
Kalinahia: Considering Quality of Service to Design
and Execute Distributed Multimedia Applications

Sophie Laplace Marc Dalmau Philippe Roose
LIUPPA - IUT de Bayonne

Université de Pau et des Pays de l’Adour
Bayonne, France

Laplace@iutbayonne.univ-pau.fr Marc.Dalmau@ieee.org Roose@iutbayonne.univ-pau.fr

Abstract— One of the current challenges of Information Systems
is to ensure semi-structured data transmission, such as
multimedia data, in a distributed and pervasive environment.
Information Sytems must then guarantee users a quality of
service ensuring data accessibility whatever the hardware and
network conditions may be. They must also guarantee
information coherence and particularly intelligibility that
imposes a personalization of the service. Within this framework,
we propose a design method based on original models of
multimedia applications and quality of service. We also define a
supervision platform Kalinahia using a user centered heuristic
allowing us to define at any moment which configuration of
software components constitutes the best answers to users’ wishes
in terms of service.

Keywords-quality of service;adaptation; design; multimedia;
distributed application; reconfiguration; components.

I.I. INTRODUCTION

One of the challenges of computing is to make more
multimedia information and services available. The
development of mobile devices and the widespread popularity
of personal computers have created new needs for users
wanting to have the same applications on their laptop and
mobile peripherals. This ubiquity of applications induces
strong variations of services and moreover discontinuities
appear when the context of the physical support change.
Simply providing a service is not enough, it is the quality of
service which is essential for commercial success, particularly
in the multimedia industry. Inevitably, people will not use
mobile multimedia applications if they do not have a good
quality of service – QoS. Indeed it is not possible to improve
the context and also users need to have constant QoS so we
chose to adapt applications to their context, whatever it is:
hardware (network, etc.), environmental (brightness, etc.) or
even end-user (special needs, languages, etc.). So, we propose
to design an execution support allowing to adapt dynamically
multimedia applications distributed on the Internet to the
variations of their context in order to provide and maintain the
best QoS possible to each individual user.

In this article, we will first compare our question to some
relevant pieces of work. Then we will produce Kalinahia –
Kalitatea Nahia, to seek quality in Basque language – a model
of execution platform allowing us to optimize QoS and we

present the most significant results obtained by our simulator.

II.II.STATE OF THE ART

QoS was introduced initially in networks to describe the
quality of the service provided by the communication systems
to the applications. Then, its meaning extended [10] [19] from
the purely technical aspects to concerns close to the user.

Thus this quality relies on the execution context of the
application [16] [18] [1], in particular when this context varies
in an unpredictable way. There are then two means of ensuring
certain QoS to the user: to adapt the context to the application,
or at least to guarantee the context, and to adapt the
application to the context, including the user. However it is
not always possible to work on the context especially as we
include users. If we take into account the application
adaptation from its design to its completion, the user will be
able to get the best possible QoS.

We chose a field of study which seems most representative
of these problems: distributed multimedia applications on
Internet. Indeed, they are characterized [9] at the same time by
high requirements for quality, a great sensitivity to the context
and the strong variability of the context itself. The solutions
usually suggested to maintain multimedia information systems
with sufficient QoS in a variable context use either the
resource allocation or a dynamic adaptation to the context [8].

Moreover, middleware set an effective tool to maintain
certain QoS. For example, CAliF Multimedia [6] provides a
middleware for cooperative multimedia applications by using
the network resource allocation and the adaptation of the
application needed to the available resources. The middleware
Argilos [13] allows a hierarchical control of QoS by using not
only the reservation of resources but also the configuration of
components. JQoS [21] proposes an application of
videoconference on Internet with adaptation of multimedia
flow depending on the state of system QoS performances.
Lastly, QuO [17] [20] allows QoS specification and
management in applications built up with components: the
platform and the application are adapted.

In the interest of making the user the focus of QoS
concerns, we propose a middleware model enabling us to
adapt dynamically the distributed multimedia applications to

mailto:Laplace@iutbayonne.univ-pau.fr
mailto:Roose@iutbayonne.univ-pau.fr

their execution context in order to maintain optimal QoS for
users. This middleware adds or removes components and
reconfigures the component assemblies.

