
An Integrated Solution to Protect Link State

Routing against Faulty Intermediate Routers

He Huang
Nortel, 4008 E Chapel Hill-Nelson HWY,

RTP, NC 27709, USA

Shyhtsun Felix Wu
Computer Science Department, UCDavis,

Davis, CA 95616, USA

Abstract— The importance of the routers in the network and the

vulnerability in the nature of the link state routing protocol

highlight the necessity of effective routing protection against

variant attacks. One of the severe attacks is from the faulty

intermediate router (FIR) which intentionally compromises the

LSA messages passing by and pollutes the routing tables of its

downstream routers. Current security mechanisms are either too

expensive or vulnerable to prevent this type of inside attack. To

address the FIR attack, in this paper, we present a novel cost-

reduced integrated solution which combines both fault-detection

operations from routers and fault-tracing response from network

management components. The significant properties of our

system are the detectability of the abnormal behavior toward the

LSAs and the traceability of the FIRs generating those bogus

LSAs. The analysis of the memory requirement and the

communication cost in our design demonstrate the feasibility and

efficiency of our system.

Keywords-component: faulty intermediate router, fault

detection, fault tracing, confidence value

I. INTRODUCTION

Link state routing protocol (e.g., OSPF and IS-IS) has

been widely deployed in networks for path determination

within packet relaying. Generally, the link state advertisement

(LSA) message is broadcast by each router to inform other

routers of its neighboring routers and the connectivity situation

such as connection status, link delay, etc. A network topology

is formed based on the collected LSAs, and the optimal paths

to the reachable destinations are computed based on this

network topology. The importance of the routers in the

network and the vulnerability in the nature of the link state

routing protocol highlight the necessity of the effective routing

protection against any possible attacks. Mainly there are two

types of network attacks, external attack and insider attack

[12]. The external attack from the non-legitimate routers can

be easily prevented by the cryptographic mechanism and thus

will not be discussed further in this paper. The inside attack

comes from a legitimate but misbehaving network

participant/router, called a faulty router. A router could

become faulty due to the software defection [1], or be

subverted because of the weak passwords and the latent

software vulnerability [2][3]. The faulty routers can attack the

network in various aspects such as packet dropping, delay,

reorder, alteration, denial of service, etc. to degrade the

network performance, even make network service unavailable.

Here we focus on the attack from the faulty routers toward the

link state routing protocol such as OSPF. Categorized with the

origination of the LSAs in the network, mainly there are two

types of faulty routers. The first one is the faulty source router

which generates the LSAs with fake link information such as

an incorrectly shorter link delay to attract more traffic and then

conducts the blackhole attack by dropping all packets passing

by. The second one is the faulty intermediate router (FIR)

which intentionally compromises the LSA messages passing

by and pollutes the routing tables in its downstream routers.

Since all LSAs have to pass more than one intermediate router

in order to reach other routers in the network, such attacks not

only cause more impacts on the network but are also not easily

detected. In this paper, we focus on the solution to detect and

trace the FIR attacks.

While some security mechanisms have been proposed

and developed to protect the link state routing protocol, they

expose some limitations. Though the digital signature solution

, in which the originating router authenticates the LSAs with

its private key and the others verify the LSAs with the

originating router’s public key, is able to prevent such attack,

the expensive computation [12] prevents its wide adoption.

The IETF recommends sharedKey-MD5 in OSPF v4 [4] and

IPSec protection between the neighbors in OSPF v6 [5]. The

cost in authentication and verification on the LSAs is reduced,

but those mechanisms are unable to prevent FIRs from

attacking the routing packets passing through. Thus, how to

efficiently secure the link state routing against the FIRs

becomes the challenge to the network security.

In this paper, we present a novel cost-reduced

integrated solution which combines both fault-detection

operations from routers and fault-tracing responses from

network management components to address the FIR attack.

The significant properties of our system are the detectability

of the abnormal behavior toward the LSAs and the

traceability of the FIRs generating those bogus LSAs.

Specifically, we first introduce an efficient authentication

mechanism, by which the originating router authenticates its

M subsequent LSAs with a session key without prior key

exchange; Each router in the network is required to log the

important fields from unverified LSAs. If bogus LSAs are

detected with the lately disclosed session key, either

centralized or decentralized fault-tracing operations from the

network management components are conducted to trace back

the malicious FIRs through the analysis of historical LSA logs

from the affected routers which detect the receiving of the

bogus LSAs. Our solution is capable of detecting the multiple

FIRs which may conduct the manipulation of the LSAs from

multiple originators in different time, narrowing the location

of the faulty intermediate routers, isolating and eventually

removing the faulty intermediate routers in order to achieve

the purpose of the routing security.

 The rest of the paper is organized as follows. In

section II, we present the system models. In section III, we
introduce new and efficient operations in each router to detect
the mechanism of credit based authentication, then propose two
tracing schemes running on network management components
to search the FIRs. In section IV, we conduct the analysis of the
memory requirement and the communication cost. In section
V, we review the related work. Finally, we conclude the paper
and discuss some potential future work in section VI.

II. SYSTEM MODEL

Network Model This work considers the network consisting

of routers running link state routing protocols, such as OSPF.

A network is described with an directed graph G(V, E), where

V is the set of the routers in the network and the E is the set of

links in the network. The following assumptions are made: (1)

Each router holds a pair of keys, one public key and one

private key. A public key distribution mechanism has been

deployed so that each legitimate router’s public key is known

to other routers in the network. (2) To avoid the outsider attack

which is not authorized for routing operation, we assume that

neighboring routers use IPSec with AUTH option to prevent

receiving routing packets from the unauthorized / rogue

routers. (3) Each router has the capability of generating a

random number. The random number is used as the session

key to authenticate the router’s own LSAs. We will discuss it

in the next section. (4) Assume there exists a network timer

with which each router can synchronize its local clock and

adjust its skew in time.

