
Design and Implementation of XML-based
Configuration Management System for
Distributed Systems

Hyoun-Mi Choi, Mi-Jung Choi and James W. Hong
Dept. of Computer Science and Engineering, POSTECH, Pohang, Korea
{siwa, mjchoi, jwkhong}@postech.ac.kr

Abstract
Today, we are witnessing more distributed systems on enterprise networks and on
the Internet. In general, a distributed system is composed of many subsystems. It is
difficult to effectively manage the configuration information of distributed systems
because they may be deployed with different software components and run on
heterogeneous computing platforms. In addition, the configuration information of a
subsystem has complex relations with the information of other subsystems, so it is
difficult to provide automatic reconfiguration of related subsystem. To overcome
the difficulties, we propose a management information model that considers the
relations among subsystems and the Simple Object Access Protocol (SOAP) as a
communication method. This paper presents the design and implementation of X-
CONF (Xml-based CONFiguration management system) for a distributed system.
For validation, we have developed the X-CONF for NG-MON, which is a
distributed and real-time Internet traffic monitoring and analysis system.

Keywords
XML-based Configuration Management, XML, XML Schema, SOAP.

1. Introduction
Today, most large-scale software systems are composed of a large number of

computers in a distributed computing environment. These systems are usually
implemented with many computers to distribute the processing. In this paper, the
components of a distributed system are called subsystems. The implementation and
execution environments of subsystems may be various. Also, the relation of
configuration information exists among these subsystems. A relation means that
some parts of the configuration information of a subsystem can be shared with,
have influence on, and be inherited by other subsystems. Therefore, a configuration
management system for the distributed system needs to understand the relationship
among subsystems for automatic reconfiguration and to provide the
communication method in a platform- and language-independent manner.

The Simple Network Management Protocol (SNMP) [1] is the most widely
used method for network management on the Internet. Also, SNMP is used in
configuration management. However, retrieving large volumes of information via

 1

Get/GetBulk operations of SNMP is not facile because of SNMP over UDP. SNMP
MIB using SMI is insufficient to present a set of interrelated tables considering the
relations among managed objects. Recently, much attention has been given to the
use of XML [2] technology to configuration management as an alternative
approach to SNMP. A current standardization of configuration management using
XML technologies is not concerned with management information yet. Also, there
is very little implementation work on XML-based configuration management for
distributed systems.

In this paper, we present the design and implementation of X-CONF for
distributed systems. Figure 1 is a high-level architecture of X-CONF, where the
XML-based manager controls multiple subsystems equipped with XML-based
configuration management agents.

X M L -b a s e d M a n a g e r

s u b s y s te m
X M L -b a s e d
C o n f . A g e n t

. . .

D is tr ib u te d E n v iro n m e n ts

s u b s y s te m
X M L -b a s e d
C o n f . A g e n t

s u b s y s te m
X M L -b a s e d
C o n f . A g e n t

X M L /S O A P

Figure 1. High-Level X-CONF Architecture

 We define the management information model with the XML Schema [3]. The
management information model presents configuration information, which
contains wide configuration information of the distributed system, and relationship
information, which represents relations among the subsystems using any tags
(element and attribute). The configuration information is applicable to multiple
subsystems by transforming it using the relationship information. We apply SOAP
[4] to communicate, which can bind any connection-oriented protocol like HTTP
for the transport, so there is no limit to process bulk data. Based on XML and
SOAP, the XML-based manager can directly call management operations in the
agent via SOAP RPC [5]. SOAP is very convenient to develop and extend the
management operations. In addition, it is platform-independent, which places no
restrictions on endpoint implementation technology choices.

The organization of this paper is as follows. In Section 2, we list related work
on XML-based configuration management. In Section 3, we discuss the
requirements of X-CONF. Section 4 explains the design of a manager and an agent
in X-CONF. In Section 5, we explain the implementation details of a prototype X-
CONF system. Finally, we conclude our work and discuss directions for future
work in Section 6.

 2

2. Related Work
In this section, we describe related work on XML-based configuration

management of standard activities and industrial efforts.

