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Abstract— The importance of the routers in the network and the 

vulnerability in the nature of the link state routing protocol 

highlight the necessity of effective routing protection against 

variant attacks. One of the severe attacks is from the faulty 

intermediate router (FIR) which intentionally compromises the 

LSA messages passing by and pollutes the routing tables of its 

downstream routers. Current security mechanisms are either too 

expensive or vulnerable to prevent this type of inside attack. To 

address the FIR attack, in this paper, we present a novel cost-

reduced integrated solution which combines both fault-detection 

operations from routers and fault-tracing response from network 

management components. The significant properties of our 

system are the detectability of the abnormal behavior toward the 

LSAs and the traceability of the FIRs generating those bogus 

LSAs. The analysis of the memory requirement and the 

communication cost in our design demonstrate the feasibility and 

efficiency of our system.  

 

Keywords-component: faulty intermediate router, fault 

detection, fault tracing, confidence value  

I.  INTRODUCTION  

Link state routing protocol (e.g., OSPF and IS-IS) has 

been widely deployed in networks for path determination 

within packet relaying. Generally, the link state advertisement 

(LSA) message is broadcast by each router to inform other 

routers of its neighboring routers and the connectivity situation 

such as connection status, link delay, etc. A network topology 

is formed based on the collected LSAs, and the optimal paths 

to the reachable destinations are computed based on this 

network topology. The importance of the routers in the 

network and the vulnerability in the nature of the link state 

routing protocol highlight the necessity of the effective routing 

protection against any possible attacks. Mainly there are two 

types of network attacks, external attack and insider attack 

[12]. The external attack from the non-legitimate routers can 

be easily prevented by the cryptographic mechanism and thus 

will not be discussed further in this paper. The inside attack 

comes from a legitimate but misbehaving network 

participant/router, called a faulty router. A router could 

become faulty due to the software defection [1], or be 

subverted because of the weak passwords and the latent 

software vulnerability [2][3]. The faulty routers can attack the 

network in various aspects such as packet dropping, delay, 

reorder, alteration, denial of service, etc. to degrade the 

network performance, even make network service unavailable. 

Here we focus on the attack from the faulty routers toward the 

link state routing protocol such as OSPF. Categorized with the 

origination of the LSAs in the network, mainly there are two 

types of faulty routers. The first one is the faulty source router 

which generates the LSAs with fake link information such as 

an incorrectly shorter link delay to attract more traffic and then 

conducts the blackhole attack by dropping all packets passing 

by. The second one is the faulty intermediate router (FIR) 

which intentionally compromises the LSA messages passing 

by and pollutes the routing tables in its downstream routers. 

Since all LSAs have to pass more than one intermediate router 

in order to reach other routers in the network, such attacks not 

only cause more impacts on the network but are also not easily 

detected. In this paper, we focus on the solution to detect and 

trace the FIR attacks. 

 

While some security mechanisms have been proposed 

and developed to protect the link state routing protocol, they 

expose some limitations. Though the digital signature solution 

, in which the originating router authenticates the LSAs with 

its private key and the others verify the LSAs with the 

originating router’s public key, is able to prevent such attack, 

the expensive computation [12] prevents its wide adoption. 

The IETF recommends sharedKey-MD5 in OSPF v4 [4] and 

IPSec protection between the neighbors in OSPF v6 [5]. The 

cost in authentication and verification on the LSAs is reduced, 

but those mechanisms are unable to prevent FIRs from 

attacking the routing packets passing through. Thus, how to 

efficiently secure the link state routing against the FIRs 

becomes the challenge to the network security. 

 

In this paper, we present a novel cost-reduced 

integrated solution which combines both fault-detection 

operations from routers and fault-tracing responses from 

network management components to address the FIR attack.  

The significant properties of our system are the detectability 

of the abnormal behavior toward the LSAs and the 

traceability of the FIRs generating those bogus LSAs. 

Specifically, we first introduce an efficient authentication 

mechanism, by which the originating router authenticates its 

M subsequent LSAs with a session key without prior key 

exchange; Each router in the network is required to log the 

important fields from unverified LSAs. If bogus LSAs are 

detected with the lately disclosed session key, either 

centralized or decentralized fault-tracing operations from the 

network management components are conducted to trace back 



the malicious FIRs through the analysis of historical LSA logs 

from the affected routers which detect the receiving of the 

bogus LSAs. Our solution is capable of detecting the multiple 

FIRs which may conduct the manipulation of the LSAs from 

multiple originators in different time, narrowing the location 

of the faulty intermediate routers, isolating and eventually 

removing the faulty intermediate routers in order to achieve 

the purpose of the routing security.   

 
 The rest of the paper is organized as follows. In 

section II, we present the system models. In section III, we 
introduce new and efficient operations in each router to detect 
the mechanism of credit based authentication, then propose two 
tracing schemes running on network management components 
to search the FIRs. In section IV, we conduct the analysis of the 
memory requirement and the communication cost. In section 
V, we review the related work. Finally, we conclude the paper 
and discuss some potential future work in section VI. 

II. SYSTEM MODEL 

Network Model   This work considers the network consisting 

of routers running link state routing protocols, such as OSPF. 

A network is described with an directed graph G(V, E), where 

V  is the set of the routers in the network and the E is the set of 

links in the network. The following assumptions are made: (1) 

Each router holds a pair of keys, one public key and one 

private key. A public key distribution mechanism has been 

deployed so that each legitimate router’s public key is known 

to other routers in the network. (2) To avoid the outsider attack 

which is not authorized for routing operation, we assume that 

neighboring routers use IPSec with AUTH option to prevent 

receiving routing packets from the unauthorized / rogue 

routers. (3) Each router has the capability of generating a 

random number. The random number is used as the session 

key to authenticate the router’s own LSAs. We will discuss it 

in the next section. (4) Assume there exists a network timer 

with which each router can synchronize its local clock and 

adjust its skew in time.  