Threat Models In our discussion, we focus on the threats

from the FIRs against the routing protocol. FIR can attack the

routing packets passing through at will. It may drop, delay,

reorder, and alter the routing packets sent by other legitimate

routers. The FIR is able to masquerade other routers to insert

fake routing packets, or flood the network with excessive

routing packets. More than one FIR may exist in the network

simultaneously and those FIRs could behave independently or

collusively. We assume that the location of FIR does not lead

to network partition. Otherwise, if the FIRs gain all control for

the routing between the separate network partitions, the

schemes proposed in the paper will not work. We assume at

least a good path with no FIR existsing between any pair of

routers in the network.

Definition 1: We call a link a disruptive link if it is connected

with a FIR; otherwise, we call it a normal link.

A FIR always manipulates the routing packets

passing through, thus a disruptive link indicates where the

LSA manipulations happened. Through identifying the

disruptive link, we can narrow the location of the FIRs.

Notation 1

Symbols Meanings

Ks A session key used to authenticate the originating
LSAs

M The number of LSAs to be authenticated with one

session key

(Id, Sq, T,
Pl)

A brief representation of one LSA packet, where
Id: the identity of the originating router. e.g., IP

address

Sq: the unique sequence number of this LSA
T: the timestamp of this LSA

Pl: the payload data of this LSA

MACi The keyhashed value of LSA i computed with session
key Ks

Sgpri(P) The signature of one packet P with the private key

H(P) A function to compute message authentication code of

packet P

H_Ks(P) A function to compute message authentication code of
packet P with session key Ks

δti The propagation time of LSA i from the originator to

the intermediate receiver

Hvi The hash value of LSA i, Hvi = H(Id |Sqi |Ti |Pli)

Ngi The neighboring router who forwards the LSA i

Design Goal Our goal is to develop an efficient integrated

solution to protect link state routing protocol and trace the

FIRs by identifying the disruptive links. Though the FIRs may

not be exactly marked, we argue that the removal of the

disruptive links will reduce the impact from the FIR and

eventually isolate the FIRs from the network.

III. PROTECT LINK STATE ROUTING AGAINST FIR

A. Efficient Fault-Detection Operations in Rrouters

Due to the high expense in using the public key

scheme, the symmetric key scheme is used to efficiently

authenticate the LSAs in our proposal. The prior key exchange

usually being required in the symmetric key scheme shows

some security vulnerability and inefficiency in link state

routing. If a session key is known within the communication

between the originator and all other routers, the FIR can

impersonate the originator without being detected. If the

session key is shared between the originator and each

individual router, then it will require a large cost in both key

storage and communication. For example, the originator has to

make a copy of the LSAs with a separate signature for every

router in the network. In contrast, there is no prior key

exchange in our authentication scheme.

Each time a router generates a session key Ks which

is used to compute the hash value of its own LSAs with

symmetric authentication scheme, for example, by using

Keyed MD5 algorithm. The LSA packet, e.g., (Id, Sqi, Ti, Pli),

is broadcast into the network but the hash value MACi is kept

locally, where MACi = H_Ks(Id | Sqi | Ti | Pli). The session key

will not be disclosed until M subsequent LSAs are signed with

this session key Ks from this originating router. Note that, the

Loging LSAl+M

Loging LSAl

sequence number is used as the separation for both the LSA

and the session. If the sequence number in the new LSA is M

larger than the starting sequence number for the current

session key, the router will regenerate another session key for

subsequent new LSAs. In the meantime, the previous session

key Ks is included in a session key disclosure message

(SKDM). The SDKM is signed with the originator’s private

key and broadcast to the entire network. The SKDM is

concisely represented as (Id, T, Ks, ∑
i=
M
1 (Sqi, MACi), Sgpri

(P))), where P = H(Id| T| Ks | ∑
i=
M
1 (Sqi, MACi)).

Similar to the concept of credit in our society, we

adopt the term “credit” to represent the reputation of the

communication reliability between the originator and the

receiver. Initially, each router grants M credits for each router

in the network except itself. Each receiver will immediately

trust and log the LSAs if the credit is available for this

originator. The routing table will be updated as well if needed.

After accepting one LSA, the receiver will decrease the credit

associated with the LSA originator by one, until 0. The

information associated with the LSA will be logged for later

verification. To reduce the logging size, we store the hash

value Hvi of the LSA instead of the entire LSA packet.

Besides, the sequence number, the propagation time δt, and

the Ng will be recorded into a LSA log table LLT as described

below,

 LSA log table LLT (Id, Sq, δt, Hv, Ng)

After M logs have been stored for one originator, the

receiver will neither trust nor propagate the following LSAs

claimed to be from the same originator, but the LSA will be

logged locally.

