detect scanning.

The TCP SYN flood induces a lot of flow activities, because it sends many
packets to a specific port of the victim. Also, the packet count and total packet
length in each flow are small, as this attack sends small SYN packets. However,
the total bandwidth and total packet count vary according to the number of
transmitted packets.

The Smurf and Fraggle attacks force traffic gathered to the victim by using a
third party. This type of attack creates as many flows as the number of hosts of the
third party used in attacking. Consequently, the total bandwidth and total packet
count increase. These attacks use third party and amplify traffic that is mainly
destined to a broadcast address. Two attacks, Smurf and Fraggle, differ in the used
protocol. Smurf makes use of ICMP and Fraggle uses UDP. As the number of
repetition of transmission of spoofed packets determines the packet count in a flow,
the total length of packets in each flow, and each packet size, these parameters are
unavailable for detecting.

During a Ping-Pong attack, traffic appears only in the two hosts with the same
ports. This can cause a large number of packets in a flow. Accordingly, the total
packet length in each flow, total bandwidth, and total packet count are large.

In addition to the attacks described above, general ICMP, UDP, TCP flooding
attacks have dynamic traffic patterns depending on how many packets and hosts
are used for an attack. However, most attacks create a large total bandwidth and
high total packet count. Additionally, such traffic has a small deviation in the
packet and flow size of each flow.

…

hash
(source IP)

n(S_IP)

sum(flow size)
avg(flow size)
dev(flow size)

sum(n_packet)
avg(n_packet)
dev(n_packet)

destination
IP

ACK
packet …SYN

packet
packet
count

flow
size

transport
protocol

source
port

destination
port

source
IP

n(D_port) n(S_port) p(proto) n(SYN) n(ACK)

flow messages

…hash
(destination IP)

traffic pattern data (destination based)

traffic
pattern data

(source based)

Figure 3. Generation of Traffic Pattern Data

 7

When discovering the traffic patterns described in Table 1, some attacks are not
possible to detect only with the flow information. Therefore, we generate traffic
pattern data by aggregating related flows. In order to check traffic characteristics,
we generate traffic information that are sent and received from a certain host.

As illustrated in Figure 3, the process aggregates flows that contain the same
address by hashing. Two hash tables are used to record the traffic pattern data
aggregated by either the same source or destination IP. During this phase, two
types of traffic pattern data are generated: the source and destination based traffic
pattern data that gather flows with the same source and destination IP, respectively.
 The parameters and their description of the destination-based traffic pattern
data are given in Table 2. The explanation of source-based traffic pattern data is
omitted because of the similarity to that of destination-based traffic patterns.

Notation Description
n(flow) the number of flows with same destination IP
n(S_IP) the number of distinguished source IP with same destination IP

n(D_port) the number of destination port with same destination IP
n(S_port) the number of source port with same destination IP
p(proto) the most frequently appeared transport protocol with same destination IP

sum(flow size)
avr(flow size)
dev(flow size)

Summation, average, and deviation of flow size with same destination IP

sum(n_packet)
avr(n_packet)
dev(n_packet)

Summation, average, and deviation of packet count with same destination
IP

n(SYN)
n(ACK)

the total number packets of SYN, ACK, and other flags with same
destination IP

Table 2. Network Parameters used Anomaly Detection

By comparing attack traffic patterns with parameters of traffic pattern data
generated in Figure 3, the traffic pattern detection part can identify abnormal
network traffic. The comparison algorithm is illustrated in Figure 4.

destination based
n(D_port) = L
n(S_IP) = S

host
scanning

n(D_port) = S
n(ACK)/n(SYN) = S

TCP SYN
flood

sum(n_packet) = L
sum(flow size)= L

n(flow) = L
avg(flow size) = S
avg(n_packet) = S

source based

n(D_IP) = L
n(D_port) = S

network
scanning

n(flow) = L
avg(flow size) = S
avg(n_packet) = S

sum(n_packet) = L
sum(flow size)= L

(ICMP,UDP,TCP) flooding

(ICMP,UDP,TCP) flooding

Figure 4. Traffic Pattern Detection Sequence

 8

 When checking a destination-based traffic pattern data, the detector checks
whether a large number of flows appears, whether the flow size of an individual
flow is small, and whether the number of packets per a flow is small. If so, and if
the number of destination ports is high, and a small number of source IP traffic is
generated, then that traffic is assumed to be a host scanning. If the traffic pattern
data reports a small number of destination ports and a small fraction of
n(ACK)/n(SUN), this phenomenon implies that a TCP SYN flood attack traffic has
occurred.

