

Paisley, J. and Sventek, J. (2006) Real-time detection of grid bulk transfer
traffic. In, The Tenth IEEE/IFIP Network Operations and Management
Symposium 2006 (NOMS 2006), April 2006, pages pp. 66-72, Vancouver,
British Columbia, Canada.

http://eprints.gla.ac.uk/3671/

Real-time Detection of Grid Bulk Transfer Traffic
Jonathan Paisley and Joseph Sventek

Department of Computing Science
University of Glasgow

Glasgow, United Kingdom
Email: {jp,joe}@dcs.gla.ac.uk

Abstract— The current practice of physical science research
has yielded a continuously growing demand for interconnection
network bandwidth to support the sharing of large datasets.
Academic research networks and internet service providers have
provisioned their networks to handle this type of load, which
generates prolonged, high-volume traffic between nodes on the
network. Maintenance of QoS for all network users demands that
the onset of these (Grid bulk) transfers be detected to enable them
to be reengineered through resources specifically provisioned to
handle this type of traffic. This paper describes a real-time
detector that operates at full-line-rate on Gb/s links, operates
at high connection rates, and can track the use of ephemeral or
non-standard ports.

I. INTRODUCTION

The practice of scientific research is increasingly associated
with the extraction of information from exponentially increas-
ing volumes of experimental data [1]; examples abound in
bioinformatics, geophysics, astronomy, medicine, engineering,
meteorology and particle physics. Ever-larger processing and
communication resources are required to support such infor-
mation extraction. Significant financial support is provided by
a number of governmental organizations (e.g., UK e-Science
[2], EGEE [3], TeraGrid [4]) to facilitate this practice.

The term ‘Grid computing’ embodies the idea of
dynamically-managed, wide-area distributed computing. One
definition of a Grid is: “... a type of parallel and distributed
system that enables the sharing, selection, and aggregation of
geographically distributed autonomous resources dynamically
at runtime depending on their availability, capability, perfor-
mance, cost, and users’ quality-of-service requirements.” [5]

Information extraction typically requires analysis and cor-
relation of multiple datasets. Once processing resources have
been chosen, the requisite data must be made available to
these processing resources. While there are research activities
in support of distributed queries to remote data [6], much of
the current practice consists of transfers of entire experimental
data collections for processing by a local cluster of processors.
As the datasets in many experimental domains are extremely
large, such transfers can consume a considerable portion
of the bandwidth available from academic research and/or
commercial networks. The recent developments of a number
of high-speed TCP variants [7], [8] can only exacerbate the
situation.

Of primary concern to operators of academic research
and/or commercial networks is the impact that prolonged,
high-volume traffic, such as transfer of datasets, has on the

quality of service perceived by other users of their networks.
Most such operators will have provisioned their networks
sufficiently to handle the growing bulk transfer traffic (BTT),
often by explicitly provisioning routers and links to carry this
type of traffic. The extent to which other traffic is affected
(such as interactive web browsing, terminal sessions or simple
email) will depend on the provisioning and the accuracy of
routing decisions. We aim to provide operators with additional
information to better manage provisioning and routing.

If they are able to detect the onset of bulk transfer activity,
they can reengineer the bulk traffic onto specific resources
using MPLS [9] or other techniques. For example, our expec-
tation is that operators will use MPLS to define multiple paths
between ingress and egress routers. Therefore, the primary use
of our events would be to add the newly found quadruple to
the FEC definition in the ingress router, thus mapping to a
path specifically provisioned for Grid bulk data transfer traffic.
Due to the dynamic nature of Grid applications, statically
configured routing table entries are unlikely to effectively
manage the Grid network traffic.

The hypothesis of this work is that it is possible to detect
the onset of bulk transfer activity in real-time, using a variety
of techniques. This paper discusses a detector based upon one
such technique.