Once receiving a SKDM, the receiver will verify it with the

originator’s public key. If successful, the receiver will use the
session key Ks included in the SKDM to check LSA logs for
this originator within that session specified in the SKDM.
Specifically, the receiver first picks up a tuple, e.g., (Id, Sqi, δti,
Hvi, Ngi) from LLT and key-hashes the Hvi value with the
session key Ks in the SKDM, then it compares the result with
the value from the hash of the MACi value associated with the
same sequence number in the SKDM. If equal, it means no
change was made during transmit; then, one credit is added
back and the tuple will be removed from the log table;
otherwise, the bogus tuple with verification failure will be
stored in a bogus log table. A bogus LSA log table BLLT has
the same fields as the regular log table but contains those tuples
from failed verification. The number of the available credits at
the end of verification for one particular originator indicates if
any intrusion against the LSA occurred and how many of the
originator’s LSAs had been compromised between the
originator and the receiver. The lower the available credit in the
end of the verification, the poorer the security of the
communication channel between the LSA originator and the
receiver. The credit may not be the same between two
neighboring routers because one router may have received
more bogus LSAs from more than one router than its

neighboring routers. Figure 1 describes an example of session
key usage and message processing between one originating
router and one receiver.

As we see, the value of M directly affects the

effectiveness of this authentication mechanism. The smaller

value could cause more frequent regeneration of the new

session keys and consume the computing power of the router;

the larger value may cause the larger log storage in each

receiver and the bigger delay to detect the security violation of

the routing packet if exists. Generally speaking, a more trusted

network is usually configured with a larger M. Besides, the

network stability also affects the frequency of the generation

of the session key. The more dynamic the link status change,

the shorter time the associated routers take to reach the M.

Thus, the M value can be configured longer in a dynamic

network environment than in a stable network environment.

The low credit and the bogus LSAs will invoke the

FIR tracing action. The credit will be added back with the

same number of reported bogus LSAs as described below. In

the next section, we will present two practical tracing schemes

to locate the FIRs.

B. Tracing the FIR

From the above, once the routing packets are

manipulated by the FIRs, the bogus LSAs will be detected by

the downstream non-faulty routers, called affected routers,

upon the receipt of the disclosed session key. Since the bogus

LSAs logs record the neighboring previous routers who sent

the bogus LSAs, we are able to trace back the faulty origin

based on the historical log information. The traceback of the

FIRs is accomplished by comparing the bogus LSA log tables

from two neighboring affected routers. The discrepancy from

the comparison indicates the happening of the LSA

manipulation. Because only the FIR manipulates the routing

packets passing by, the discrepancy also indicates the location

of a disruptive link. Based on such an essential idea, we

propose two tracing schemes, centralized and decentralized, to

fit to different system environments.

Signed with Private Key

Authed with Ks
LSAl+M

Message

SKDM

Start Verification

Authed with Ks LSAl

Originator Receiver

Figure 1 An example of session key usage and message processing

1) Cemtralized Tracing Scheme

 We assume there is a centralized management system

(CMS) e.g., central intrusion detection system, to conduct the

tracing activity in the network. Once detecting the bogus

LSAs, the router will report the bogus log table to the CMS.

The bogus log table is transferred via a secure channel

between the sending router and the CMS. To simplify our

discussion, we assume that the LSAs from only one originator

are reported.

With the knowledge of the entire network topology

and the routers submitting the bogus log tables, the CMS is

able to draw an affected network topology for one specific

originator. We define the affected network topology (ANT)

G1 consisting of the bogus-reporting routers and represent it

with G1(V1, E1), where G1 Є G. With such collected

information, the CMS can start the traceback of the FIRs.

Figure 2 shows a generic procedure and the centralized tracing

algorithm.

The function checkPreviousRouter() defined in

Figure 2 is used to check if one bogus LSA reported from one

router is able to find a matched one from its previous router.

Line (1.5) further checks if the matched bogus LSA is in

order and no loop exists between these two routers because a

FIR may want to hide from being detected by modifying the

receiving timestamp or misleading the propagation direction

of the bogus LSA. The correctness of this tracing idea is

present in the appendix section.

Ctrace() is the centralized algorithm to trace the FIRs.

The CMS conducts the comparison with the received

neighbors’ bogus log tables by starting any affected router,

and goes through all the affected routers in the ANT. In the

tracing algorithm, we define the disruptive value associated

with each link to locate the disruptive link and measure the

severity against the reliability of the LSA relaying between

two associated neighboring routers. Those values are

initialized to 0. As we can see, the disruptive value in the

algorithm reflects how much difference exists between two

neighboring routers. The non-FIR routers always forward the

bogus routing packets unchanged; thus there should be no

discrepancy between the two bogus log tables from the two

associated non-FIRs, and the result of the disruptive value

over that link will be 0. Only the disruptive link connecting to

the FIR(s) shows the inconsistent LSA info or untrue log

information. Therefore, the disruptive value will be increased

by 1 if there exists one different LSA between two associated

neighboring routers. Thus, the link with the disruptive value

larger than 1 is the disruptive link. Section C will discuss how

to measure the link severity with the disruptive values. The

collusive adjacent FIRs, which hide the discrepancy between

them, can be treated as a single FIR. Its eventual connection

with a non-FIR will disclose the discrepancy and the discovery

of the disruptive link certainly isolate the adjacent FIRs.

While most of the time, the FIRs will compromise the

LSAs from more than one originator, it is not necessary to

submit all the logs for those affected originators because much

overlap will exist in the tracing results - the location of the

disruptive links. Therefore, the log information associated

with the small number of affected originators is enough to

locate the disruptive links and isolate the FIRs. We assume

central IDS will determine which originator’s bogus LSAs are

submitted.

Figure 2 Centralized Tracing Algorithm

Theorem 2 (Complexity) In the worst case, the runtime of the

verification in centralized tracing algorithm is

Θ(|E|+|V1|*M*logM) if binary search algorithm is used, where

E is the links of the entire network topology and the |V1| is the

number of the router reporting the bogus LSAs.