 

Threat Models    In our discussion, we focus on the threats 

from the FIRs against the routing protocol. FIR can attack the 

routing packets passing through at will. It may drop, delay, 

reorder, and alter the routing packets sent by other legitimate 

routers. The FIR is able to masquerade other routers to insert 

fake routing packets, or flood the network with excessive 

routing packets. More than one FIR may exist in the network 

simultaneously and those FIRs could behave independently or 

collusively.  We assume that the location of FIR does not lead 

to network partition. Otherwise, if the FIRs gain all control for 

the routing between the separate network partitions, the 

schemes proposed in the paper will not work. We assume at 

least a good path with no FIR existsing between any pair of 

routers in the network. 

 

Definition 1: We call a link a disruptive link if it is connected 

with a FIR; otherwise, we call it a normal link.  

 

A FIR always manipulates the routing packets 

passing through, thus a disruptive link indicates where the 

LSA manipulations happened. Through identifying the 

disruptive link, we can narrow the location of the FIRs.  

 
Notation 1 

Symbols Meanings 

Ks A session key used to authenticate the originating 
LSAs 

M The number of LSAs to be authenticated with one 

session key 

(Id, Sq, T, 
Pl) 

A brief representation of one LSA packet, where 
Id: the identity of the originating router. e.g., IP 

address 

Sq: the unique sequence number of this LSA 
T: the timestamp of this LSA 

Pl: the payload data of this LSA 

MACi The keyhashed value of LSA i computed with session 
key Ks 

Sgpri(P) The signature of one packet P with the private key 

H(P) A function to compute message authentication code of 

packet P 

H_Ks(P) A function to compute message authentication code of 
packet P with session key Ks 

δti The propagation time of LSA i from the originator to 

the intermediate receiver 

Hvi The hash value of LSA i, Hvi = H(Id |Sqi  |Ti  |Pli ) 

Ngi The neighboring router who forwards the LSA i 

 

Design Goal Our goal is to develop an efficient integrated 

solution to protect link state routing protocol and trace the 

FIRs by identifying the disruptive links. Though the FIRs may 

not be exactly marked, we argue that the removal of the 

disruptive links will reduce the impact from the FIR and 

eventually isolate the FIRs from the network. 

III. PROTECT LINK STATE ROUTING AGAINST FIR 

A. Efficient Fault-Detection Operations in Rrouters 

Due to the high expense in using the public key 

scheme, the symmetric key scheme is used to efficiently 

authenticate the LSAs in our proposal. The prior key exchange 

usually being required in the symmetric key scheme shows 

some security vulnerability and inefficiency in link state 

routing. If a session key is known within the communication 

between the originator and all other routers, the FIR can 

impersonate the originator without being detected. If the 

session key is shared between the originator and each 

individual router, then it will require a large cost in both key 

storage and communication. For example, the originator has to 

make a copy of the LSAs with a separate signature for every 

router in the network. In contrast, there is no prior key 

exchange in our authentication scheme.  

 

Each time a router generates a session key Ks which 

is used to compute the hash value of its own LSAs with 

symmetric authentication scheme, for example, by using 

Keyed MD5 algorithm. The LSA packet, e.g., (Id, Sqi, Ti, Pli), 

is broadcast into the network but the hash value MACi is kept 

locally, where MACi = H_Ks(Id | Sqi | Ti | Pli). The session key 

will not be disclosed until M subsequent LSAs are signed with 

this session key Ks from this originating router. Note that, the 



Loging LSAl+M 

Loging LSAl 

sequence number is used as the separation for both the LSA 

and the session. If the sequence number in the new LSA is M 

larger than the starting sequence number for the current 

session key, the router will regenerate another session key for 

subsequent new LSAs. In the meantime, the previous session 

key Ks is included in a session key disclosure message 

(SKDM). The SDKM is signed with the originator’s private 

key and broadcast to the entire network. The SKDM is 

concisely represented as (Id, T, Ks, ∑   
i= 
M 
1 (Sqi, MACi), Sgpri 

(P))), where P = H(Id| T| Ks | ∑   
i= 
M 
1 (Sqi, MACi)).   

 

Similar to the concept of credit in our society, we 

adopt the term “credit” to represent the reputation of the 

communication reliability between the originator and the 

receiver.  Initially, each router grants M credits for each router 

in the network except itself. Each receiver will immediately 

trust and log the LSAs if the credit is available for this 

originator. The routing table will be updated as well if needed. 

After accepting one LSA, the receiver will decrease the credit 

associated with the LSA originator by one, until 0. The 

information associated with the LSA will be logged for later 

verification. To reduce the logging size, we store the hash 

value Hvi of the LSA instead of the entire LSA packet. 

Besides, the sequence number, the propagation time δt, and 

the Ng will be recorded into a LSA log table LLT as described 

below,  

            LSA log table LLT (Id, Sq, δt, Hv, Ng)  

 

After M logs have been stored for one originator, the 

receiver will neither trust nor propagate the following LSAs 

claimed to be from the same originator, but the LSA will be 

logged locally.  