II. RELATED WORK

A. Passive Application Identification

Currently, there are three widely used approaches for passive
application traffic identification: application signatures, trans-
port layer ports and network/transport layer application pattern
recognition based on heuristics.

The application signature approach [10] searches for appli-
cation protocol specific patterns inside packet payloads. While
simple to understand, it introduces some significant problems.
First, it cannot be adapted automatically to unknown, recently
introduced application protocols since the protocol state ma-
chine for each application of interest must be known. Second,
application-level pattern search in transport packets, usually
achieved by reconstruction of individual flows, generates sig-
nificant processing load; application of such systems to higher-
speed network links (1 Gb/s and higher) usually results in
overload for the software, resulting in dropped packets. Finally,
some application protocols avoid payload inspection by using
encryption algorithms.

   

Transport layer port identification [11] addresses the load
and encryption problems, as it does not produce much load
at the measurement nodes and does not rely on inspecting
application payloads. This method still suffers from inabil-
ity to adapt to modified or recently introduced protocols.
Furthermore, many applications have begun using ephemeral
port numbers to deliberately avoid port-based identification.
As a result, port-based application identification can highly
underestimate the actual application traffic volume [12].

Heuristic based network/transport layer approaches [12],
[13] use simple network/transport layer patterns, e.g., the
simultaneous usage of UDP and TCP ports and the packet size
distribution of an application flow between components of the
application. This method can give good performance for ex-
isting application protocols and may even be used to discover
unknown protocols. Two problems exist with this approach: it
may be straightforward to construct a new application protocol
that avoids any particular heuristic, and it may be difficult to
eliminate false positives.

B. Intrusion Detection Systems

There has been substantial research interest in intrusion
detection systems [14]. These systems attempt to classify the
traffic seen passively at a monitoring point, and raise an alarm
if a potential intrusion has been detected. Such an intrusion
detector acts in a similar fashion to the bulk transfer traffic
detector—instead of looking for potential security intrusions,
the BTT will raise an alarm when bulk transfers are detected.

Bro [15] is one such IDS that is well known in the
community. Bro reassembles each individual TCP flow, and
provides for different patterns to be matched against these
reconstructed flows. Bro uses libpcap [16] to statically install
packet filters to yield the packets that are reassembled into
flows. Bro suffers from two drawbacks for use in the bulk
transfer monitoring domain:

• the packet filters are statically specified; if one is attempt-
ing to track the use of ephemeral ports, then one must be
able to modify the filters on the fly;

• as constructed, Bro cannot handle full line rate traffic at
Gb/s speeds.

C. Grid Bulk Transfer Applications

As described in Section I, the primary goal is to detect
the onset of Grid bulk transfer traffic that can affect the
QoS delivered to other users of the network. Most Grid bulk
transfer traffic is generated by a bounded set of applications—
e.g., Storage Resource Broker (SRB) [17], GridFTP [18] and
bbFTP [19].

Bulk data transfer application protocols define two types of
data flow:

• control traffic that determines the data to be transferred
and various characteristics of the actual data transfer;

• data traffic to actually transfer the data between the
participants.

These logical sub-flows have very different characteristics;
the control sub-flow exhibits the usual characteristics of a

short-lived, remote procedure call protocol, while the data sub-
flow exhibits the characteristics of a 1-way, bulk flow. It is the
latter that are expected to most affect the QoS perceived by
other users of the network.

Most transfer applications separate the control and data
sub-flows into separate TCP flows (e.g., GridFTP or bbFTP);
others mix the control and data sub-flows over a single
TCP flow (e.g., SRB). Well-known ports are often used for
establishing the control flow, while the data flow takes place
on a TCP connection using ephemeral ports. However, site-
specific firewall restrictions may cause local reassignment of
the established port numbers, meaning that they are no longer
a reliable indicator of protocol/application identity.

The protocols that mix control and data sub-flows over a
single TCP flow provide a challenge to a detector attempting
to operate at Gb/s line rates, as the detector may spend a
significant percentage of its cycles processing the bulk data
traffic; once the bulk data flow has started, the detector will
not learn much from the bulk data, but it must be prepared to
process the next control message that follows the current bulk
transfer.