 In addition, a source-based traffic pattern data is examined to investigate the
traffic sent from a specific host. The detector checks whether the n(flow) is large,
the avg(flow size) is small, and the avg(n_packet) is small in a manner similar to
destination-based traffic pattern data. The detector checks if the data reports a large
number of destination IPs and a small number of destination ports. If so, that traffic
is suspected to be a flooding attack.
 Regardless of the source and destination of traffic pattern data, traffic sent or
received from a certain machine is investigated. The reason is that the system may
use network resources by sending or receiving too much traffic when it is used as a
flooding attack. Accordingly, if the analyzed result from traffic data indicates too
many total packets and bandwidth, then that traffic is considered to be a flooding
attack.
 We are using threshold values to decide whether each traffic pattern parameter
is large or small at each phase of the traffic pattern detection sequence in Figure 4.
The threshold values are differently determined for each traffic pattern parameter
with regard to each attack type. We do not use these threshold values directly in the
detection sequence. Instead, we use these values in the attack detection functions to
increase detection accuracy, which is described in the following section.

4. Formalization of Detecting Functions and Thresholds

In this section, we describe experimental results of the proposed network
security attack detection method. From these results, we formalize detection
functions suitable for attack detection, which are composed of several traffic
pattern parameters and constant values. Using these detections functions and
threshold values we can determine whether or not certain traffic is abnormal.

We have setup a security attack testing environment in our laboratory and
generated various attack traffic using freely available attack tools. Figure 5 shows
variations of traffic pattern parameters in the form of time series graph. A
scanning and a TCP SYN flood attack are occurred at time t1 and t2 respectively.
We observed traffic data that the victim receives. The time series graphs (a)~(d) in
Figure 5 illustrate the variation of each network traffic parameter (such as
sum(flow_size), n(flow), n(S_IP), etc.) in the victim side.

Although some parameters, such as n(flow), partly reflect the traffic changes,
the decision with only one individual parameter may generate a false alarm
appeared at t3, and this phenomenon implies the occurrence of scanning or TCP

 9

SYN flood. However, we discover that many of these flows are caused by a
popular peer-to-peer application called ‘eDonkey’ [23]. As shown in Figure 5, the
use of a single parameter in the detection of these attacks cannot give high
detection accuracy because many traffic patterns from newly born network-based
applications are similar to the attack traffic.

(a) total bandwidth (b) number of flows (c) number of source address

(d) total packet count (e) detecting function for Scanning (f) detecting function for TCP SYN

Scanning TCP SYN Flood

sum(flow s ize) n(flow) n(S_IP)

sum(n_packet)

t1 t2 t3

t1 t2 t3 t1 t2 t3
t1 t2 t3

t1 t2 t3 t1 t2 t3

sum(flow_size) n(flow) n(S_IP)

sum(n_packet) Scanning TCP SYN Flood

Figure 5. A Result of the Proposed Detection Algorithm

In order to detect attacks, we use detecting functions that could fully reveal the

traffic patterns of attacks. Figure 5 (e) and (f) represent values of functions to
detect a scanning and TCP SYN flood, respectively. These detecting functions for
the scanning and TCP SYN flood attack are formalized as follows:

where

where

 αX refers to the weight of term X, and TY means the threshold of term Y. The
values used in our detection are given in Table 3. To determine the suitable weight
and threshold values, we experienced lots of trial and errors. These functions can
identify a scanning at t1 and TCP SYN flood at t2. Currently, we are using static
threshold values, which are determined by the comparison of normal traffic and

portportIPIPpacketNpacketNflowLflowLflowflowNscan vvvvvf ααααα ∗+∗+∗+∗+∗= _____

;/)_(),_(/),_(/
), (/ ,/)(

__

portportIPIPpacketNpacketN

flowLflowLflowNflowN

TportDnvIPSnTvpacketnavgTv
sizeflowavgTvTflownv

===

==

, ________ acksynacksynportportpacketNpacketNflowLflowLflowflowNfloodsyn vvvvvf ααααα ∗+∗+∗+∗+∗=

).(/)(),_(/),_(/

), (/ ,/)(

ACKnSYNnvportDnTvpacketnavgTv

sizeflowavgTvTflownv

acksynportportpacketNpacketN

flowLflowLflowNflowN

===

==

 10

attack traffic. To generate attack traffic we used freely available attack tools. The
threshold value of same traffic pattern parameter, such as TN, is different according
to attack type. The threshold and weight values need to be elaborate to adopt this
proposed system in various network environments.