III.III.PLATFORM MODELING

We introduce Kalinahia a model of execution platform
which deals in a distributed way with the deployment of the
application as well as its supervision. We propose that the
platform dynamically reconfigures the application by adapting
its composition and its implementation. With this intention,
each component of the operative part - components and flow -
produced events of reconfiguration for the platform as soon as
it detects a variation of its execution context. When a
reconfiguration is necessary, the platform must propose a
configuration offering better QoS. It is thus a question, “a
priori”, of finding an optimal assembly of components.
However this problem is known to be NP-complete in the
general case [7] [11].

A.A. QoS and Application Models

We define QoS as the adequacy between the service
expected by the user and the service provided so we model it
more simply than in the general context of distributed
applications [5] because only the characteristics of multimedia
application which matter are the ones the user can directly
perceive. We use two hierarchical levels [8], characteristics —
simple QoS parameters — and criteria which gather
characteristics according to their dependance — contextual
criterion Co — or not — intrinsic criterion In — with respect
to the context. We use a rating for each of the criteria to
represent QoS of an entity: 0 for a crippling quality for the
user and 1 for an optimal quality. So we chose as a model of
QoS assessment the function which gives to QoS the value of
the worst criterion like in the utility in microeconomics [15]
[4].

>From the structural point of view, the application is built
up according to the user’s vision of the service provided - the
Group. Each service is composed of various functionalities -
the Sub-groups. The latter consist of software, hardware or
human components, connected by information flows. The
software components are encapsulated in Elementary
Processors while the data flows are carried by Conducts [3].

In the general case of QoS evaluation, a characteristic is
compared with the user’s wishes so as to give a mark to it. The
user will have attributed to the characteristics a relative weight
which makes it possible to define Sub-Group QoS by a
weighted average of the characteristics’ marks. The QoS
marks of application and Groups are obtained by similar
averages.

B.B. Algorithmic Complexity

Based on the fact that it was not possible to hope that the
platform proposes the optimal configuration, we chose an
approach taking into account the incidence of the
reorganizations on the perception the user of the offered
service has. Indeed, the user should not have to tolerate abrupt
variations in the way the service is presented. Thus we
proposed to implement a better configuration whose service is

as close as possible to the configuration in the course of
execution. We defined the proximity of service as follows:
Two configurations have nearby services where the user does
not notice a change from one to the other.

We can say that two configurations provide a close service
if and only if their marks of the intrinsic and contextual
criteria are close, which implies that the marks of the QoS are
close. Because intrinsic criterion variation is more perceptible
by users, platform will begin its research with the evaluation
of the configurations having the same mark of intrinsic
criterion as the current configuration. Thus it will initially only
modify the mark of the contextual criterion.

If the new configuration is not optimal, the platform will
be informed by new events of reconfiguration, which will
enable to improve the QoS by a new research and thus to
reach gradually the best configuration. Fig. 1 illustrates this
principle of the iterative search for optimum.

The search for a better configuration is done by
successively studying finite sets of configurations having close
services called families. Each family provides a service of
comparable nature and has the same mark of intrinsic
criterion: thus they only differ by their adaptability to the
context.

To be effective, the platform must target the modifications
to be carried out on the application. In so far as each
component of the operative part of the application is likely to
generate events of reconfiguration, the information obtained
by the platform is very precise and allows it to know which
application components are problematic and which entities
must be modified or removed. Thus, at first the platform will
be able to restrict the scope of the study to the configurations,
which differ from that in the course of execution only by the
component at the origin of the reconfiguration event. However
when this approach does not give any solution, we face the
issue of the deployment ex-nihilo of a Sub-Group or a Group.