D. Summary

The initial focus of the work described herein has been
to construct a detector that uses the application signature
approach to address two specific issues discussed above: the
ability to handle full-line-rate traffic at Gb/s speeds and the
ability to track the use of ephemeral ports.

Reassembly of all TCP flows in real-time stresses the
engineering of the detector if one is to avoid packet loss;
additionally, given the predominance of mice over elephants
[20] in terms of proportion of Internet flows, the detector will
be stressed by sudden bursts of flow creation.

III. THE GRID BTT DETECTOR

This section describes the requirements, assumptions, de-
sign characteristics, and implementation features necessary to
meet the goals for the detector.

A. Requirements

It is essential that the detector be able to operate at full
Gigabit Ethernet line rate. In particular, it must handle large
numbers of concurrent TCP flows and full line rate in both
directions.

The detector must support simultaneous analysis of a wide
range of bulk transfer protocols without resorting to well-
known port identification of control streams. This requirement
implies that before a protocol analyzer is attached to a par-
ticular TCP flow, an application identification module has the
opportunity to analyze the initial content of every flow in order
to classify it according to the current set of installed protocol
analyzers.

Since the protocols under analysis are port-agile, it must be
possible to adjust packet filters with causal effect following
reception of a particular packet that causes the filter to be
updated.

   

A complex event reporting mechanism is NOT required.
The detector delivers low-level events to an unspecified man-
agement system that can process the events as required. The
output from the detector is a set of event messages describing
application type, any associated flow identifier tuples, and any
additional information available from the protocol analysis
(such as size of file being transferred). Conversion of this raw
data into a form suitable for processing by a management
system should not be too difficult.

For example, we could define or reuse a MIB that contains
such information, and for which an interested management
application could register to receive an SNMP trap whenever
a new data flow has been identified, or whenever a data flow
associated with a different source/destination quadruple has
been detected.

We expect network operators typically to use these detection
events to facilitate online traffic re-engineering of Grid bulk
data across, for example, specially provisioned paths.

B. Assumptions

• TCP only—it is assumed that all applications of interest
are using TCP.

• IPv4 vs. IPv6—both IPv4 and IPv6 are supported.
• No IP fragment handling—properly configured end hosts

should be able to negotiate the appropriate maximum
segment size for the end-to-end path. If evidence later
suggests that IP fragments are more prevalent than as-
sumed here, then additional reassembly support could be
added.

• Studied applications are not used maliciously.

C. Design

In order to meet the ‘full-line-rate in both directions’ re-
quirement, as well as to be able to causally modify the filtering
criteria to handle ephemeral ports, the most important design
characteristic is to choose appropriate, affordable, monitoring
hardware that will enable a user-level application to handle
all packets without interrupting the processor. The chosen
monitoring hardware was a GIGEMON system [21], which
consists of a DAG4, GigE dual channel network monitoring
card and a 2.8 GHz dual Xeon processor with 2+ GB of
memory. A passive optical tap delivers copies of the packets
on the GigE substrate for processing by the DAG card; the
DAG card makes the packets available via a ring buffer in
memory over which the monitoring application is mapped.

Given this memory structure, the detector design has ad-
hered to the following design principles:

• Minimize memory copies—packet data should be copied
as little as possible to minimize CPU load and to reduce
contention on the PCI bus (shared by the DAG card the
and CPU). In particular, if the bus is busy, the DAG may
drop packets.

• Minimize heap allocation—heap-based memory alloca-
tion/deallocation can be time consuming and causes heap
fragmentation. This is a particular concern for a long-
running system such as the detector.

Application

+rocessed

+ointer

Application

Acknowledged

+ointer

3A4 5rite

+ointer

+rocessed

6nprocessed

7etained

8ot-yet-

written

Fig. 1. DAG ring buffer.