1. Generic Verification Procedure

Assumption:
Tp(Id, s,t,H,Neig): a bad LSA tuple to be verified,

 pTab(1..k2): the bogus log table from the previous router
 identified by Tp.Neig, 1<= k2 <= M

//The function check if a matched bad LSA is found in the
//previous router and both tuples are in order

Function CheckPreviousRoute (Tp, pTab)

 (1.1) Search pTab through the combined index (Tp.id+Tp.s)

 (1.2) IF Tp is in pTab

 (1.3) THEN
 (1.4) Let (pTp represents the matched tuple in pTab)

 (1.5) IF Tp.t is larger than pTp.t AND Tp.H is equal to pTp.H

 (1.6) AND Tp.Neig <> pTp.Neig //check the matched LSA
 // with no loop and in order

 (1.7) THEN return 0 //A matched is found in the previous router

 (1.8) RETURN 1 //No matched is found in the previous router

2. Centralized Tracing Algorithm

Assumption:
G1(V1, E1): the affected router topology

e(i,j).disruptive : defined to measure the disruptiveness of the link
 between router i and j

BLLT(1..|V1|); the reported bogus LSA log tables

//The procedure is defined to trace the disruptive links connected with

//the FIRs

Procedure Ctrace

(2.1) FOR any link e(i,j) in E

(2.2) e(i,j).disruptive = 0;

(2.3) ENDFOR

(2.4) FOR any affected router i Є V1

(2.5) FOR (any tuple tp from BLLT(i))

(2.6) IF (tp.Neig Є V1)
(2.7) THEN

(2.8) e(i, tp.Neig).disruptive

 = + CheckPreviousRouter(tp, BLLT(tp.Neig);
(2.9) ELSE e(i, tp.Neig).disruptive ++

(2.10) ENDIF

(2.11) ENDFOR

(2.12)ENDFOR

5

Proof:

The runtime in checkPreviousRouter() is dependent

on the size of the log table in the previous router. In the worst

case, the previous router report up to M bogus LSAs. With the

binary search technique, the runtime for

checkPreviousRouter() is Θ(logM). From the algorithm in

Figure 2, the runtime of the Ctrace()procedure is dependent on

the size of the affected network topology and the size of the

reported bogus LSA log table. Assume in the worst case, the

size for every bogus LSA log table is M. The runtime for the

initialization of the disruptive value associated with each link

from (2.1) to (2.3) is |E|. The runtime to conduct the

comparison between neighboring log tables is

Θ(|V1|*M*logM). Thus, in the worst case, the total runtime of

the centralized tracing algorithm is Θ(|E|+|V1|*M*logM).

□

 Source router Affected router Non-affected router

 2
 Disruptive link disruptive value

 Figure 3 An example of ANT

As an example in Figure 3, router 4 is a FIR and it

compromises two LSAs from router 1. Four fields of each tuple
of the compromised LSA, (Sq, δt, Hv, Ng) are displayed
orderly in the squares. After the session key is disclosed by
router 1, routers 5, 6, and 7 detect the bogus LSA log and
report to the CMS. In the meantime, assume FIR router 4 also
reports a bogus LSA log in order to shift the blame away. If the
CMS starts from the bogus log table from router 7, the matched
bogus LSAs are found in the router 5 and 6. Upon continuous
tracing from the routers 5 and 6, the disruptive values over
those links are kept as 0 because the FIR router 4 reports the
matched bogus LSA info. However, FIR 4 cannot hide the
difference of the log tables between itself and its previous
router 2 because router 2 doesnot report any bogus LSA.

Eventually, the tracing algorithm returns finding one disruptive
link between router 2 and 4, and the disruptive value is 2.

2) Decentralized Tracing Scheme

In some situation where the CMS is not available

such as network congestion or disaster, we propose a

decentralized scheme to trace back the FIRs. Different from

the centralized scheme that every affected router reports its

bogus LSA log to a CMS, in the decentralized scheme, every

affected router asks its previous routers to send their bogus

LSA log information in order to check if its links with its

neighboring routers are disruptive or not. However, the FIRs

may send back the faulty information in order to hide its

malicious behaviors. Thus, to detect the false evidence from

its faulty previous router, the affected router also queries the

evidence from the previous routers of its previous router to

prove that the information from its previous routers is not

false. In this section, we first present a decentralized solution

under the assumption of no collusive neighboring FIRs, then

discuss the generic idea into the scenario with collusive FIRs.

We called an affected router as a requestor which

requests the innocent evidence from its previous; the

responder is a router which receives a request of innocent

evidence from its downstream affected routers. While tracing

the FIR, a router could be either a requestor or a responder.

The evidence information has the same fields of the bogus

LSA table and contains the tuples with the same sequence

numbers as those in the request. To simplify our discussion,

we assume only one originator’s LSAs are compromised

though the mechanism can be easily extended to the scenario

with multiple originators. We assume vTab is the table of the

bogus LSA from the requestor and the rTab is the table of the

bogus LSAs from the responder corresponding to the request.

Below shows the detailed query process,

Step 1: The requester sends a request (Id,2) to its previous

router where the bogus LSAs in vTab are sent

 from and sets the expiration time.

Step 2: If the responder has all evidence approval associated

with this Id from its previous routers, it goes to step

4; otherwise, it generates a new request with (Id, 1)

to its previous routers for the required info and set

the expiration time.

Step 3: If the router is the last router asked for the approval

 information, it sends back

its signed evidence information (rTab) associated

with this id. The evident packet is described as

below,

 (rTab, Sgpri (MD5(rTab))

Step 4: If the responder has all evidence information, it will

append its bogus LSA table associated with the

query to the list along with the signature and send

back to the requestor.