 
Once receiving a SKDM, the receiver will verify it with the 

originator’s public key. If successful, the receiver will use the 
session key Ks included in the SKDM to check LSA logs for 
this originator within that session specified in the SKDM. 
Specifically, the receiver first picks up a tuple, e.g., (Id, Sqi, δti, 
Hvi, Ngi) from LLT and key-hashes the Hvi value with the 
session key Ks in the SKDM, then it compares the result with 
the value from the hash of the MACi value associated with the 
same sequence number in the SKDM. If equal, it means no 
change was made during transmit; then, one credit is added 
back and the tuple will be removed from the log table; 
otherwise, the bogus tuple with verification failure will be 
stored in a bogus log table. A bogus LSA log table BLLT has 
the same fields as the regular log table but contains those tuples 
from failed verification. The number of the available credits at 
the end of verification for one particular originator indicates if 
any intrusion against the LSA occurred and how many of the 
originator’s LSAs had been compromised between the 
originator and the receiver. The lower the available credit in the 
end of the verification, the poorer the security of the 
communication channel between the LSA originator and the 
receiver. The credit may not be the same between two 
neighboring routers because one router may have received 
more bogus LSAs from more than one router than its 

neighboring routers. Figure 1 describes an example of session 
key usage and message processing between one originating 
router and one receiver. 

 

 

 

 

 

 

 

 

 

 

 

As we see, the value of M directly affects the 

effectiveness of this authentication mechanism. The smaller 

value could cause more frequent regeneration of the new 

session keys and consume the computing power of the router; 

the larger value may cause the larger log storage in each 

receiver and the bigger delay to detect the security violation of 

the routing packet if exists. Generally speaking, a more trusted 

network is usually configured with a larger M. Besides, the 

network stability also affects the frequency of the generation 

of the session key. The more dynamic the link status change, 

the shorter time the associated routers take to reach the M. 

Thus, the M value can be configured longer in a dynamic 

network environment than in a stable network environment.  

 

The low credit and the bogus LSAs will invoke the 

FIR tracing action. The credit will be added back with the 

same number of reported bogus LSAs as described below. In 

the next section, we will present two practical tracing schemes 

to locate the FIRs.   

B. Tracing the FIR 

From the above, once the routing packets are 

manipulated by the FIRs, the bogus LSAs will be detected by 

the downstream non-faulty routers, called affected routers, 

upon the receipt of the disclosed session key. Since the bogus 

LSAs logs record the neighboring previous routers who sent 

the bogus LSAs, we are able to trace back the faulty origin 

based on the historical log information. The traceback of the 

FIRs is accomplished by comparing the bogus LSA log tables 

from two neighboring affected routers. The discrepancy from 

the comparison indicates the happening of the LSA 

manipulation. Because only the FIR manipulates the routing 

packets passing by, the discrepancy also indicates the location 

of a disruptive link. Based on such an essential idea, we 

propose two tracing schemes, centralized and decentralized, to 

fit to different system environments.  

 

 

Signed with Private Key 

Authed with Ks 
LSAl+M 

Message 

SKDM  

Start Verification  

Authed with Ks LSAl 

Originator Receiver 

Figure 1 An example of session key usage and message processing 



1) Cemtralized Tracing Scheme 

 

 We assume there is a centralized management system 

(CMS) e.g., central intrusion detection system, to conduct the 

tracing activity in the network. Once detecting the bogus 

LSAs, the router will report the bogus log table to the CMS. 

The bogus log table is transferred via a secure channel 

between the sending router and the CMS. To simplify our 

discussion, we assume that the LSAs from only one originator 

are reported.  

 

With the knowledge of the entire network topology 

and the routers submitting the bogus log tables, the CMS is 

able to draw an affected network topology for one specific 

originator. We define the affected network topology (ANT) 

G1 consisting of the bogus-reporting routers and represent it 

with G1(V1, E1), where G1 Є  G.  With such collected 

information, the CMS can start the traceback of the FIRs. 

Figure 2 shows a generic procedure and the centralized tracing 

algorithm.   

 

The function checkPreviousRouter() defined in 

Figure 2 is used to check if one bogus LSA reported from one 

router is able to find a matched one from its previous router. 

Line (1.5) further checks if  the matched bogus LSA is in 

order and no loop exists between these two routers because a 

FIR may want to hide from being detected by modifying the 

receiving timestamp or misleading the propagation direction 

of the bogus LSA.  The correctness of this tracing idea is 

present in the appendix section. 

 

Ctrace() is the centralized algorithm to trace the FIRs. 

The CMS conducts the comparison with the received 

neighbors’ bogus log tables by starting any affected router, 

and goes through all the affected routers in the ANT. In the 

tracing algorithm, we define the disruptive value associated 

with each link to locate the disruptive link and measure the 

severity against the reliability of the LSA relaying between 

two associated neighboring routers. Those values are 

initialized to 0. As we can see, the disruptive value in the 

algorithm reflects how much difference exists between two 

neighboring routers. The non-FIR routers always forward the 

bogus routing packets unchanged; thus there should be no 

discrepancy between the two bogus log tables from the two 

associated non-FIRs, and the result of the disruptive value 

over that link will be 0. Only the disruptive link connecting to 

the FIR(s) shows the inconsistent LSA info or untrue log 

information. Therefore, the disruptive value will be increased 

by 1 if there exists one different LSA between two associated 

neighboring routers. Thus, the link with the disruptive value 

larger than 1 is the disruptive link. Section C will discuss how 

to measure the link severity with the disruptive values. The 

collusive adjacent FIRs, which hide the discrepancy between 

them, can be treated as a single FIR. Its eventual connection 

with a non-FIR will disclose the discrepancy and the discovery 

of the disruptive link certainly isolate the adjacent FIRs. 