[A l l t h e s e t s
w i t h s a m e I n
h a v e n o t
b e e n s t u d i e d]

[Q o S w o r s t
o r e q u a l]

D e t e r m i n a t i o n o f c o n f i g u r a t i o n
s e t s w i t h s a m e I n

C h o i c e o f o n e c o n f i g u r a t i o n s e t

E v a l u a t i o n o f t h e c o n f i g u r a t i o n s o f
t h i s s e t

D e t e r m i n a t i o n o f c o n f i g u r a t i o n
s e t s w i t h d i s t i n c t I n

[b e t t e r Q o S]

F i r s t r e c o n f i g u r a t i o n
e v e n t

R e c o n f i g u r a t i o n

R e c o n f i g u r a t i o n
e v e n t

W a i t i n gE n d o f a p p l i c a t i o n
e x e c u t i o n

Figure1. Principle of the reconfigurations by the Kalinahia platform.

The reconfiguration events can result from passive or
active measurements on the components and flows so as to
detect the possible falls or improvements of QoS. They can
also be transmitted by components called spies agents that the
application designer introduced to collect non-measurable
contextual information such as the language used during a
video-conference [12]. For example, this information will be
able to indicate that the service is no longer adapted for a
listener who does not understand this language and then will
impose a reconfiguration which offers a translation or
subtitles.

C.C. Kalinahia: Execution Platform Model

We propose a platform model implementing iterative
heuristics which improves the QoS with each iteration. The
search for a better configuration rests then on two criteria. The
first one is imposed by the temporal constraints of the
multimedia applications. It is necessary that the platform
quickly reacts in order to avoid service breaks. This is
obtained by the generation of events of reconfiguration.

The second criterion also comes from the characteristics of
the multimedia applications where the perception the user has
of the application is central to evaluate QoS: it is the
maintenance of ergonomic continuity at the time of a
reconfiguration and it is called plasticity [2]. It is respected
thanks to the study of the service proximity between
configurations. Service proximity is determined, on the one
hand, by using the architecture which we designed so that it
reflects the vision the user of the service has and, on the other
hand, by using the wishes the user will express.

Drawing from all these criteria, we built up a heuristic

system. We have proved that its complexity is polynomial. It
only depends on the intrinsic complexity of the application. In
a logical way, this complexity is now incompressible.

IV.IV.KALINAHIA PLATFORM IMPLEMENTATION
AND SIMULATION

A.A. Implementation of the Platform

The effectiveness of the heuristic that define
reconfigurations depends partly on the choice of the event
which identifies the problematic component. So we worked
out an event manager model which allows the platform to
intervene on the most critical application part for the user.
Then we proposed a structural model of the platform allowing
distributed management of the events but also the QoS
evaluation with the aim of respecting the temporal constraints
of multimedia applications. The management of the events is
thus guided by their importance for the user. On all the
stations used by the application, the local part of the platform
is composed of five managers: the events manager carrying
out the choice of the event to be dealt with, the evaluation
manager, the communication manager, the user manager
allowing the capture of users’ wishes, the supervision manager
reconfiguring the application.

B.B. Simulation of the Platform

We validated this model thanks to a simulator of the
platform developed with Labview by National Instruments
which makes it possible to simulate the application and its
context of execution including the network.

The application is built using components which do not
fulfill any function on the multimedia data. Their execution is
simulated by the evolution of the QoS characteristics of
outputs starting from the QoS characteristics of the inputs.
These flows are represented by their QoS characteristics. The
evaluation of QoS is then simulated by the definition of the
QoS characteristics of the application output flows at a given
time, as well as by their marking. The simulation of the
application execution is obtained by continuous estimation of
the QoS characteristics of all the flows present in the
application. Our software makes it possible to simulate the
state of the network and the stations used by the application.
Thus, in the course of simulation, it is possible to vary the
available bandwidth between two stations, the associated time
of transmission and the saturation of a station.

The dynamic call of the components was carried out
thanks to the use of a single model of component to program
all the application components. The simulator creates,
removes, and moves components in the same way a real
platform would and with comparable times to a platform like
OSGi [14]. According to the design of the application, to the
users’ wishes and to the information describing the context,
the prototype simulates the operation of the application and
the platform. It simulates the implementation of the local parts
of the platform then dynamically displays the application by
using the by default configurations. The application will then
be carried out continuously until a reconfiguration is
necessary. The prototype makes it possible at any moment to

visualize the QoS mark of the application. In parallel, the
platform collects the reconfiguration events. It identifies those
of the highest priority and seeks, if necessary, a better
configuration. If it fails in its search, it studies another event.
If it succeeds, it sends an order of reconfiguration to the
supervisor manager and the application is reconfigured.