2

0

0 0

0

6

4 7

1

3

2 (1, 1, hv1’, 1)

(2, 1, hv2’, 1)

(1, 3, hv1’, 4)

(2, 3, hv2’, 4)

(1, 4, hv1’, 5)

(2, 5, hv2’, 6)

(1, 5, hv1’, 4)

(2, 4, hv2’, 4)

Step 5: The final requester verifies the status of the link by

running the verification algorithm detailed in

Figure 3. The result of the disruptive value from

the algorithm indicates if this link is disruptive or

not.

One requester might receive the bogus LSAs from its

multiple previous routers. It will split its vTab based on the

field Ng and send the splitted vTabs to their corresponding

previous routers in Step 1. Any received response will be

verified by examining the signatures. If verification fails, the

response will be discarded and a disruptive link shall be

announced. The disruptive value associated with this link is

increased with the number of bogus packets through this link.

If the waiting time expires, the intermediate responder sets up

the reason for this link where no response is received or the

response fails in verification and wraps the received evidence

information and send back to its requester in the same format

as in Step 3.

If the responder is a non-affected router, then it will

send back its response with empty log table signed with its

private key and announce the disruptive link; if the responder

is an affected router too and it does not has such innocence

approval information from its UR yet, it will hold the request

until it receives the response from its previous routers.

 Figure 4 Decentralized Tracing Algorithm

Figure 4 shows the algorithm that the requester runs

to determine if the link with the previous router is disruptive

and what the disruptive value is based on the collected

information form the responders and their previous routers. If

the requester finds the discrepancy in the bogus LSA logs with

the responder’s, then definitely, something disruptive

happened in the responder if the requester is good router.

However, the discrepancy may be found between its responder

and the responder’s previous routers; then apparently either

the responder or those previous routers are faulty. The request

will first suspect the responder and watch the further reaction

from the responder. If the responder has or will soon announce

the disruptive link with the specific disruptive values, the

requester will go ahead to remove the same disruptive value

from its result. The disruptive values from the algorithm will

be used to measure the confidence for the link as described in

the next section.

Theorem 2 (Complexity) In the worst case, the runtime of the

decentralized verification algorithm in the requester is

between Θ(M*logM) and Θ (Mlog
3
M) if binary search

algorithm is used.

Proof:

The runtime in checkPreviousRouter(0 is dependent

on the size of the log table in the previous router. In the worst

case, the requester received up to M bogus LSAs. From

theorem 1, with the binary search technique, the runtime for

checkPreviousRouter() is Θ(logM). On one hand, if no

matched is found between the requester’s bogus LSA log table

vTab and the responder’s bogus LSA log table rTab, then the

lower bound of the runtime of the verification algorithm is Θ

(M*logM). On the other hand, if found all matched, then the

algorithm will continue to check if the tuple from rTab is

proved from the responder’s previous router. In the worst case,

the checking of the existence of the bogus log table of the

responder’s previous router in line (4.9) and the running of the

verification of the previous router’s tuple against the evidence

approval in (4.12) are all Θ (logM). Thus, the upper bound of

the decentralized verification algorithm is Θ (Mlog
3
M).

□

As an example, consider figure 2 with the same

assumption as that in section 3.2,1. Among them, router 4 is a

faulty router. It manipulates two LSAs from router 1 and

pollutes the routing tables in routers 5, 6, and 7. The squares

attached in each affected router show the bogus log table

associated with the originating router 1. Assume router 5

sends a request to router 4. If Router 4 pretends to be innocent,

it has to announce the disruptive link between itself and router

2 in order to claim its innocence to router 5. Once the link e(2,

4) is known to the entire network, router 2 will not send the

LSAs to router 4 via this link. As a result, the following LSA

propagation originated from router 1 would be immune from

the manipulation from the FIR 4.

 In the above, we assume that there are no collusive

FIRs and each FIR behaves independently. When two or more
collusive FIRs are present in the network, they are able to
collaborate and the faulty responder can present its bogus LSA

Assume:
vTab: the bogus log table from the requestor i

eTab(1..k1): the evidence bogus log tables from previous routers of the

responder j
rTab: the bogus log table from the responder j

 Function DTrace ()

(4.1) Initial: e(i,j).disruptive = 0;

(4.2) FOR (any tuple tp from vTab)

(4.3) IF CheckPreviousRouter(tp, rTab) == 1

(4.4) THEN
(4.5) e(i,j).disruptive ++;

(4.6) ELSE

(4.7) LET tp1 is the matched tuple in rTab
(4.8) LET z = tp1.neig

(4.9) IF (eTab(z) exists)

(4.10) THEN
(4.11) LET aTab(z) is the log table for innocence

 approval from router z

(4.12) e(i,j).disruptive = disruptive +
 CheckPreviousRouter(tp1, eTab(z))

(4.13) ELSE

(4.14) e(i,j).disruptive ++
(4.15) ENDIF

(4.16) ENDIF

(4.17) ENDFOR

logs with the false evident information from its collusive FIR
partners to the requester, thus hide itself or the associated
disruptive links from being discovered. To thwart the collusive
FIR attack, we still can leverage the generic idea of locating the
disruptive link through the comparison of the bogus LSA logs
between neighboring affected routers. Instead of collecting the
evidence information from the routers one-hop away from the
responder, we can extend the query process to collect the
evidence information from those routers k hops away from the
responder, where k is the upper-bound number of collusive
FIRs in the network, and check if those evident information can
support the innocence of the responder through the same
method described in the above. This would, however,
substantiately increase the cost in the communication and
verification. Some optimization on our original approach can
be taken to reduce such cost. One of the ideas is to first collect
the bogus LSA propagation tree k-hop away from the
responder, then query the routers in the tree with the binary
searching method instead of collecting the evident approval
from all routers in the tree; another one is that we may
propagate the query to the routes k-hop away from the
responder and ask them to send back the comparison results
instead of the entire bogus LSA table.