 

While most of the time, the FIRs will compromise the 

LSAs from more than one originator, it is not necessary to 

submit all the logs for those affected originators because much 

overlap will exist in the tracing results - the location of the 

disruptive links. Therefore, the log information associated 

with the small number of affected originators is enough to 

locate the disruptive links and isolate the FIRs. We assume 

central IDS will determine which originator’s bogus LSAs are 

submitted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2    Centralized Tracing Algorithm 

 

Theorem 2 (Complexity) In the worst case, the runtime of the 

verification in centralized tracing algorithm is 

Θ(|E|+|V1|*M*logM) if binary search algorithm is used, where 

E is the links of the entire network topology and the |V1| is the 

number of the router reporting the bogus LSAs. 

 

 

1. Generic Verification Procedure 
 

Assumption: 
Tp(Id, s,t,H,Neig): a bad LSA tuple to be verified,  

 pTab(1..k2): the bogus log table from the previous router  
                     identified by Tp.Neig, 1<= k2 <= M 

 

//The function check if a matched bad LSA is found in the  
//previous router and both tuples are in order 

Function CheckPreviousRoute (Tp, pTab)  

 
 (1.1)  Search pTab through the combined index (Tp.id+Tp.s)  

 (1.2)  IF Tp is in pTab 

 (1.3)  THEN  
 (1.4)      Let (pTp represents the matched tuple in pTab) 

 (1.5)      IF Tp.t is larger than pTp.t AND Tp.H is equal to pTp.H  

 (1.6)                   AND Tp.Neig <> pTp.Neig   //check the matched LSA            
                                                                          // with no loop and in order 

 (1.7)      THEN return 0     //A matched is found in the previous router 

 (1.8)  RETURN 1              //No matched is found in the previous router 
 

2. Centralized Tracing Algorithm 
 

Assumption: 
G1(V1, E1): the affected router topology   

e(i,j).disruptive : defined to measure the disruptiveness of the link 
                             between router i and j 

BLLT(1..|V1|); the reported bogus LSA log tables 

 
//The procedure is defined to trace the disruptive links connected with  

//the FIRs 

Procedure Ctrace 
 
(2.1) FOR any link e(i,j) in E 

(2.2)      e(i,j).disruptive  = 0; 

(2.3) ENDFOR 

(2.4) FOR any affected router i Є V1 

(2.5)        FOR (any tuple tp from BLLT(i))  

(2.6)             IF (tp.Neig Є V1) 
(2.7)             THEN 

(2.8)                  e(i, tp.Neig).disruptive  

                                 = + CheckPreviousRouter(tp, BLLT(tp.Neig);                                                      
(2.9)             ELSE e(i, tp.Neig).disruptive ++ 

(2.10)           ENDIF 

(2.11)      ENDFOR  

(2.12)ENDFOR 
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Proof: 

The runtime in checkPreviousRouter() is dependent 

on the size of the log table in the previous router. In the worst 

case, the previous router report up to M bogus LSAs. With the 

binary search technique, the runtime for 

checkPreviousRouter() is Θ(logM). From the algorithm in 

Figure 2, the runtime of the Ctrace()procedure is dependent on 

the size of the affected network topology and the size of the 

reported bogus LSA log table. Assume in the worst case, the 

size for every bogus LSA log table is M. The runtime for the 

initialization of the disruptive value associated with each link 

from (2.1) to (2.3) is |E|.  The runtime to conduct the 

comparison between neighboring log tables is 

Θ(|V1|*M*logM). Thus, in the worst case, the total runtime of 

the centralized tracing algorithm is Θ(|E|+|V1|*M*logM).  

□ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Source router       Affected router       Non-affected router 

     

                      2 
  Disruptive link           disruptive value 

 
   Figure 3      An example of ANT 

 

 
As an example in Figure 3, router 4 is a FIR and it 

compromises two LSAs from router 1. Four fields of each tuple 
of the compromised LSA, (Sq, δt, Hv, Ng) are displayed 
orderly in the squares. After the session key is disclosed by 
router 1, routers 5, 6, and 7 detect the bogus LSA log and 
report to the CMS. In the meantime, assume FIR router 4 also 
reports a bogus LSA log in order to shift the blame away. If the 
CMS starts from the bogus log table from router 7, the matched 
bogus LSAs are found in the router 5 and 6. Upon continuous 
tracing from the routers 5 and 6, the disruptive values over 
those links are kept as 0 because the FIR router 4 reports the 
matched bogus LSA info. However, FIR 4 cannot hide the 
difference of the log tables between itself and its previous 
router 2 because router 2 doesnot report any bogus LSA. 

Eventually, the tracing algorithm returns finding one disruptive 
link between router 2 and 4, and the disruptive value is 2. 

2) Decentralized Tracing Scheme 

In some situation where the CMS is not available 

such as network congestion or disaster, we propose a 

decentralized scheme to trace back the FIRs. Different from 

the centralized scheme that every affected router reports its 

bogus LSA log to a CMS, in the decentralized scheme, every 

affected router asks its previous routers to send their bogus 

LSA log information in order to check if its links with its 

neighboring routers are disruptive or not. However, the FIRs 

may send back the faulty information in order to hide its 

malicious behaviors. Thus, to detect the false evidence from 

its faulty previous router, the affected router also queries the 

evidence from the previous routers of its previous router to 

prove that the information from its previous routers is not 

false. In this section, we first present a decentralized solution 

under the assumption of no collusive neighboring FIRs, then 

discuss the generic idea into the scenario with collusive FIRs.   

 

We called an affected router as a requestor which 

requests the innocent evidence from its previous; the 

responder is a router which receives a request of innocent 

evidence from its downstream affected routers. While tracing 

the FIR, a router could be either a requestor or a responder. 