• Process packets as soon as possible—if packets are
not processed when they arrive, they must be buffered.
Buffering costs time and memory, and should be avoided
where possible.

• Single-threaded, data-driven structure—to simplify im-
plementation and eliminate synchronization issues, the
system is to run on a single processor, with processing
driven by the arrival of packets.

1) Main Event Loop: The detector is structured around
a packet-driven main loop. The DAG card stores incoming
packets into a traditional circular buffer of several hundred
megabytes. The buffer, with some additional annotations that
are explained later, is shown in Fig. 1.

Packets in the buffer are processed by the detector appli-
cation; the DAG card stores further packets into the buffer
in parallel. Any non-IP packets are immediately skipped,
and subsequently any non-TCP packets are also skipped. A
canonical quadruple consisting of [source port, source address,
destination port, destination address] is formed for use as a
key into the TCP connection table. The absence of an entry
in the TCP connection table causes a new connection record
to be allocated and installed in the table. The packet is then
dispatched to the handler associated with the connection.

The main loop handles one other type of event: timers.
These are set up by the connection or protocol handlers,
and are primarily used to eliminate connection records after
inactivity or once a connection has been closed. The timer
queue is processed periodically but not as often as once per
packet at times of high load. The current implementation
avoids locking overheads (both at run time and in the extra
consideration required for multithreaded programming) by
dispatching everything from a single thread. As such, the
second processor is not used.

We intend to evaluate the tradeoffs between this design and
alternatives such as managing timers on a second processor.

2) Connection Processing: Each connection record is com-
posed of two flow records, one for each direction of the TCP
flow. The flows track the state of the TCP stream and deliver
incoming segments to the protocol analyzer when they arrive.

Out of order segments are treated specially—they are left in

   

the DAG capture buffer, and added to a per-flow linked list of
pending packets; these packets are termed ‘retained packets’.
Additionally, a global linked list is constructed to enable the
main event loop to keep track of the lower limit in the circular
buffer (see Fig. 1). Once a packet arrives representing the next
segment to be delivered to the application, any retained packets
are processed and delivered, if appropriate.

If the main event loop determines that available space in
the circular buffer is limited (due to the DAG write pointer
nearing the earliest retained packet), the owning flow is given
the opportunity to spill the packet out of the circular buffer
onto the heap. The threshold for performing this spilling is
currently half the capture buffer size.

This threshold gives a large safety zone for incoming data
captured by the DAG card to be stored. Since packet process-
ing is incrementally data-driven, the amount of time taken to
process each packet is bounded, as protocol analyzers do not
block; as such, retained packets can be spilled incrementally
to keep the ring buffer sufficiently empty. One is, however,
trading off storage safety for incoming packets against the
costs to spill retained packets to the heap (a heap allocation
and a copy).

By considering a detector monitoring a Gigabit Ethernet
link, basic figures for the duration of time a packet could
remain in the buffer can be determined. Given a 1 GB ring
buffer and maximum of 2 Gb/s fill rate (full line rate in both
directions), the buffer will be filled in around 4 s. Therefore,
a retained packet (assuming the current fill threshold of 50%)
would have a minimum lifetime of 2 s, or proportionally longer
for links with lower data rates.

3) Application Identification: Before a TCP connection has
a protocol analyzer attached to it, it is necessary to identify the
correct protocol. If a connection cannot be identified within the
first few packets or limited number of bytes, it is abandoned.

Protocol identification in the general case can be imple-
mented by regular expression string matching on packet con-
tents [22]. For some applications, this simplifies to performing
a simple string comparison with the packet contents—e.g.,
SRB with its signature ‘START SRB\0’ string.

The net result of application identification is that the appro-
priate protocol analyzer is associated with each flow.