C. The Severity Evaluation of the Disruptive Links

A routing packet could be changed within the

transmit due to various factors, some are malicious and

intentional, but other are inadvertently and temporary. In real

network, the occasional bad network situation such as network

congestion or link noise could lead to the rare and very mild

packet discrepancy. A straight removal of such disruptive

links may lead to the false alarm. Thus, it may not be proper to

remove the link immediately without further investigation,

especially in a loosely connected network. Instead, it would be

better to acquire the severity of the disruptive link and

determine if a link removal is necessary.

The disruptive value enables measuring the severity

of the disruptive link and the confidence of the reliability of

LSA relaying over this link. We use the confidence value to

describe the severity of the disruptive link and it can be

represented as followed,

 d

ConfidenceValue = 100% -
 N
Where, d is the disruptive value associated with this link and

N is the number of LSAs received from this disruptive link.

Assume a large portion of the LSA traffic is through

one disruptive link. On one hand, if the confidence value is

very close to 100%, then it is reasonable to monitor the link

further prior to making any decision. On the other hand, if the

confidence value is equal to 0, it means every LSA passing

through this link is manipulated, it may be reasonable to

remove this link to avoid more negative impact on the network

routing. How to handle the disruptive link with less 100%

confidence value is out of the scope of this paper but will be in

our future research.

Though link state routing protocol is well known to its self

stabilization, the FIRs are able to modify the LSAs at their

wills and thus seriously impact the network stability, even if

the source router notices the change of the LSA and fights

back with updated LSA. The confidence values help the

routers to measure the severity of the disruptive link and

determine if a disruptive link shall be kept or removed. By

doing that, we achieve the goal of removing the disruptive link

as well as voiding the possible false alarms. The removal of

the disruptive link requires table changes in each routing table,

but it reduces the possibility for the FIRs to pollute the rest of

the network further and thus achieves more stable network

environment.

IV. COST ANALYSIS

• Memory Requirements

It is required to allocate the memory in each router in

the network to store the LSA logs for the delayed verification

until the LSA originators reveal their session keys. There are

totally 5 fields in the log table as described in section III-A.

The lengths of MAC from either MD5 or KMD5 are 128 bits;

It is reasonable to say the range of the timestamp is less 30

minutes / 1800 second, then the size of the propagation

timestamp is 11 bits; the originator’s and neighbor’s address

can be represented with the IP address in 4 bytes / 32 bits, and

the sequence number is 4 bytes/32 bits in [4]. Thus, each tuple

of the log table requires 235 bits, around 30 bytes. Each

originator will send up to M LSAs before it reveals its session

key which is expected to take a very small time to propagate

into the entire network. Note that, the bogus LSA log can be

stored in the hard disk in each router so that no memory is

required for the bogus LSA log. Overall, at least (M) tuples

have to be stored for each LSA originator. Let N represent the

number of the routers in the network. Then, in each router the

total memory requirement in our proposal is O(N*M*30). As

an example, in a large and stable network with 500 routers,

assume M is 50, the total memory requirement in each router

in such scenario is around 750 Kbytes which is much small

under the fact that the 512 Mbytes and even Gigabytes

memory are often used in network routers presently.

• Communication Cost

In the centralized scheme, the communication cost

depends on the traffic from the each affected router to the

CMS. As described in section III-B.1, all fields except the

MAC of the LSA are needed to be sent to the CMS, then the

size of each tuple is 30 bytes. In the worst case when one

router receive all bogus LSAs, then up to M tuples associated

with each individual originator will be submitted to the central

CMS. As discussed in section 3.2.1, it may not be necessary to

submit the bogus LSA for all originators in order to locate the

FIRs in the network because the results – the location of the

disruptive links could be largely duplicated. We assume

central IDS will choose the log information associated with up

to k originators to be submitted. Then, the total size of

submission of the log table from each router to the central IDS

is O(k*M*30). In the worst case where the existence of the

FIRs compromise all LSAs, each router in the network will

submit its log table for k originators, the network will see a

total traffic with O(N*k*M*30) though in reality, the

distributed submission will require much less network

bandwidth. As an example, let the values of M and N as the

above worst and pick k as 10, the total traffic to trace the FIRs

is 7.5 Mbytes in the worst case. Such traffic is quite trivial in

given the fact that 100BaseT and Gigabyte Ethernet are widely

deployed in the current network.

In the decentralized scheme under the assumption of

no collusive FIRs, One of the proprieties in our tracing

mechanism is localized, which means the exchange of the

bogus LSA log tables between the requesters and the

responders will not flood the entire network where some areas

may not see the bogus LSAs. To conduct the tracing, only two

types of messages are sent over the link, one is the request and

the other is the response. The same fields of bogus LSA

messages are exchanged as those in centralized scheme. In the

worst case all received LSAs are bogus from one UR,

therefore, the size of one request will be 30*M. It is obvious

that the response from the responder will include up to 30*M

bytes for either the matched log table or the evidence approval

log tables. Overall, totally 90*M bytes log information is

passed by over one link. In the worst case when the FIRs are

so strong that they manipulates all LSAs passing by, then all

routers in the network will conduct the query for all other

originators. Thus, the overall communication cost in network

is O((N-1)*90*M). As an example, let’s pick the same values

of N and M as those in the above, the total traffic to trace the

FIRs over one link is 2.25 Mbytes.