The evidence information has the same fields of the bogus 

LSA table and contains the tuples with the same sequence 

numbers as those in the request. To simplify our discussion, 

we assume only one originator’s LSAs are compromised 

though the mechanism can be easily extended to the scenario 

with multiple originators.  We assume vTab is the table of the 

bogus LSA from the requestor and the rTab is the table of the 

bogus LSAs from the responder corresponding to the request. 

Below shows the detailed query process,   

 

Step 1:   The requester sends a request (Id,2) to its previous 

router where the bogus LSAs in vTab are sent  

                  from and sets the expiration time.  

 

Step 2:   If the responder has all evidence approval associated 

with this Id from its previous routers, it goes to step 

4; otherwise, it generates a new request with (Id, 1) 

to its previous routers for the required info and set 

the expiration time.  

 

Step 3:   If the router is the last router asked for the approval  

                 information, it sends back  

its signed evidence information (rTab) associated 

with this id. The evident packet is described as 

below,  

                              (rTab, Sgpri (MD5(rTab)) 

 

Step 4:    If the responder has all evidence information, it will 

append its bogus LSA table associated with the 

query to the list along with the signature and send 

back to the requestor.  
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2 (1, 1, hv1’, 1) 

(2, 1, hv2’, 1) 
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(2, 4, hv2’, 4) 



              
Step 5:   The final requester verifies the status of the link by 

running the verification algorithm detailed in 

Figure 3. The result of the disruptive value from 

the algorithm indicates if this link is disruptive or 

not.    

 

One requester might receive the bogus LSAs from its 

multiple previous routers. It will split its vTab based on the 

field Ng and send the splitted vTabs to their corresponding 

previous routers in Step 1. Any received response will be 

verified by examining the signatures. If verification fails, the 

response will be discarded and a disruptive link shall be 

announced. The disruptive value associated with this link is 

increased with the number of bogus packets through this link. 

If the waiting time expires, the intermediate responder sets up 

the reason for this link where no response is received or the 

response fails in verification and wraps the received evidence 

information and send back to its requester in the same format 

as in Step 3.  

 

If the responder is a non-affected router, then it will 

send back its response with empty log table signed with its 

private key and announce the disruptive link; if the responder 

is an affected router too and it does not has such innocence 

approval information from its UR yet, it will hold the request 

until it receives the response from its previous routers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  Figure 4  Decentralized Tracing Algorithm   

 

Figure 4 shows the algorithm that the requester runs 

to determine if the link with the previous router is disruptive 

and what the disruptive value is based on the collected 

information form the responders and their previous routers. If 

the requester finds the discrepancy in the bogus LSA logs with 

the responder’s, then definitely, something disruptive 

happened in the responder if the requester is good router. 

However, the discrepancy may be found between its responder 

and the responder’s previous routers; then apparently either 

the responder or those previous routers are faulty. The request 

will first suspect the responder and watch the further reaction 

from the responder. If the responder has or will soon announce 

the disruptive link with the specific disruptive values, the 

requester will go ahead to remove the same disruptive value 

from its result.  The disruptive values from the algorithm will 

be used to measure the confidence for the link as described in 

the next section.  

 

Theorem 2 (Complexity) In the worst case, the runtime of the 

decentralized verification algorithm in the requester is 

between Θ(M*logM) and Θ (Mlog
3
M) if binary search 

algorithm is used.   

 

Proof: 

The runtime in checkPreviousRouter(0 is dependent 

on the size of the log table in the previous router. In the worst 

case, the requester received up to M bogus LSAs. From 

theorem 1, with the binary search technique, the runtime for 

checkPreviousRouter() is Θ(logM). On one hand, if no 

matched is found between the requester’s bogus LSA log table 

vTab and the responder’s bogus LSA log table rTab, then the 

lower bound of the runtime of the verification algorithm is Θ 

(M*logM). On the other hand, if found all matched, then the 

algorithm will continue to check if the tuple from rTab is 

proved from the responder’s previous router. In the worst case, 

the checking of the existence of the bogus log table of the 

responder’s previous router in line (4.9) and the running of the 

verification of the previous router’s tuple against the evidence 

approval in (4.12) are all Θ (logM). Thus, the upper bound of 

the decentralized verification algorithm is Θ (Mlog
3
M).  

□ 

   

As an example, consider figure 2 with the same 

assumption as that in section 3.2,1. Among them, router 4 is a 

faulty router. It manipulates two LSAs from router 1 and 

pollutes the routing tables in routers 5, 6, and 7. The squares 

attached in each affected router show the bogus log table 

associated with the originating router 1.  Assume router 5 

sends a request to router 4. If Router 4 pretends to be innocent, 

it has to announce the disruptive link between itself and router 

2 in order to claim its innocence to router 5. Once the link e(2, 

4) is known to the entire network, router 2 will not send the 

LSAs to router 4 via this link. As a result, the following LSA 

propagation originated from router 1 would be immune from 

the manipulation from the FIR 4.  