We show here the results obtained for a video surveillance
application [12] that offers 135 possible configurations:
compression, picture processing, several qualities. One of the
tests carried out (Fig. 2) characterize the performance of the
platform and the application when the context of execution
fluctuates. The application is first of all displayed in a
favorable context – context 1, C.1 - where neither the stations
nor the network are saturated then this context undergoes a
degradation - context 2, C.2 – resulting from the saturation of
the one of the stations. Then it goes back to its former state –
C.1 – then gets deteriorated again – C.2.

The first reconfiguration corresponds to an improvement
of the QoS and consists in replacing the component by a more
powerful one. The second reconfiguration intervenes after a
deterioration of the context and consists in moving a
component from the saturated station to another station. The
third reconfiguration improves the result obtained by moving
another component to an unsaturated station.

QoS1

QoS2

QoS3
QoS4

QoS0

Context 1 Context 2 C. 2 C. 1

Reconfigurations

QoS0 : configuration A
QoS1-2 : configuration B
QoS3 : configuration C
QoS4 -5 : configuration D

QoS5

QoS(t)

t

Figure2. Evolution of QoS at the time of context fluctuations

This test is particularly interesting because it highlights
that, when the context goes back to its former situation after
having moved, the platform proposes a QoS with identical
mark but uses a different configuration that provides a
satisfaction equivalent to the user. Moreover, by not seeking
the optimum, the Kalinahia platform stabilizes the service and
gives a better plasticity and thus a better performance to the
application. An exhaustive research of the best configuration
would not have this plasticity nor this stabilizing capacity.

V.V.CONCLUSION

The platform that we propose carries out a particularly
effective adaptation of the application to the context. Indeed
the adaptation in Kalinahia is more dynamic than other works
— CAliF, Agilos — because it is entirely dynamic since the
principles of adaptation are determined in the course of
execution according to the service proximity. Moreover, it
relates at the same time to the structure, to the functionalities
and to the scheduling, which makes it more complete than
what is often proposed - JQoS, Agilos. It also automatically
manages improvements and degradations of the context.

Indeed, even if its objective at any moment remains to
improve QoS as we defined it, in practice, this may imply a
degradation of the intrinsic characteristics of the service so as
to obtain an improvement of total quality thanks to a
compromise between intrinsic and contextual criteria. So this
ability to move in both directions of quality constitutes a
progress compared to the systems usually suggested such as
JQoS, where only degradation is carried out in an automatic
way. Lastly, thanks to the heuristic system used, the platform
does not just propose a solution to a NP-complete problem
using only mathematical vision - as the solutions from graphs
for networks - but also takes into consideration the user.

We think that platform and application must be closely
dependent on each other, in order to leave the application with
only the trade aspects, and thus to allow reuse of components
or the use of components off-the-shelf. This is why we wish to
produce not only an execution platform, but also an aid for the
design. Lastly, studying the possibility of including our
platform in a more ambitious system will be interesting,
making it possible to use the adaptation we propose, but also
to associate the exploitation of the guarantees of service when
possible. Then we will be able to use an adaptation of the
network regarding servers and using active nodes. Thus the
service will be optimized from the user’s point of view but
also from the supplier’s point of view, the original concern of
the concept of QoS.

REFERENCES

1] Ayed D., Taconet C., Bernard G., “ A data model for context-aware
deployment of component-based applications onto distributed systems”,
- ECOOP'04 - Oslo, Norway - 2004.

2] Calvary G., Coutaz J., and Thevenin D., “ A Unifying Reference
Framework for the Development of Plastic User Interfaces ” EHCI'01,
Toronto, May 2001.

3] Dalmau M., Roose P., Bouix E., Luthon F., “ A Multimedia Oriented
Component Model ”, IEEE 19th ICAINA, Taiwan, March 2005.

4] DaSilva L.A., “ Pricing for QoS-enabled Networks: A Survey, ” IEEE
Communication Surveys and Tutorials, vol. 3, no. 2, 2000, pp. 2-8.