V. RELATED WORK

Recently quite a few researches have being done on

securing link state routing against malicious operations and

discovering the faulty origin after the violation of the routing

and forwarding services.

The earliest security work on link state routing

protocol can be traced back to Perlman’s seminal work[8]. In

her PhD thesis[8], Perlman proposed a robust flooding routing

mechanism under the Bayzantine environment. Each packet is

signed with the originator’s private key. To guarantee such

robustness, some cost must be paid, mainly due to the

expenses from the public key security, as described in [13].

Murphy etc [9] design and implement the digital

signature based protection for OSPF. The identification and

the sensitive fields in routing packets are authenticated with

the source router’s private key prior to be sent out. However,

recognizing the high expense with the digital signature in each

routing packet, they suggested either adding the extra

hardware or delay the verification of the signature in LSA

messages in order to reduce the cost.

Addressing the cost of public key security in link

state routing, Hauser, etc [10] present an efficient

authentication mechanism with one-way hash chain function

which was originally developed by Merkle, Lamport [6]. By

hashing the time and a secrete number, each router generates

two distinct hash chains with n distinct values for two link

states, UP and DOWN, separately. The first LSA is the last

hash value in the chains signed with the originator’s private

key. Without knowing the secret number, another party can

not derive the rest of hash values in the chains. However, the

subsequent hash values representing the latest link state from

the originator can be verified with the previously received

hash value and the synchronized time interval. This

mechanism is able to reduce the computation cost in

verification with the order of magnitude cheaper, but as

mentioned by the author, some limitations such as

authentication for multiple-values link remains.

To solve the limitations mentioned in [10], Cheung

[7] proposed an improved hash-chain authentication approach

to efficiently protect the link state routing messages. After

detecting the compromise, a bad routing update advertisement

(BURA) including one bogus LSA with the smallest sequence

number or largest checksum (s) is generated and signed with

its private key, then flooded into the entire network. Each

router will form a bad LSA propagation graph with the

collected BURAs and run a DFS algorithm to search the faulty

routers. Though his proposal is similar to our distributed

scheme, our approach presents some advantages. One of them

is the localized data exchange. The data exchange in our

approach mainly happens in the affected routers thus avoid the

global impact due to the flooding; besides, our proposal has

the capability of acquiring the confidence values to measure

the severity of the disruptive link so that we’re able to reduce

the possibility of false alarms.

Bradley, etc [11] propose a distributed monitoring

mechanism, WATCHER, where flow counters in each router

are created to record the traffic from each router through each

of its neighboring routers. Within the validation phase, each

router can detect the packet dropping or misroute through

comparing with the counters from its neighboring routers. If

the discrepancy is detected with the router’s neighboring

router(s), a diagnostic process further is proceeded to discover

the faulty origin. However, WATCHER suffers variant

limitation as detailed in [13]. More recently, Mizrak, etc [14]

formalize the specification of the traffic analysis mechanism

and propose two detection protocols with the difference in

accuracy, completeness, and overhead. Though showing some

advantages over WATCHER, such as cost reduction of

monitoring storage in each router, it is unclear that how the

detection protocols countermeasure the compromised routers

in the network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel mechanism

combining security technique and intrusion detection to

address the challenges from the FIRs. In our solution, we

introduce an efficient authentication mechanism for link state

routing protocol to protect the LSAs and ensure the LSA

manipulation caused by the FIR is detectable and traceable.

Then two practical tracing schemes are developed to trace the

location of FIRs with the help from the historical LSA log

information. Our analysis shows that memory requirement in

our proposed mechanism is small and the communication cost

is acceptable.

We can identify several future work. In the first, we

would like to do formal analysis of the effectiveness of this

mechanism in order to better understand its strength and

weakness. Second, we would like to modify our mechanism

into infrastructureless and no central administrative mobile ad

hoc network where every node is roaming and self-organized.

We believe that the properties built in our decentralized

tracing scheme such as distributed and localized make it

suitable to work in such dynamic network environment.

Besides, the confidence value is able to give the flexibility in

measuring the trust under more complicated wireless network

environment.

ACKNOWLEDGMENTS

We would like to thank Anne Nilsson, Ning Peng, Rudra

Dutta, and Alexander Keller for helpful comments. We appreciate

Gary Weinberg for proof-reading. We also thank the anonymous

reviewers for many valuable comments.

REFERENCES

[1] R. Barrett, S. Haar, R. Whitestone, Routing Snafu Causes Internet Outage,

Interactive Week, April 1997

[2] X. Ao. DIMACS Report: Workshop on Large Scale Internet Attacks,
November 2003

[3] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas. Trends in denial of

service attack technology. CERT Coordination Center Technical Report,
October 2001

[4] J. Moy. OSPF Version 2, IETF RFC2178, 1997

[5] R. Coltun, D Ferguson, and J Moy, OSPF for IPv6, IETF RFC2740, 1999
[6] L. Lamport. Password authentication with insecure communication.

Communications of the ACM, November 1981

[7] S cheung. An Efficient Message Authentication Scheme for link State
Routing, in 13th Proceedings of Annual Computer Security Applications

Conference, San Diego, December 1997

[8] R. Perlman. Network Layer Protocols with Byzantine Robustness. PhD
thesis, Massachusetts Institute of Technology, August 1988

 [9] S. Murphy and M. Badger. Digital signature protection of the OSPF

routing protocol. In Proceedings of the Symposium on Network and
Distributed System Security (SNDSS' 96), February 1996

[10] R. Hauser, T. Przygienda, and G. Tsudik. Reducing the cost of security in

link state routing. In Proceedings of the Symposium on Network and
Distributed System Security (SNDSS’97), February 1997

[11] K. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson.