 
 In the above, we assume that there are no collusive 

FIRs and each FIR behaves independently. When two or more 
collusive FIRs are present in the network, they are able to 
collaborate and the faulty responder can present its bogus LSA 

Assume: 
vTab:  the bogus log table from the requestor i 

eTab(1..k1): the evidence bogus log tables from previous routers of the 

responder j 
rTab: the bogus log table from the responder j 

 

 Function DTrace () 
 

(4.1)       Initial:  e(i,j).disruptive = 0; 

 
(4.2)        FOR (any tuple tp from vTab)  

(4.3)                IF CheckPreviousRouter(tp, rTab) == 1 

(4.4)                THEN   
(4.5)                     e(i,j).disruptive ++;   

(4.6)                 ELSE 

(4.7)                      LET tp1 is the matched tuple in rTab 
(4.8)                      LET z = tp1.neig  

(4.9)                      IF (eTab(z) exists)   

(4.10)                    THEN  
(4.11)                            LET aTab(z) is the log table for innocence   

                                             approval from router z 

(4.12)                            e(i,j).disruptive = disruptive +  
                                                            CheckPreviousRouter(tp1, eTab(z)) 

(4.13)                    ELSE 

(4.14)                            e(i,j).disruptive ++ 
(4.15)                    ENDIF 

(4.16)               ENDIF 

(4.17)       ENDFOR 



logs with the false evident information from its collusive FIR 
partners to the requester, thus hide itself or the associated 
disruptive links from being discovered. To thwart the collusive 
FIR attack, we still can leverage the generic idea of locating the 
disruptive link through the comparison of the bogus LSA logs 
between neighboring affected routers. Instead of collecting the 
evidence information from the routers one-hop away from the 
responder, we can extend the query process to collect the 
evidence information from those routers k hops away from the 
responder, where k is the upper-bound number of collusive 
FIRs in the network, and check if those evident information can 
support the innocence of the responder through the same 
method described in the above. This would, however, 
substantiately increase the cost in the communication and 
verification. Some optimization on our original approach can 
be taken to reduce such cost. One of the ideas is to first collect 
the bogus LSA propagation tree k-hop away from the 
responder, then query the routers in the tree with the binary 
searching method instead of collecting the evident approval 
from all routers in the tree; another one is that we may 
propagate the query to the routes k-hop away from the 
responder and ask them to send back the comparison results 
instead of the entire bogus LSA table. 

C. The Severity Evaluation of the Disruptive Links 

 

A routing packet could be changed within the 

transmit due to various factors, some are malicious and 

intentional, but other are inadvertently and temporary. In real 

network, the occasional bad network situation such as network 

congestion or link noise could lead to the rare and very mild 

packet discrepancy. A straight removal of such disruptive 

links may lead to the false alarm. Thus, it may not be proper to 

remove the link immediately without further investigation, 

especially in a loosely connected network. Instead, it would be 

better to acquire the severity of the disruptive link and 

determine if a link removal is necessary.  

 

The disruptive value enables measuring the severity 

of the disruptive link and the confidence of the reliability of 

LSA relaying over this link. We use the confidence value to 

describe the severity of the disruptive link and it can be 

represented as followed,  

 

                                  d 

ConfidenceValue = 100% -   
                                                 N 
Where, d is the disruptive value associated with this link and 

N is the number of LSAs received from this disruptive link. 

  

Assume a large portion of the LSA traffic is through 

one disruptive link. On one hand, if the confidence value is 

very close to 100%, then it is reasonable to monitor the link 

further prior to making any decision. On the other hand, if the 

confidence value is equal to 0, it means every LSA passing 

through this link is manipulated, it may be reasonable to 

remove this link to avoid more negative impact on the network 

routing. How to handle the disruptive link with less 100% 

confidence value is out of the scope of this paper but will be in 

our future research.  

 

Though link state routing protocol is well known to its self 

stabilization, the FIRs are able to modify the LSAs at their  

wills and thus seriously impact the network stability, even if 

the source router notices the change of the LSA and fights 

back with updated LSA. The confidence values help the 

routers to measure the severity of the disruptive link and 

determine if a disruptive link shall be kept or removed. By 

doing that, we achieve the goal of removing the disruptive link 

as well as voiding the possible false alarms. The removal of 

the disruptive link requires table changes in each routing table, 

but it reduces the possibility for the FIRs to pollute the rest of 

the network further and thus achieves more stable network 

environment. 

 

IV. COST ANALYSIS 

• Memory Requirements  

 
It is required to allocate the memory in each router in 

the network to store the LSA logs for the delayed verification 

until the LSA originators reveal their session keys. There are 

totally 5 fields in the log table as described in section III-A. 

The lengths of MAC from either MD5 or KMD5 are 128 bits; 

It is reasonable to say the range of the timestamp is less 30 

minutes / 1800 second, then the size of the propagation 

timestamp is 11 bits; the originator’s and neighbor’s address 

can be represented with the IP address in 4 bytes / 32 bits, and 

the sequence number is 4 bytes/32 bits in [4]. Thus, each tuple 

of the log table requires 235 bits, around 30 bytes. Each 

originator will send up to M LSAs before it reveals its session 

key which is expected to take a very small time to propagate 

into the entire network. Note that, the bogus LSA log can be 

stored in the hard disk in each router so that no memory is 

required for the bogus LSA log. Overall, at least ( M ) tuples 

have to be stored for each LSA originator. Let N represent the 

number of the routers in the network. Then, in each router the 

total memory requirement in our proposal is O(N*M*30). As 

an example, in a large and stable network with 500 routers, 

assume M is 50, the total memory requirement in each router 

in such scenario is around 750 Kbytes which is much small 

under the fact that the 512 Mbytes and even Gigabytes 

memory are often used in network routers presently.   