4) Protocol Analyzer Interface: In-order data segments are
delivered to the appropriate protocol analyzer. The analyzer,
in turn, informs the reassembler of the amount of data it is
expecting and whether it is interested in that data. This enables,
for example, an RPC-based transport protocol that carries both
control and data over the same TCP flow (e.g., SRB in serial
transport mode) to be monitored efficiently during the control
traffic phase and during the bulk-data phase. The reassembler
is informed that a particular range of bytes are uninteresting,
and therefore matching packets do not need to be delivered
or buffered. Thus, in most cases of high-bandwidth packet
reordering, packets do not need to be retained at all.

A further optimization is to compare new packets against
existing retained packets in a flow. Any existing retained pack-
ets are, by definition, from not-ready-to-be-delivered future

void AnalyserClass::AnalyserMain()
{

// Read function id and num args
READ(OrigFlow, 2);
func_id = *(uint16_t *)data;
READ(OrigFlow, 2);
num_args = *(uint16_t *)data;

for (i=0; i<num_args; i++) {
READ(OrigFlow, 4);
len = *(uint32_t *)data;
// Read the argument, but we
// only need first 200 bytes
READ_AND_SKIP(OrigFlow, len, 200);
// ... process the argument

}
READ(RespFlow, 4);
result_value = *(uint32_t *)data;

}

Fig. 2. Example of ProtoThread-based protocol analyser.

sequence numbers. Therefore, if a new packet arrives that is a
retransmission of an existing retained packet, the new (later)
packet can be substituted for the retained (earlier) packet; thus
the DAG write limit pointer may be advanced as a result of
freeing the retained packet.

5) Protocol Analyzer Structure: A protocol analyzer imple-
mentation usually involves constructing an event-driven state
machine (EDSM), where the events represent the arrival of in-
sequence data packets from each direction of the connection,
and the states correspond to the request-reply sequences of
the protocol in question. This kind of code is difficult to
understand and maintain, and can quickly become unwieldy.

To improve the maintainability of analyzers constructed for
the detector, and consistent with the chosen single-threaded
approach, a system known as ProtoThreads1 [23], [24] is used.
This system is a C language construct that enables straight-
forward imperative programming to describe the control flow,
while being based on an EDSM model. No native platform
threads are involved, and synchronization and locking do not
have to be considered. An example of a ProtoThread-based
protocol analyzer is given in Fig. 2.

D. Implementation

The system has been implemented in C++, providing the
power and speed of C with the flexibility of object-oriented
design. An earlier attempt to implement an SRB analyzer in
Bro was written in C++; as a result it was straightforward to
adapt it to work in this new environment.

Access to the DAG circular buffer is attained by linking
against the Endace-supplied libdag. A libpcap-based version
has also been implemented to provide a trace-driven testing
interface.

The TCP connection table is a simple hash table; the timer
manager is implemented using calendar queues.

1Proto because they are small and not-quite real threads. They achieve
thread switching by unwinding the stack rather than traditional context
switching, via a low-level C local continuations library.

   

Per-packet overheads are minimized by avoiding any heap
allocation in the fast path. Protocol analyzers work on the data
directly in the circular buffer (unless a packet has been spilled)
so memory copies are avoided.

1) ProtoThreads: ProtoThreads are conceptually based
upon continuations—i.e., the ability to save the state of an
execution path as a continuation, proceed to execute other
code, and resume from the continuation at a later time.
ProtoThreads are a particularly light-weight implementation
of this technique that is based on a specialisation called ‘local
continuations’. In this specialisation, rather than supporting
resumption of code from arbitrary points in the program, it
is only possible to resume execution from within the function
that saved the continuation.

The code in Fig. 2 parses a series of length-prefixed argu-
ments to an RPC call. A 16-bit function ID is sent, followed by
the number of arguments (as a 16-bit integer). Each argument
is specified as a 32-bit length followed by the appropriate
number of bytes of data, with no padding.