5] Firesmith D.G., “ Using Quality Models to Engineer Quality
Requirements ”, JOT, 2 (5), Swiss Federal Institute of Technology,
Switzerland, p. 67-75, September/October 2003.

6] Garcia E., Lapayre J.-C., Sureswaran R., and Tharmaraj K..
“ Centralized or Distributed Algorithm for Concurrency Management in
Multimedia Conferencing Systems ”. APAN 2001, Penang, Malaysia,
pages 108--119, August 2001.

7] Garey M. R., Johnson D. S., Computers and Interactability: A guide to
the theory of NP-completeness, W. H. Freeman and Company, San
Francisco, 1979.

8] Gu X., Nahrstedt K., Yuan W., Wichadakul D., XU D., “ An XML-
based QoS Enabling Language for the Web ”, Journal of Visual
Language and Computing, v.13, n.1, pp. 61-95, Academic Press, 2002.

9] Hafid A., von Bochmann G., Dssouli R. “Distributed Multimedia
Application and Quality of Service : A Review ”, Electronic Journal on
Networks and Distributed Processing, N°6, 1998, p 1-50.

10] ITU, International Telecommunication Union, Rec.I.350, General
Aspects of Quality of Service and Network Performance in Digital
Networks, Geneva, 1989.

11] Kuipers F., van Mieghem P., “ MAMCRA: a constrained-based
multicast routing algorithm ”, Proc. of Computer Communications, vol.
25, pp.802-811, 2002.

12] Laplace M. S., Conception d’architectures logicielles pour intégrer la
qualité de service dans les applications multimédias réparties, Thèse de
l’Université de Pau, 2006.

13] Li B., Kalter W., Nahrstedt K., “ A Hierarchical Quality of Service
Control Architecture for Configurable Multimedia Applications ”,
Journal of High Speed Networks, IOS Press, Vol. 9, pp. 153-174, 2001.

14] OSGi™ Alliance- The Dynamic Module System for Java - About the
OSGi ServicePlatform - Technical Whitepaper, June 2007.

15] Parkin M., Economics, Addison-Wesley Inc., Reading, Massachusetts,
1990.

16] Rakotonirainy A., Indulska J., Loke S., Zaslavsky A., “ Middleware for
Reactive Components : An Integrated Use of Context, Roles, and Event
Based Coordination ”, IFIP/ACM International Conference on
Distributed Systems Platforms, Heidelberg, Allemagne, Novembre 2001.

17] Schantz R.E., Loyall J.P., Rodrigues C., Schmidt D.C., Krishnamurthy
Y., “ Flexible and Adaptive QoS Control for Distributed Real-time and
Embedded Middleware ”. ACM/IFIP/USENIX International
Middleware Conf., Rio de Janeiro, Brazil, June 2003.

18] Stephen S., Yu W., Fariaz K., “ Development of Situation-Aware
Application Software for Ubiquitous Computing Environments ”, in
Proc.of COMPSAC’02, England, 2002.

19] Vogel A., Kerherve B., von Bochmann G., Gecei J., “ Distributed
multimedia applications and Quality of Service :- A Survey-” IEEE
Mutimedia Journal, august 1995.

20] Wang N., Gill C., Schmidt D., Gokhale A., Natarajan B., Loyall J.,
Schantz R., Rodrigues C., “ QoS-enabled Middleware ”. Chap in
Middleware for Communications, Qusay H. Mahmoud, Wiley, 2004.

21] Zhu W., Georganas N. “ JQoS : Design and Implementation of a QoS-
based Internet Videoconferencing System using Java Media Framework
(JMF) ” Canadian Conference on Electrical and Computer Engineering,
Toronto, Canada, 2001.

	I. Introduction
	II.STATE OF THE ART
	III.Platform modeling
	A.QoS and Application Models
	B.Algorithmic Complexity
	C.Kalinahia: Execution Platform Model

	IV.KALINAHIA PLATFORM IMPLEMENTATION AND SIMULATION
	A.Implementation of the Platform
	B.Simulation of the Platform

	V.CONCLUSION
	References