Detecting disruptive routers: A distributed network monitoring approach. In
Proceedings of the IEEE Symposium on Security and Privacy, May, 1998

[12] B. Vetter, F. Wang, S. Felix. An experimental study of insider attacks for

OSPF routing protocol. In IEEE International Conference on Network
Protocols, October, 1997

[13] J. R. Hughes, T. Aura, and M. Bishop. Using conversation of flow as a

security mechanism in network protocols, in IEEE Symposium on Security
and Privacy, 2000

[14] A. T. Mizrak, K. Marzullo, and S. Savage, Detecting malicious routers,

UCSD technical report 2004

APPENDIX

CORRECTNESS AND COMPLETENESS OF THE TRACING SCHEME

Theorem 3 (Correctness) We say both centralized and

decentralized tracing schemes are correct if one link is

reported as a disruptive link; it is actually a disruptive link

connecting with at least one FIR.

Proof:

 As we see, both schemes call Procedure

checkPreviousRouter() which returns the discrepancy in the

bogus LSA log tables between two neighboring routers. The

non-FIR always honestly forwards the LSAs with no change

to the next routers; thus, if there exists a discrepancy within

the comparison, then either the previous router lies or the

current router lies or both of two routers lies about in the

information associated with the bogus LSA. In either case, the

link is connecting to a FIR, thus is a disruptive link. This

procedure deduces the disruptive link from the reasons below,

� Exist mismatched LSA. If the procedure cannot find a

matched tuple with the same sequence number from the

previous router, it implies either the router itself lies about

the bogus LSA or the previous router sent the bogus LSA

but denies its misbehavior. Either case is associated with

at least one FIR;

� LSA matched but disorder. If a matched LSA is found

in the bogus log table from the previous router, with the

assumption of a network clock synchronization, the

receiving timer in one affected router should be larger

than that in its previous router(s). However, if a disorder

in the matched LSA is found, it could be that the present

router lies about the timer in order to shift the blame away

or the previous router intends to deny the sending of the

bogus LSA at the earlier time. Either case is associated

with at least one FIR;

� Detect the multiple-time LSA manipulation. Since one

LSA may pass through more than one FIR, multiple-

manipulation could happen within the LSA transmit. One

middle FIR may manipulate the LSA again but pretend

itself a victim as well. By comparing the neighbor’s hash

of LSA with the FIR’s, the FIR’s pretense will be

disclosed.

� Detect the looparound in a disruptive link. The

looparound could happen if the FIR reports the same

bogus information but pretends the bogus LSAs

originated from its next direct victim; thus a loop is

formed. Criteria a), b), and c) above will not detect such a

security violation. Only the comparison of the previous

router identification is able to disclose such a lie.

□

Theorem 4 (Completeness) We say both centralized and

decentralized tracing schemes are complete if the bogus LSAs

are detected; at least one disruptive link connected with one

FIR is discovered with the schemes.

Proof:

 We prove this statement in centralized and

decentralized schemes separately.

(1) In a centralized scheme, one FIR has three choices for the

reporting activity and we discuss them below,

� First, the FIR acts as a non-affected router and does not

report any bogus LSA. If the neighboring router of this

FIR is an affected router and reports the bogus log

information to the CMS, the neighboring comparison of

the bogus log table will indicate that the FIR was the fault

originator. If the neighboring router is FIR as well and

intends to hide the misbehavior, the assistance will

eventually be disclosed by the comparison with the bogus

log table from the non-FIR and thus lead to discovering a

disruptive link.

� Second, the FIR reports the false bogus LSA log

information. In this case, the discrepancy between the FIR

and its previous router(s) and the discrepancy between the

FIR and its polluted victims will be found after the CMS

conducts the neighboring comparison of the bogus LSA

log info. In other words, at this case, at least two

disruptive links connected with the FIR will be found

through the tracing algorithm.

� In the third, the FIR reports the correct bogus LSA log

information. Then a disruptive link will certainly be

disclosed once the comparison between the FIR and its

previous router indicated in the bogus LSA log.

(2) In the decentralized scheme, as we assume there are no

collusive FIRs. After receiving a query for the evidence

information, one FIR also has the following three choices,

� send back its log table and the innocence approval

information from its URs honestly to the requester;

certainly the requester will find out the descrpency in the

bogus LSA tuples between itself and the FIRs as the

responder and mark the link as a disruptive link;

� ignore the request. If the FIR ignore the request, the

affected router timeouts the request and will go ahead

announce the disruptive link;

� or send back the response with false information. If the

FIR decides to send a response with the false log

information, it can only pretend it received the same

bogus LSAs but will not be able to modify the evidence

log tables from its previous routers because the evidence

information is signed with the private key of each sender.

The comparison between the log table from the FIRs and

the evidence log tables as shown from step (4.8) to step

(4.15) in Figure 4 will eventually disclose the disruptive

link between the request and the FIR responder. Of

course, the FIR may want to shift the fault origination by

pretending not to receive from its UR, but it is required to

announce the disruptive link between the FIR and its

previous router. That also achieves the purpose of

removing the disruptive link connecting with this FIR.

Overall, no matter what choice the FIR selects, one disruptive

link associated with this FIR will be reported. Thus the

statement is proved.

□