 

• Communication Cost 
 

In the centralized scheme, the communication cost 

depends on the traffic from the each affected router to the 

CMS. As described in section III-B.1, all fields except the 

MAC of the LSA are needed to be sent to the CMS, then the 

size of each tuple is 30 bytes. In the worst case when one 

router receive all bogus LSAs, then up to M tuples associated 

with each individual originator will be submitted to the central 

CMS. As discussed in section 3.2.1, it may not be necessary to 

submit the bogus LSA for all originators in order to locate the 



FIRs in the network because the results – the location of the 

disruptive links could be largely duplicated. We assume 

central IDS will choose the log information associated with up 

to k originators to be submitted. Then, the total size of 

submission of the log table from each router to the central IDS 

is O(k*M*30).  In the worst case where the existence of the 

FIRs compromise all LSAs, each router in the network will 

submit its log table for k originators, the network will see a 

total traffic with O(N*k*M*30) though in reality, the 

distributed submission will require much less network 

bandwidth. As an example, let the values of M and N as the 

above worst and pick k as 10, the total traffic to trace the FIRs 

is 7.5 Mbytes in the worst case.  Such traffic is quite trivial in 

given the fact that 100BaseT and Gigabyte Ethernet are widely 

deployed in the current network.   

 

In the decentralized scheme under the assumption of 

no collusive FIRs, One of the proprieties in our tracing 

mechanism is localized, which means the exchange of the 

bogus LSA log tables between the requesters and the 

responders will not flood the entire network where some areas 

may not see the bogus LSAs. To conduct the tracing, only two 

types of messages are sent over the link, one is the request and 

the other is the response.  The same fields of bogus LSA 

messages are exchanged as those in centralized scheme. In the 

worst case all received LSAs are bogus from one UR, 

therefore, the size of one request will be 30*M. It is obvious 

that the response from the responder will include up to 30*M 

bytes for either the matched log table or the evidence approval 

log tables. Overall, totally 90*M bytes log information is 

passed by over one link. In the worst case when the FIRs are 

so strong that they manipulates all LSAs passing by, then all 

routers in the network will conduct the query for all other 

originators. Thus, the overall communication cost in network 

is O((N-1)*90*M). As an example, let’s pick the same values 

of N and M as those in the above, the total traffic to trace the 

FIRs over one link is 2.25 Mbytes.   
 

V. RELATED WORK 

Recently quite a few researches have being done on 

securing link state routing against malicious operations and 

discovering the faulty origin after the violation of the routing 

and forwarding services.  

 

The earliest security work on link state routing 

protocol can be traced back to Perlman’s seminal work[8]. In 

her PhD thesis[8], Perlman proposed a robust flooding routing 

mechanism under the Bayzantine environment. Each packet is 

signed with the originator’s private key. To guarantee such 

robustness, some cost must be paid, mainly due to the 

expenses from the public key security, as described in [13].   

 

Murphy etc [9] design and implement the digital 

signature based protection for OSPF. The identification and 

the sensitive fields in routing packets are authenticated with 

the source router’s private key prior to be sent out. However, 

recognizing the high expense with the digital signature in each 

routing packet, they suggested either adding the extra 

hardware or delay the verification of the signature in LSA 

messages in order to reduce the cost.  

 

Addressing the cost of public key security in link 

state routing, Hauser, etc [10] present an efficient 

authentication mechanism with one-way hash chain function 

which was originally developed by Merkle, Lamport [6]. By 

hashing the time and a secrete number, each router generates 

two distinct hash chains with n distinct values for two link 

states, UP and DOWN, separately. The first LSA is the last 

hash value in the chains signed with the originator’s private 

key. Without knowing the secret number, another party can 

not derive the rest of hash values in the chains. However, the 

subsequent hash values representing the latest link state from 

the originator can be verified with the previously received 

hash value and the synchronized time interval. This 

mechanism is able to reduce the computation cost in 

verification with the order of magnitude cheaper, but as 

mentioned by the author, some limitations such as 

authentication for multiple-values link remains. 

 

To solve the limitations mentioned in [10], Cheung 

[7] proposed an improved hash-chain authentication approach 

to efficiently protect the link state routing messages. After 

detecting the compromise, a bad routing update advertisement 

(BURA) including one bogus LSA with the smallest sequence 

number or largest checksum (s) is generated and signed with 

its private key, then flooded into the entire network. Each 

router will form a bad LSA propagation graph with the 

collected BURAs and run a DFS algorithm to search the faulty 

routers. Though his proposal is similar to our distributed 

scheme, our approach presents some advantages. One of them 

is the localized data exchange. The data exchange in our 

approach mainly happens in the affected routers thus avoid the 

global impact due to the flooding; besides, our proposal has 

the capability of acquiring the confidence values to measure 

the severity of the disruptive link so that we’re able to reduce 

the possibility of false alarms.   

 

Bradley, etc [11] propose a distributed monitoring 

mechanism, WATCHER, where flow counters in each router 

are created to record the traffic from each router through each 

of its neighboring routers. Within the validation phase, each 

router can detect the packet dropping or misroute through 

comparing with the counters from its neighboring routers.  If 

the discrepancy is detected with the router’s neighboring 

router(s), a diagnostic process further is proceeded to discover 

the faulty origin. However, WATCHER suffers variant 

limitation as detailed in [13]. More recently, Mizrak, etc [14] 

formalize the specification of the traffic analysis mechanism 

and propose two detection protocols with the difference in 

accuracy, completeness, and overhead. Though showing some 

advantages over WATCHER, such as cost reduction of 

monitoring storage in each router, it is unclear that how the 



detection protocols countermeasure the compromised routers 

in the network.   

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a novel mechanism 

combining security technique and intrusion detection to 

address the challenges from the FIRs. In our solution, we 

introduce an efficient authentication mechanism for link state 

routing protocol to protect the LSAs and ensure the LSA 

manipulation caused by the FIR is detectable and traceable. 