2.1 Cisco’s Configuration Registrar
The Cisco Configuration Registrar [6] is a Web-based system for automatically

distributing configuration files to Cisco IOS network devices. The Configuration
Registrar works in conjunction with the Cisco Networking Services (CNS)
Configuration Agent located at each device. The Configuration Registrar delivers
the initial configuration to Cisco devices during the initial startup on the network.
The Configuration Registrar uses HTTP to communicate with the agent, and
transfers configuration data in XML. The Configuration Agent in the device uses
its own XML parser to interpret the configuration data from the received
configuration files.

2.2 Juniper Networks’ JUNOScript
Recently, Juniper Networks introduced JUNOScript [7] for their JUNOS

network operating system. The JUNOScript is part of their XML-based network
management effort and uses a simple model, designed to minimize both
implementation costs and the impact on the managed device. The JUNOScript
allows client applications to access operational and configuration data using an
XML-RPC. The JUNOScript defines the DTDs for the RPC messages between
client applications and JUNOScript servers running on the devices. Client
applications can request information by encoding the request with JUNOScript tags
and sending it to the JUNOScript server. The JUNOScript server delivers the
request to the appropriate software modules within the device, encodes the
response with JUNOScript tags, and returns the result to the client application.

2.3 IETF Network Configuration
The Network Configuration (Netconf) [8] Working Group (WG) was formed in

May 2003. The Netconf WG is chartered to produce a protocol suitable for
configuration management of network devices. The Netconf WG defines the
Netconf configuration protocol and transport mappings. The Netconf protocol uses
XML for data encoding, and RPC as a communication mechanism. The Netconf
protocol is conceptually partitioned into four layers: ‘content’, ‘operations’, ‘RPC’,
and ‘transport’ and defines management operations and message formats. The
Netconf protocol considers three separate application protocol bindings for the
transport such as Secure Shell (SSH) [9], Block Extensible Exchange Protocol
(BEEP) [10], and SOAP over HTTP [11].

3. Requirements
Generally, a large-scale software system is composed of multiple subsystems to

 3

perform different tasks and to distribute the load. The subsystems have close
relations with their own configuration information. That is, configuration
information is shared among the component subsystems and the configuration
information of one subsystem affects the other subsystems. To effectively manage
the configuration information of each subsystem, the functional requirements of
configuration management system for distributed systems are as follows.

(1) Show, delete, and modify the configuration information of the subsystem.
(2) Add and delete single or multiple subsystems.
(3) Provide a Web-based user interface for ubiquitous access.

Requirements (1), (2), and (3) are fairly simple without considering the

relations of the subsystems. More requirements are needed to maintain consistency
in the configuration information, which has various relations with the subsystems.
Also, the effective communication mechanism between the manager and agents
must be supplied. The additional requirements are as follows.

(4) Provide a management information model to describe the configuration
information and the relationship information of subsystems. The
management information model represents complex relations among
subsystems. The kinds of relations are shared, referred, and inherited.

(5) Maintain consistency in configuration information among subsystems.
When the configuration information of a subsystem is added, deleted, or
modified, the automatic reconfiguration must be provided to other related
subsystems using the relationship information.

(6) Configuration activities can cause one or more state changes in a
subsystem. In addition, a configuration activity in one subsystem can
cause one or more state changes in other related subsystems. It is critical
that the configuration system must treat the overall change operation
atomically in a subsystem or multiple subsystems. The goal is for a
change request either to be completely executed or ignored. This is called
transactional integrity, which makes it possible to develop reliable
configuration systems that can invoke transactions and keep track of the
subsystems’ overall state and work in the presence of error states.

(7) Store the history of interaction messages between a manager and agents
into a log file. The messages are the notification about the system state of
the agents, and the result of the agent’s management operations invoked
by the manager.

(8) Provide communication methods between a manager and agents
regardless of the implementation environment.

4. Design of X-CONF
In this section, we define a management information model and an interaction

operation model. We propose a general management information model that can be
applied to any other distributed systems. By using a SOAP-based interaction

 4

operation model, the agent easily extend new operations. This section also shows
examples according to each model and describes the architecture of X-CONF.

4.1 Management Information Model
In order to use automatic reconfiguration of related subsystems, we propose a

configuration information model, which contains wide configuration information
of a distributed system, and a relationship information model which focuses on the
dynamic relationships of subsystems.