The READ and READ_AND_SKIP calls are C pre-processor
macros that check if there is sufficient data available to satisfy
the request (by interrogating instance variables of the analyzer
object that describe the data available in the current packet).
If there is not enough data, the function returns after updating
the relevant flow record to indicate how much data is required.
The next time the function is called, execution resumes from
the last READ or READ_AND_SKIP statement.

Since the analyzer function is invoked multiple times,
local variables are not preserved across READ and
READ_AND_SKIP statements. By using C++ as the imple-
mentation language, persistent state can be stored in instance
variables in the analyzer class without adding any extra syntax.

2) SRB Protocol Analyzer: As an example, an SRB ana-
lyzer has been implemented that is able to analyze the basic
RPC system that underlies the SRB protocols. There are many
functions corresponding to traditional file system APIs such as
open, close, read, write, seek, and stat, and additional functions
that set up third-party transfers. The arguments or return values
to these functions specify IP addresses and port numbers that
will be associated with bulk data transport. As an additional
level of complexity, different functions are used depending
upon whether the connection is client-server or server-server.

IV. VALIDATION OF THE PROTOTYPE

Port identification, ephemeral or otherwise, is a by-product
of a detector based upon the application signature approach
and full flow reassembly. Each hand-built protocol analyzer is
able to track the use of ephemeral ports in the operation of
the protocol. Detection of non-standard port use is provided by
the application identification aspect of the detector. Note that
the protocol analyzers depend upon strict adherence by the
end applications to the defined protocol; as such, a detector is
brittle with respect to ad hoc modifications to the application
protocols by cooperating end systems.

For the types of applications under study (bulk data transfer)
the ideal network utilisation scenario is when the contents of

the files being transferred consume all available bandwidth.
Although control protocol overheads make this unattainable,
it is still expected that most link utilisation is accounted for
by bulk data. In order to evaluate the ability of the prototype
to handle full line-rate traffic on Gb/s links, we consider two
extremes: one is when the link is saturated by bulk data traffic,
the other when there is an unusually high amount of control-
traffic corresponding to the applications for which we have
protocol analyser modules.

Given a load of approximately 900 Mb/s in each direction
with maximum-size packets, the CPU usage on the monitoring
hardware is less than 1%. Under a trace-driven synthetic load
of 4,000 concurrent SRB sessions resulting in 135 MB/s and
140,000 packets/s of control traffic, the peak CPU usage was
27%. Bulk data was eliminated from the traces in order to
explicitly measure the performance of the protocol analyser
module. This kind of network load would be a highly unusual
scenario on a production network, but here shows that the
performance of the prototype is sufficient to cope even with
extremes of control/bulk data mix.

The SRB analyser in use could be further optimised to take
better advantage of the retained packet scheme provided by the
TCP stream reassembler. As currently implemented, RPC-style
arguments used in the SRB analyser are copied onto the heap
(incurring memory allocation and copying overhead). These
arguments could generally by left in the packet buffer and
accessed directly from there once the complete RPC call has
been parsed.

The above metrics cover the performance of the monitoring
system when dealing with traffic for the bulk transfer appli-
cations under study. Since other application traffic is likely
to be present on the link, we also consider the behaviour
when ‘ignored’ TCP flows are involved. Once a flow has
been marked as uninteresting, the fast path just involves a
hash table lookup, after inspection of the packet header. The
main overhead in processing such connections is the initial
allocation and hash table insertion of the connection control
record and associated timer queue updates. We generated
TCP SYN packets at a range of new-connection-rates to
evaluate system load under extreme conditions. The results
are shown in Fig. 3, with connection rates from 100,000 to
400,000 connections per second in steps of 20,000/s. Total
CPU load (user and system time) scales linearly with the
increase in connection rate, and the average sustained load
for the 400,000/s rate is around 86% (with approximately
250 Mb/s bandwidth used). The rise at around 17 s corresponds
to the first connection timers expiring to delete the connection
records corresponding to the packets around 0 s. The noise
after 90 s, when the load is switched off, is an artifact of timer
processing when there are no regular incoming packets.