Then two practical tracing schemes are developed to trace the 

location of FIRs with the help from the historical LSA log 

information. Our analysis shows that memory requirement in 

our proposed mechanism is small and the communication cost 

is acceptable.   

 

We can identify several future work. In the first, we 

would like to do formal analysis of the effectiveness of this 

mechanism in order to better understand its strength and 

weakness. Second, we would like to modify our mechanism 

into infrastructureless and no central administrative mobile ad 

hoc network where every node is roaming and self-organized. 

We believe that the properties built in our decentralized 

tracing scheme such as distributed and localized make it 

suitable to work in such dynamic network environment. 

Besides, the confidence value is able to give the flexibility in 

measuring the trust under more complicated wireless network 

environment.  
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APPENDIX  

CORRECTNESS AND COMPLETENESS OF THE TRACING SCHEME 

 

Theorem 3 (Correctness) We say both centralized and 

decentralized tracing schemes are correct if one link is 

reported as a disruptive link; it is actually a disruptive link 

connecting with at least one FIR.  

 

 

 

Proof: 

 As we see, both schemes call Procedure 

checkPreviousRouter() which returns the discrepancy in the 

bogus LSA log tables between two neighboring routers. The 

non-FIR always honestly forwards the LSAs with no change 

to the next routers; thus, if there exists a discrepancy within 

the comparison, then either the previous router lies or the 

current router lies or both of two routers lies about in the 

information associated with  the bogus LSA. In either case, the 

link is connecting to a FIR, thus is a disruptive link. This 

procedure deduces the disruptive link from the reasons below,  

� Exist mismatched LSA. If the procedure cannot find a 

matched tuple with the same sequence number from the 

previous router, it implies either the router itself lies about 

the bogus LSA or the previous router sent the bogus LSA 

but denies its misbehavior. Either case is associated with 

at least one FIR; 

� LSA matched but disorder. If a matched LSA is found 

in the bogus log table from the previous router, with  the 

assumption of a network clock synchronization, the 

receiving timer in one affected router should be larger 

than that in its previous router(s). However, if a disorder 

in the matched LSA is found, it could be that the present 

router lies about the timer in order to shift the blame away 

or the previous router intends to deny the sending of the 

bogus LSA at the earlier time. Either case is associated 

with at least one FIR; 

� Detect the multiple-time LSA manipulation. Since one 

LSA may pass through more than one FIR, multiple-

manipulation could happen within the LSA transmit. One 

middle FIR may manipulate the LSA again but pretend 

itself a victim as well. By comparing the neighbor’s hash 

of LSA with the FIR’s, the FIR’s pretense will be 

disclosed.   



� Detect the looparound in a disruptive link. The 

looparound could happen if the FIR reports the same 

bogus information but pretends the bogus LSAs 

originated from its next direct victim; thus a loop is 

formed. Criteria a), b), and c) above will not detect such a 

security violation. Only the comparison of the previous 

router identification is able to disclose such a lie.  

□ 

 

Theorem 4 (Completeness) We say both centralized and 

decentralized tracing schemes are complete if the bogus LSAs 

are detected; at least one disruptive link connected with one 

FIR is discovered with the schemes.   

 

Proof: 

 We prove this statement in centralized and 

decentralized schemes separately.  

(1) In a centralized scheme, one FIR has three choices for the 

reporting activity and we discuss them below,  

� First, the FIR acts as a non-affected router and does not 

report any bogus LSA. If the neighboring router of this 

FIR is an affected router and reports the bogus log 

information to the CMS, the neighboring comparison of 

the bogus log table will indicate that the FIR was the fault 

originator. If the neighboring router is FIR as well and 

intends to hide the misbehavior, the assistance will 

eventually be disclosed by the comparison with the bogus 

log table from the non-FIR and thus lead to discovering a 

disruptive link.   

� Second, the FIR reports the false bogus LSA log 

information. In this case, the discrepancy between the FIR 

and its previous router(s) and the discrepancy between the 

FIR and its polluted victims will be found after the CMS 

conducts the neighboring comparison of the bogus LSA 

log info. In other words, at this case, at least two 

disruptive links connected with the FIR will be found 

through the tracing algorithm.  

� In the third, the FIR reports the correct bogus LSA log 

information. Then a disruptive link will certainly be 

disclosed once the comparison between the FIR and its 

previous router indicated in the bogus LSA log.  

 

(2) In the decentralized scheme, as we assume there are no 

collusive FIRs. After receiving a query for the evidence 

information, one FIR also has the following three choices,  

� send back its log table and the innocence approval 

information from its URs honestly to the requester; 

certainly the requester will find out the descrpency in the 

bogus LSA tuples between itself and the FIRs as the 

responder and mark the link as a disruptive link; 

� ignore the request. If the FIR ignore the request, the 

affected router timeouts the request and will go ahead 

announce the disruptive link; 

� or send back the response with false information. If the 

FIR decides to send a response with the false log 

information, it can only pretend it received the same 

bogus LSAs but will not be able to modify the evidence 

log tables from its previous routers because the evidence 

information is signed with the private key of each sender. 

The comparison between the log table from the FIRs and 

the evidence log tables as shown from step (4.8) to step 

(4.15) in Figure 4 will eventually disclose the disruptive 

link between the request and the FIR responder. Of 

course, the FIR may want to shift the fault origination by 

pretending not to receive from its UR, but it is required to 

announce the disruptive link between the FIR and its 

previous router. That also achieves the purpose of 

removing the disruptive link connecting with this FIR.   

Overall, no matter what choice the FIR selects, one disruptive 

link associated with this FIR will be reported. Thus the 

statement is proved.  

□ 

 