Table 1 shows the configuration information model using the XML Schema.
The subsystems that perform the same work have almost the same configuration
information, so they are classified into an identical group. The sub-elements of the
elements such as all_info, group_info and subsys are to present the specific
configuration information in the subsystems. An all_info is defined as a collection
of configuration information needed in all managed subsystems. A group_info is a
collection of configuration information shared with subsystems in the same group.
A subsys is a collection of configuration information used by only one subsystem.
The names and attributes of sub-elements (all_info, group_info and subsys) are not
static but dynamic. Therefore, the name of the element (anyElement) and that of
the attribute (anyAttribute) can be defined in any configuration information.

XML Schema of Configuration Information

Example
<configuration name="ng-mon">

<all_info>
<admin email=mount@postech.ac.kr name="mount"/>

 <database password="password" user="root"/>
</all_info>
<group name="packetcapture">

<group_info>
<device name =" eth1"/>
<data type=” all”/>

</group_info>
<subsys ip="141.223.11.1"/><subsys ip="141.223.11.2"/>

 </group>
<group name="flowgenerator" inheritance="packetcapture">

<group_info>
 <time interval="2"/>
 </group_info>

<subsys ip="141.223.11.3">
 <database user="siwa" passwd="123"/>
 </subsys>

 …
</configuration>

Table 1. Configuration Management Information Model

 5

The management information within a group can be inherited from other
groups. In this case, we use an inheritance attribute in the management
information model. The inheritance attribute represents that a whole or a part of
configuration information belonging to the group_info in a parent group is
inherited to a child group. Due to the growing complexity of distributed systems,
multiple inheritances can occur. In this case, we add the character (‘:’) among
group names to distinguish each group name. To describe various relationships of
configuration information among subsystems, we propose an XML Schema for
the relationship information model.

The relationship information model explicitly explains complex relations
between groups. Complex relations mean that the configuration information of a
subsystem shares, influences, and inherits a total or a part of the configuration
information under the group_info in other subsystem groups.
XML Schema of Relationship Information

Example
<relation name = "ng-mon">

<group name =" packetcapture">
 <sharedInfo name = "flowstore">
 <element>p2p</element>
 </sharedInfo>
 </group>
 <group name = "flowgenerator">
 <inheritance name = "flowstore" />
 <sharedInfo name = "packetcapture">
 <element>data</element>
 </sharedInfo>
 <referInfo name = "packetcaputre">
 <element>device</element>
 </referInfo>
 </group>
 <group name = "flowgstore">
 <sharedInfo name = " flowgenerator">
 <element>time</element>
 </sharedInfo>
 …
</relation>

Table 2. Relationship Information Model

Table 2 is the relationship information model using an XML Schema. In the
relationship information model, we define three element tags: inheritance,
sharedInfo, and referInfo. The inheritance element needs only the group name if
all the sub-elements under the group_info are inherited. If the information is
partially inherited, the inheritance element requires both the group name and the

 6

specific element names inherited in the group_info. The inheritance is used when
the child node modifies the inherited information independent of the parent node.
However, the shareInfo is used when the information changes occurring in a
subsystem are delivered to the other subsystems in the related groups. The
difference between the sharedInfo and the referInfo is the possibility to change
the value of the related information. In the case of sharedInfo, any groups
including the sharedInfo can change each value of sharedInfo elements. This
change is reflected to the other groups with the same sharedInfo. However, the
group including referInfo cannot change the value in referInfo elements but can
reflect the changed value of referInfo elements in the original group. In summary,
the inheritance and the sharedInfo are the read-write data, and the referInfo is
read-only data.

The log information stored in the log file is made of two types of information,
such as operation results information and notification information. Table 3 (a)
presents the result of each transaction at the agent side. It contains diverse
information as attributes. They are an agent IP address, a group name, a type of
operation, data, time, and result. The operation is modify, or load at the agent and
modify, add or delete at the manager. The data is the XPath [12] expression of the
configuration information. The result is the result of the operation: success or fail.
If the result is fail, the manager must rollback to guarantee the consistency of the
configuration information. The rollback is the basic method when the transaction
fails in our X-CONF. Also, the error message is stored into the log file.