Attack Type Value
weight αN_flow = 0.3, αL_flow =0.1, αN_packet =0.2, αIP =0.1, αport= 0.3 Scanning
threshold TN_flow = 1024, TL_flow = 128, TN_packet = 2, TIP = 3, Tport = 1024
weight αN_flow = 0.2, αL_flow = 0.1, αN_packet = 0.1, αport= 0.1, αsyn_ack = 0.5 TCP

SYN flood threshold TN _flow = 3500, TL_flow = 64, TN_packet = 1, Tport= 1
Table 3. The constant and threshold value of proposed detection function

5. Prototype Implementation

We have developed a system prototype for detecting abnormal network traffic
based on flows. This system utilizes flow information from NG-MON [7]. As
illustrated in Figure 6, the monitoring tasks of NG-MON are divided into several
phases, which are serially interconnected using a pipelined architecture. One or
more systems may be used in each phase to distribute and balance the processing
load. This provides good scalability. We have also defined a communication
method between each pair of phases. Each phase can be replaced with more
optimized modules as long as they provide and use the same interfaces. The
divided architecture provides flexibility. By assigning tasks to each phase, this
architecture enables us to easily append or remove modules for added work, such
as security attack analysis.

Report
Generator

(email, SMS, log)

Packet
Capturer

Flow
Generator

Flow
Store

Presenter
Web Server

Network
Device

Web
User Interface

Flow Generation of NG-MON

Flow
Header
Detector

Traffic
Pattern

Data
Generator

Traffic
Pattern

Detector

traffic
detection
module

flow
messages

detected
traffic
information

Figure 6. Abnormal Traffic Detection System Architecture

 11

The flow generation module of NG-MON provides flow information. This
module consists of a packet capturer, a flow generator, and a flow store. The packet
capturer collects packets that pass a probing point. Another function of the packet
capturer is to extract information from the packet header and to send it to the flow
generator. Then, the flow generator creates a flow by collecting a series of packets.
Next, the flow is periodically stored into a database of the flow store. Here, the
period can be configured according to the flow time-out in order to aggregate flow
information during a predetermined time, such as one minute.

The traffic detection module discerns abnormal network traffic. This module
checks the flow header fields first to discover specific addresses, port numbers, or
logic attacks. Then, it generates traffic pattern data. By matching this data, detect
functions identify the attacks, as described in Figure 6.

If abnormal network traffic is detected, the report on attack can be provided to
the network administrator by email, SMS, and log. Also, the presenter shows
information on detected abnormal network traffic, by replying to user’s request
through the Web user interface. Figure 7 is a sample screen shot of web-based user
interface.

We implemented the traffic detection module using C language and MySQL
on Linux environment. The Apache web server and PHP are used to show the
abnormal traffic information which is stored in the MySQL DB. We used a single
Pentium III 800 MHz system with 256Mbytes memory for the traffic detection
module to analyze traffic flow data captured in total 400 Mbps network links. Our
prototype system has been deployed in the our campus Internet junction, and gives
useful information about abnormal traffic to the campus network administrators.

Figure 7. A User Interface for Security Attack Analysis System

 12

Figure 7 shows an analysis results for 1 minute traffic flow in Aug. 27, 2003.

As you can see, Lots of ICMP flooding attacks are detected which is caused by
Welchia Internet worm [25].

6. Conclusion

This paper presented a flow-based abnormal network traffic detection method
and its system prototype. This method is efficient, since it can reduce system
overhead in the processing of packet data by aggregating packets into flows. It can
detect the traffic of several attacks with a similar traffic patterns using one
detecting function. This function can cover even mutant attacks that use new port
numbers or a changed payload. We also increased the detecting accuracy. When
detecting abnormal traffic, we use parameters that can reflect changes in traffic
characteristics during attacks. The traffic information of this system is extensible.
Traffic pattern data extracted from a group of flows include various types of
information. Therefore, this information can be easily compounded to detect new
types of attacks.

However, the proposed method strictly focuses on the detection of DoS/DDoS
attacks. If an attack does not influence network traffic, it is difficult to detect this
type of attack. In future, we plan to develop detecting algorithms that can detect
more attacks. Furthermore, the traffic pattern of some P2P applications, which
occupies more than 50% of current Internet traffic, is very similar to attack traffic
pattern. It is necessary to reduce the false-alarm cause by these P2P traffic. Thirdly,
currently we are using static threshold values in the detection function, which is
determined by lots of experimentation. But this value can not be suitable to every
network environment. So, we need to find a new method to determine the threshold
value adaptively for various network conditions.