400,000 new connections per second is exceptionally high,
and would be unlikely in a link which is mainly carrying bulk
traffic. However, it is important to understand the limitations
of the system. Other than CPU load, memory usage must
also be considered. Each active connection control block con-
sumes approximately 190 bytes and with an initial connection

   

CPU load over time by connection rate

Real Time (s)

T
ot

al
 C

P
U

 (
%

)

0 20 40 60 80 100

20

40

60

80

100

100k/s

400k/s

86.34%

Fig. 3. CPU load over time for different connection rates.

timeout of 15 seconds (as implemented) the 6 million active
connections consume over 1GB of memory. If the system starts
using swap space, it can generally no longer keep up with
real-time processing of incoming packets. Memory usage can
be reduced by using mini-connection records for yet-to-be-
established flows (which would be useful for dealing with
denial of service attacks), and also by reducing the initial
connection timeout.

Protocol analysers also incur a time and memory cost, but
we expect their numbers to be significantly fewer than the total
number of active TCP connections since the classification (see
III-C.3) process discards unknown or unwanted connections
before an analyser is instantiated. The analysers have been
designed to use a small, bounded amount of memory during
execution, which further limits resource consumption.

Each analyser (we have simple analysers for plain FTP,
HTTP, SRB, bbftp and iperf) processes the control traffic
on a connection. The time spent in the analyser is roughly
proportional to the amount of data on the connection, but
can be less in cases where parts of the control connection
are known to be irrelevant and can be skipped. Each response
body of HTTP/1.1 connections containing multiple objects can
be ignored, for example.

The costs in scaling the number of different analysers (as
opposed to the number of analysers operating concurrently) is
attributed to the initial classification of flows. This is handled
efficiently by a state machine against the initial flow data.

V. SUMMARY AND FUTURE WORK

The design for a real-time detector for the onset of Grid bulk
transfer traffic has been described. A prototype implementation
of the detector has been constructed using commodity PC
hardware and readily available packet capture hardware. The
prototype successfully tracks the use of ephemeral or non-
standard ports by Grid bulk transfer applications, operates over
full-line-rate Gb/s Ethernet links, and continues to function at
high connection rates.

This represents just one part of a larger effort to construct
on-line, real-time classifiers/detectors for applications of inter-
est to Internet service providers [25]. Current efforts include

study of how best to integrate this style of detector with
detectors based upon heuristic pattern matching.

Most Grid bulk transfer protocols permit the control and/or
data sub-flows to be encrypted, thus nullifying the ability for
detectors based upon the application signature approach to
discover bulk flows. Initial efforts are under way to construct a
heuristic pattern detector that can operate on encrypted flows.
By reasoning about application-level message exchanges (tim-
ing, size, direction) we aim to do real-time protocol classifi-
cation and infer application-level state changes.

No attempt has yet been made to integrate the current
detector with an existing Operational Support System that
can reengineer the detected traffic through different network
resources. Such validation is critical to show that these types
of real-time detectors can positively affect the operation of a
production network.

ACKNOWLEDGMENT

The authors wish to acknowledge partial support for this
work by the UK Engineering and Physical Sciences Research
Council under grant GR/S68989/01.

The authors would like to thank the members of the P2POpt
project for the use of their GIGEMON systems. J.P. is par-
ticularly indebted to L. Mathy and D. Pezaros at Lancaster
University for the use of one of their machines to conduct
some of the performance experiments.

REFERENCES

[1] R. Mann, R. Williams, M. Atkinson, K. Brodie, A. Storkey, and
C. Williams, “Scientific data mining, integration and visualisation,”
National e-Science Centre, Tech. Rep. UKeS-2002-06, Nov 2002.