(a) Example of Transaction Information Model
<transaction name = "ng-mon">
 <subsystem ip="141.223.82.1" group="packetcapture" operation="modify"
 xpath="//group[@name= ”packetcapture”]/group_info/device/@type"
 time="2003.08.10:12:06:56" result="success" />
 <subsystem ip="141.223.82.3" group=”packetcapure”

 …
</transaction>

(b) Example of Notification Information Model
<notification name = "ng-mon">

<subsystem ip="141.223.82.1" group="packetcapture" state="reboot"
time="2003.08.10.12.06.56" />

 <subsystem ip="141.223.82.2" group="packetcaputure" state="reboot"
time="2003.08.10.12.06.50" />
…

</notification >

Table 3. Log Information Model

Table 3 (b) represents the records of notification messages made by the agent.
If the agent terminates normally, the value of the state is ‘stop’. When the agent
reboots in order to apply changed configuration information, the state is ‘reboot’.
The manager checks the received time, adds the time information, and stores the
notification into a log file.

 7

4.2 Interaction Operation Model
We use an RPC-based paradigm as a communication protocol. Specifically,

SOAP [4] has been chosen for this. SOAP can access services, objects, and servers
in a platform-independent manner. This is connection-oriented, so this connection
provides reliable and sequential data delivery. In our X-CONF system, the result of
the operation mentioned in Section 4.1 is important in order to maintain consistent
configuration information. If the result from a subsystem is fail, the manager retries
the operation several times. If the result status remains fail, the manager must
rollback the changed configuration information of all subsystems.

(a) Operation Request Message
<modify messageID=“192”>

 <xconf:subsystem>
 <systemName>mg-mon</systemName>
 <group>flowgenerator</group>
 <subIP>141.223.82.3</subIP>
 <fileName>ng-mon_flowgenerator_141.223.82.3</fileName>
 </xconf:subsystem>
 <xconf:parameter>
 <xpath>//all_info/admin/@email</xpath>
 <data>siwa@postech.ac.kr</data>
 <xpath>//group[@name="trafficanalyzer"]/group_info/p2p/@file</xpath>
 <data>test.xml</data>
 </xconf:parameter>

</modify>
(b) Operation Result Message
<modifyResponse messageID=“192”>
 <xconf:subsystem>
 <systemName>ng-mon</systemName>
 <group>flowgenerator</group>
 <subIP>141.223.82.3</subIP>
 <fileName>ng-mon_flowgenerator_141.223.82.3</fileName>
 </xconf:subsystem>
 <xconf:result>
 <result>ok</result>
 </xconf:result>
</modifyResponse >

(c) Notification Message

<notify messageID = “0923-567b”>
<xconf:subsystem>

<systemName>ng-mon</systemName>
<group>flowgenerator</group>
<subIP>141.223.82.3</subIP>

</xconf:subsystem>
<xconf:state>

<action>reboot</action>
</xconf:state>

</notify>
 Table 4. The Interaction Operation Message Examples

 8

The interaction messages between the manager and the agent are also made in
an XML document format. Table 4 shows the examples of the interaction message
and simultaneously represents the operation description corresponding to the
operation model. By using the unique messageId, the manager can distinguish the
operation message. Each subsystem has its own configuration file. The name of the
configuration file must be unique in our X-CONF. The name is made by
integrating three factors (distributed_system_name, group_name, subsystem ip
address).

Table 4 (a) describes a request message binding SOAP to call management
operations in the agent. Table 4 (b) is the response message corresponding to the
request message (a). “<xconf:subsystem>” contains the subsystem information and
the configuration file name for the manager to distinguish the subsystem, and
“<xconf:parameter>” in the message includes the information of parameters used
in the operation. In Table 4 (b), “<xconf:result>” is the result of the operation
transaction. If the manager receives the error result message, the manager must
rollback the corresponding operations. The agent sends the notification message in
the format of Table 4 (c) if the subsystem is rebooted or shutdown.

4.3 X-CONF Architecture
Figure 2 illustrates the architecture of X-CONF, in which a centralized XML-

based manager controls the configuration information of subsystems equipped with
XML-based configuration agents. The manager is divided into five modules:
XMLDB, XMLDB Handler, XSL/XSLT Processor, SOAP Server&Client, and
Management Operation. The manager possesses the list of subsystems and the
configuration information of each subsystem in the XMLDB [13]. XMLDB is a
special database designed only for XML documents, stores intact XML documents
and partially controls the contents of the XML documents. The XMLDB Handler
module processes information in XMLDB. The XSL/XSLT Processor module
transforms XML form into HTML form to offer a Web-based user interface. The
SOAP Server module receives the notification message from the agent. The SOAP
Client module calls the SOAP RPC methods in the agent. The Management
Operation module has five methods: getMethod, addMethod, delMethod,
modifyMethod and createMethod.
 getMethod: This method is used for retrieving management information.
 addMethod: When the configuration information or relationship information

is added, the manager invokes this method. This means that a subsystem
belonging to the existing group is added into the distributed system or a new
group is added. The manager takes every IP address of the related agents over
relationship information, and then sends the RPC message to the selected
agents to call loadMethod, a management operation of the agent.