References

[1] CNN, Immense network assault takes down yahoo, February 2000,

http://www.cnn.com/2000/TECH/computing/02/08/yahoo.assault.idg/index.ht
ml.

[2] CNN, Cyber-attacks batter web heavyweights, February 2000,
http://www.cnn.com/2000/TECH/computing/02/09/cyber.attacks.01/.

[3] Drew Dean, Matt Franklin, and Adam Stubblefield, “An algebraic approach to
ip traceback,” Proc. of Network and Distributed System Security Symposium,
NDSS '01, San Diego, California, February 2001.

[4] L. John Ioannidis and Steven M. Bellovin, “Implementing pushback: Router-
based defense against DDoS attacks,” Proc. of Network and Distributed
System Security Symposium, NDSS '02, San Diego, California. February 2002.

 13

[5] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson, “Practical
network support for IP traceback,” Proc. of the 2000 ACM SIGCOMM,
Stockholm, Sweden, August 2000.

[6] Kun-chan Lan, Alefiya Hussain, and Debojyoti Dutta, “Effect of Malicious
Traffic on the Network,” Proc. of PAM 2003, San Diego, California, April
2003.

[7] Se-Hee Han, Myung-Sup Kim, Hong-Taek Ju, and James W. Hong, “The
Architecture of NG-MON: A Passive Network Monitoring System,” Lecture
Notes in Computer Science 2506, 13th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM 2002), Montreal,
Canada, October 2002, pp. 16-27.

[8] Siegfried Lifler, “Using Flows for Analysis and Measurement of Internet
Traffic,” Diploma Thesis, Istitute of Communication Network and Computer
Engineering, University of Stuttgart, Germany, 1997.

[9] Cisco, White Papers, “NetFlow Services and Applications,”
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/napps_wp.htm.

[10] Fyodor, “The Art of Port Scanning,”
http://www.insecure.org/nmap/nmap_doc.html.

[11] D. Moore, G. M. Voelker, and S. Savage, “Inferring Internet Denial-of-
Service Activity,” Proc. of USENIX Security Symposium, Washington D.C,
Aug 2001.

[12] Common Vulnerabilities and Exposures (CVE), “Ping-of-Death (CVE-1999-
0128),” http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0128.

[13] Common Vulnerabilities and Exposures (CVE), “Land (CVE-1999-0016),”
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0016.

[14] Common Vulnerabilities and Exposures (CVE), “SYN flood (CVE-1999-
0116),” http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0116.

[15] Common Vulnerabilities and Exposures (CVE), “Smurf (CVE-1999-0513),”
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0513.

[16] Common Vulnerabilities and Exposures (CVE), “UDP packet storm (CVE-
1999-0103),” http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
1999-0103.

[17] Common Vulnerabilities and Exposures (CVE), “Fraggle (CVE-1999-0514),”
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0514.

[18] Common Vulnerabilities and Exposures (CVE), “HTTP request flood (CVE-
1999-0867),” http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
1999-0867.

[19] M. Roesch, “Snort - lightweight intrusion detection for networks,”
http://www.snort.org.

[20] Rudolf B. Blazek, Hongjoong Kim, Boris Rozovskii, and Alexander
Tartakovsky, “A novel approach to detection of denial-of-service attacks via
adaptive sequential and batch sequential change-point detection methods,” Pro.
of IEEE Systems, Man and Cybernetics Information Assurance Workshop,
New York, June 2001.

[21] David K. Y. Yau, John C. S. Lui, and Feng Lian, “Defending against
distributed denial-of-service attacks with max-min fair server-centric router

 14

throttles,” Proc. of IEEE International Workshop on Quality of Service
(IWQoS), Miami Beach, Florida, May 2002.

[22] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao, “Detecting
Distributed Denial of Service Attacks Using Source IP Address Monitoring,”
http://www.ee.mu.oz.au/pgrad/taop/research/detection.pdf.

[23] eDonkey, http://www.edonkey2000.com/.
[24] Urupoj Kanlayasiri, Surasak Sanguanpong, and Wipa Jaratmanachot, “A

Rule-based Approach for Port Scanning Detection,” Proc. of the 23nd
Electrical Engineering Conference (EECON-23), Chiangmai, Thailand,
November 2000.

[25] Welchia Internet Worm,
http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.h
tml.