[2] About the UK e-Science Programme. [Online]. Available: http:
//www.rcuk.ac.uk/escience/

[3] Enabling grids for e-science. [Online]. Available: http://public.eu-egee.
org/

[4] Teragrid. [Online]. Available: http://www.teragrid.org/
[5] R. Buyya. Grid Computing Info Centre: Frequently Asked Questions

(FAQ). [Online]. Available: http://www.cs.mu.oz.au/∼raj/GridInfoware/
[6] A. Anjomshoaa, M. Antonioletti, M. Atkinson, R. Baxter, A. Borley,

N. Hong, B. Collins, N. Hardman, G. Hicken, A. Hume, A. Knox,
M. Jackson, A. Krause, S. Laws, J. Magowan, C. Palansuriya, N. Paton,
D. Pearson, T. Sugden, P. Watson, and M. Westhead, “The Design and
Implementation of Grid Database Services in OGSA-DAI,” in Proc. UK
e-Science All Hands Meeting, Nottingham, UK, September 2003.

[7] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” in Proc. IEEE Infocom, Miami, FL, March
2004.

[8] R. Shorten and D. Leith, “H-TCP: TCP for high-speed and long-distance
networks,” in Proc. PFLDnet, Geneva, CH, February 2003.

[9] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label
switching architecture,” RFC 3031, Internet Engineering Task Force,
2001. [Online]. Available: http://rtg.ietf.org/rfc/rfc3031.txt

[10] S. Sen, O. Spatscheck, and D. Wang, “Accurate, scalable in-network
identification of p2p traffic using application signatures,” in Proc. 13th
international conference on World Wide Web, 2004.

[11] S. Sen and J. Wong, “Analyzing peer-to-peer traffic across large net-
works,” in Second Annual ACM Internet Measurement Workshop, 2002.

[12] T. Karagiannis, A. Broido, N. Brownlee, K. Claffy, and M. Faloutsos,
“File-sharing in the internet: A characterization of p2p traffic in the
backbone,” UCR, Tech. Rep., November 2003.

[13] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport layer
identification of p2p traffic,” in Proc. ACM SIGCOMM conference on
Internet measurement, 2004.

[14] B. Mukherjee, L. Heberlein, et al., “Network intrusion detection,” IEEE
Network, pp. 22–41, May/June 1994.

   

[15] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Computer Networks, vol. 31, pp. 2435–2463, 1999.

[16] Lawrence Berkeley National Labs Network Research Group. libpcap.
[Online]. Available: http://ftp.ee.lbl.gov

[17] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The sdsc storage
resource broker,” in Proc. CASCON’98, Toronto, Canada, 1998.

[18] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke,
“Protocols and services for distributed data-intensive science,” in Proc.
Advanced Computing and Analysis Techniques in Physics Research
(ACAT), 2000, pp. 161–163.

[19] bbftp - large files transfer protocol. [Online]. Available: http:
//doc.in2p3.fr/bbftp/

[20] K. Thompson, G. Miller, and R. Wilder, “Wide-area internet traffic
patterns and characteristics,” IEEE Network, vol. 11, no. 6, 1997.

[21] Endace Measurement Systems—Server Based Solutions—GIGEMON.
[Online]. Available: http://www.endace.com/gigemon.htm

[22] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” in Proc. ACM CCS, 2003.

[23] A. Dunkels, O. Schmidt, and T. Voigt, “Using protothreads for sensor
node programming,” in Proc. REALWSN’05 Workshop on Real-World
Wireless Sensor Networks, Stockholm, Sweden, June 2005.

[24] A. Dunkels. Protothreads: lightweight, stackless threads in C. [Online].
Available: http://www.sics.se/∼adam/pt/

[25] I. Dedinski, H. D. Meer, L. Han, L. Mathy, D. P. Pezaros, J. S.
Sventek, and Z. Xiaoying, “Cross-layer peer-to-peer traffic identification
and optimization based on active networking,” in Proc. IWAN 2006
(submitted), July 2005.

   

	citation_temp.pdf
	http://eprints.gla.ac.uk/3671/