 delMethod: Unlike addMethod, this method deletes subsystems or groups.
When the manager changes the structure of configuration information or
relationship information, it delivers the RPC messages to all related agents to

 9

call loadMethod in them.
 modifyMethod: This method is used when the contents of the configuration

information is modified without a change in the structure of the configuration
information or relationship information. Also, the manager sends the RPC
message to all related agents to call modifyMethod in them.

 createMethod: The manager possesses the entire configuration management
information and relationship information. At first, subsystems do not possess
the configuration information. The manager automatically creates the
configuration information of each subsystem using the configuration
information and relationship information. Then, the manager loads the
configuration information to each subsystem using loadMethod in the agent.

 notifyMethod: As the SOAP RPC method, the manager receives and
processes notifications from the agents and stores them into a log file via this
method.

XMLDB

HTTP
Client

&
Server

HTTP
Client

&
Server

SOAP
Client

&
Server

SOAP
Client

&
Server

HTTP
Server

&
Client

HTTP
Server

&
Client

SOAP
Server

&
Client

SOAP
Server

&
Client

XMLDB
Handler

XSL&XSLT
Processor

Web Browser

Request

SOAP
RPC
Request

SOAP
RPC
Response

Request Response

getMethod

addMethod

delMethod

Request Response AgentManager

Invocation

Result
loadMethod

modifyMethod

Management
Operation

XML
Parser

Configuration file

modifyMethod

createMethod

getMethod

Response

Management
Operation

notifyMethod
Log file Log file

XML
Parser

Request

Response

Request

Response

Request
Response

Figure 2. Architecture of X-CONF

The X-CONF agent illustrated in Figure 2 contains SOAP server&client, XML
parser and Management Operation modules. The XML Parser module allows for
an agent to parse and access the contents of the XML message using XPath
expression. The Management Operation module as SOAP RPC methods is as
follows: getMethod, loadMethod, and modifyMethod.
 getMethod: This method is used to retrieve the information from the

configuration XML file in the subsystem and to show the information to the
administrator.

 loadMethod: After the manager changes the structure of the configuration
information or relationship information, it newly generates the configuration
information of every related subsystem via the createMethod operation. The
manager calls the loadMethod to send the new information to the related

 10

subsystems.
 modifyMethod: This method is used when the contents of the configuration

information is modified without a change in the information structure.

5. Implementation
We have implemented an XML-based configuration management system.

Therefore, we referred to the Apache Project Group which provides Application
Program Interface (API) implemented with JAVA to support related XML
technologies. X-CONF needs following APIs: XML Xerces [14] as an XML parser,
Xalan [15] to transform XML document into other forms, Xindice [16] as an
XMLDB, which stores the management information defined in the management
information model, and AXIS [17] as a SOAP engine to apply the SOAP
communication method between the manager and the agents.

5.1 User Interface

Figure 3 shows the information transformed from an XML document format to
an HTML document format by using an XSL [18] and XSLT [19] file to show or to
modify the configuration information. The sharedInfo is the read-write data, and
the referredInfo data is read-only fields.

Shared
information

Referred
information

Figure 3. Web-based User Interface

 11

5.2 Example
We have applied X-CONF to the configuration management system for NG-

MON [20], which is a distributed and real-time Internet traffic monitoring and
analysis system composed of five subsystems: packet capture, flow generator, flow
store, traffic analyzer, and presenter of analyzed data. Each subsystem may be
composed of multiple computers. The packet capture captures all packets on the
network link. The flow generator sorts the captured packets into the flow
containing the same 5-tuple: source IP address, destination IP address, protocol
number, source port, and destination port. The flow store stores the flow data into
the DB. The traffic analyzer queries the flow data to the flow store and then stores
it according to the various analysis scopes in the own DB. The presenter provides a
Web-based user interface to the administrators.

<configuration name="ng-mon">
<all_info>

<admin name="mount" email=“mount@postech.ac.kr” />
<database user="root" password="pwd" />

</all_info>

<group name="presenter">
<group_info>

<p2p file = "p2p.xml" />
</group_info>
<subsys ip = "141.223.11.10" />

</group>
</configuration >

…
<group name="flowgenertor"

inheritance="flowstore">
<group_info>

<time interval="2" />
</group_info>
<subsys ip="141.223.11.3">

<database user="siwa" passwd="123" />
</subsys>
<subsys ip="141.223.11.4">

<database user="mjchoi" passwd="456" />
</subsys>

</group >
…

<relation name="ng-mon">
<group name="packetcapture">

<sharedInfo name=“flowstore”>
<element>p2p</element>

</sharedInfo>
<sharedInfo>trafficanalyzer</sharedInfo>
<referInfo group="flowgenerator">

<element>time</element>
</referInfo>

</group >

<group name="presenter">
</element>
</sharedInfo>

</group>
</relation >

…
<group name="flowgenerator">

<inheritance name= ="flowstore" />
<sharedInfo name="packetcapture">

<element>data</element>
</sharedInfo>
<referInfo name="packetcapture">

<element>device</element>
</referInfo>

</group>
…

(a) Flow Generator’s Configuration (b) Flow Generator’s Relationship

< c o n f ig u ra tio n n a m e = "n g - m o n " ip = "1 4 1 .2 2 3 .1 1 .3 " ta rg e t= "f lo w g e n e ra to r ">

< a ll_ in fo >

< a d m in e m a il= "m o u n t@ p o s te c h .a c .k r" n a m e = "m o u n t “ />

< d a ta ba se p a s s w o rd = "p a s sw o rd " u s e r= "ro o t “ />

< /a ll_ in fo >

< g ro u p n a m e = "p a c k e tc a p tu re ">

< g ro u p _ in fo >

< d a ta ty p e = “a ll“ />

< /g ro u p _ in fo >

< /g ro u p >

< g ro u p n a m e = "f lo w g e n e ra to r">

< g ro u p _ in fo >

< t im e in te rv a l= “2 “ />

< /g ro u p _ in fo >

< s u b s y s ip = "1 4 1 .2 2 3 .1 1 .3 ">

< d a ta b a s e p a s s w d = "2 3 4 " u s e r= "s iw a “ />

< /s u b s y s>

< /g ro u p >

< g ro u p n a m e = "f lo w s to re ">

< g ro u p _ in fo >

< p 2 p f i le = "p 2 p .xm l“ />

< /g ro u p _ in fo >

< /g ro u p >

< re fe rIn fo n a m e = "p a c k e tc a p tu re ">

< d e v ic e n a m e = "e th 1 “ />

< / re fe rIn fo >

< /c o n f ig u ra t io n >
 (c) Configuration in Subsystem (141.223.11.3)

Figure 4. Example of Management Information

 12

Figure 4 is an example of management information: (a) is configuration
information in a manager, (b) is relationship information, and (c) is configuration
information in a subsystem. Figure 4 (c) shows that the manager automatically
creates the configuration information of the subsystem (ip = “141.223.11.3”) by
using both Figure 4 (a) and (b).

In Figure 4 (a), the flowgenerator group consists of two subsystems. These
subsystems have their own information because they include the sub-elements
(subsys). The flowgenerator group has the inheritance attribute related with the
flowstore. This means that the subsystems in the flowgenerator group inherit the
entire configuration information of the group_info in the flowstore group. In this
case, the inherited information is the value of the p2p element.

In Figure 4 (b) , the flowgenerator group has the relationship with the specific
information of the packetcapture group. This group shares the data information in
the packetcapure group and can modify it. However, the flowgenerator group
refers to the device information in the packetcapture group. The referInfo cannot
be modified in the referred group. If the device information is modified in the
packetcapure, the modified value is transferred to the flowgenerator.

Finally, Figure 4 (c) shows the automatically generated XML document from
Figure 4 (a) and (b) by the manager. The root element shows that the configuration
information in Figure 4 (c) belongs to the subsystem (ip = “141.223.11.3”) in the
flowgenerator group. If this system has the modified information, the manager
processes the automatic reconfiguration of other related subsystems. In addition,
the result of every process in these subsystems is sent to the manager. Also if
rebooting the agent is necessary, the agent reboots itself and delivers the reboot
notification to the manager.

6. Conclusion and Future Work
In this paper, we presented the design and implementation of X-CONF, which

effectively manages configuration information using SOAP communication
between the XML-based manager and the XML-based configuration agents. We
have presented a general management information model that can be applied to the
configuration management of distributed systems using an XML Schema. By using
relation expressions such as all_info, group_info, inheritance, referInfo, shareInfo,
there is no need to specify the same management information to represent shared
properties. This avoids redundancies that are often found in configuration
management among subsystems. X-CONF automatically transfers modified
configuration information to the related subsystems when the configuration
information is modified. If one of the related subsystems fails in the transaction, X-
CONF rollbacks the operation. Therefore, X-CONF provides the consistency of the
configuration information among the subsystems.

We applied the X-CONF to the configuration management system for NG-
MON. For future work, we will validate the flexibility and extendibility of the X-
CONF by applying it to other distributed systems.

 13

7. References
[1] J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and

Applicability Statements for Internet Standard Management Framework”,
RFC 3410, Dec. 2002.

[2] W3C, “Extensible Markup Language (XML) 1.0”, W3C Recommendation,
Oct. 2000.

[3] W3C, “XML Schema”, W3C Recommendation, May 2001.
[4] W3C, “SOAP Version 1.2 Part 2: Adjuncts”, W3C Working Draft, Dec.

2001.
[5] W3C, “An XML Schema Document for SOAP RPC V1.2”,

http://www.w3.org/2001/12/soap-rpc.
[6] Cisco Systems, “Cisco Configuration Registrar”,

http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/ie2100/cnfg_reg/i
ndex.htm.

[7] Juniper Networks, “JUNOSCRIPT API SOFTWARE”,
http://www.juniper.net/support/junoscript.

[8] Enns, R., “NETCONF Configuration Protocol”, draft-ietf-netconf-prot-01
(work in progress), Oct. 2003, http://www.ietf.org/internet-drafts/draft-ietf-
netconf-prot-01.txt.

[9] Wasserman, M., “Using the NETCONF Configuration Protocol over Secure
Shell (SSH)”, draft-ietf-netconf-ssh-00 (work in progress), Oct. 2003,
http://www.ietf.org/internet-drafts/draft-ietf-netconf-ssh-00.txt.

[10] Lear, E., Crozier, K., Enns, R., “BEEP Application Protocol Mapping for
NETCONF”, draft-lear-netconf-beep-00 (work in progress), Oct. 2003,
http://www.ietf.org/internet-drafts/draft-ietf-netconf-beep-00.txt.

[11] Goddard, T., “NETCONF Over SOAP”, draft-ietf-netconf-soap-00 (work in
progress), Oct. 2003, http://www.ietf.org/internet-drafts/draft-ietf-netconf-
soap-00.txt.

[12] W3C, “XML Path Language (XPath) Version 2.0”, W3C Working Draft, Apr.
2002.

[13] XML:DB, “XUpdate”, http://www.xmldb.org/xupdate/xupdate-wd.html, Sep.
2000.

[14] Apache XML project, “Xerces Java parser”, http://xml.apache.org/xerces-j/.
[15] Apache XML project, “Xalan Java”, http://xml.apache.org/xalan-j/.
[16] Apache XML project, “Xindice”, http://xml.apache.org/xindice/.
[17] Apache XML project, “Axis”, http://xml.apache.org/axis/.
[18] W3C, “Extensible Stylesheet Language (XSL) Version 1.0”, W3C

Recommendation, Oct. 2001.
[19] W3C, “XSL Transformations (XSLT) Version 1.0”, W3C Recommendation,

Nov. 1999.
[20] Se-Hee Han, Myung-Sup Kim, Hong-Taek Ju and James W. Hong, “The

Architecture of NG-MON: A Passive Network Monitoring System”, 13th
IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM 2002), Montreal, Oct. 2002, pp. 16-27.

 14

	Abstract
	2.1 Cisco’s Configuration Registrar
	2.2 Juniper Networks’ JUNOScript
	2.3 IETF Network Configuration
	5.1 User Interface
	5.2 Example

